## 女川原子力発電所 2 号炉

# 設計基準対象施設について <br> （4条 地震による損傷の防止） 

令和元年5月

東北電力株式会社

## 目次

## 4 条 地震による損傷の防止

5 条 津波による損傷の防止
6 条 外部からの衝撃による損傷の防止（その他外部事象）
6 条 外部からの衝撃による損傷の防止（竜巻）
6 条 外部からの衝撃による損傷の防止（火山）
6 条 外部からの衝撃による損傷の防止（外部火災）
7 条 発電用原子灲施設への人の不法な侵入等の防止
8 条 火災による損傷の防止
9 条 溢水による損傷の防止等
10 条 誤操作の防止
11 条 安全避難通路等
12 条 安全施設
14 条 全交流動力電源喪失対策設備
16 条 燃料体等の取扱施設及び貯蔵施設
17 条 原子炉冷却材圧力バウンダリ
23 条 計測制御系統施設（第 16 条に含む）
24 条 安全保護回路
26 条 原子炉制御室等
31 条 監視設備
33 条 保安電源設備
34 条 緊急時対策所
35 条 通信連絡設備

[^0]
# 女川原子力発電所 2 号炉 

地震による損傷の防止

第4条：地震による損傷の防止
<目 次 >

## 第1部

## 1．基本方針

1.1 要求事項の整理
1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1.3 気象等
1.4 設備等
1.5 手順等

## 第2部

1．耐震設計の基本方針
1.1 基本方針
1.2 適用規格

2．耐震設計上の重要度分類
2．1 重要度分類の基本方針
2.2 耐震重要度分類

3．設計用地震力
3.1 地震力の算定法
3.2 設計用地震力

4．荷重の組合せと許容限界
4.1 基本方針

5．地震応答解析の方針
5.1 建物•構築物
5.2 機器•配管系
5.3 屋外重要土木構造物
5.4 津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物
6．設計用減衰定数
7．耐震重要施設の安全機能への下位クラス施設の波及的影響
8．水平 2 方向及び鉛直方向の地震力の組合せに関する影響評価方針
9．構造計画と配置計画
（別 添）
別添—1 設計用地震力
別添－2 動的機能維持の評価
別添－3 弾性設計用地震力 S d •静的地震力による評価
別添—4 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討に ついて
別添— 5 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
別添—6 屋外重要土木構造物等及び津波防護施設の耐震評価における断面選定 の考え方
別添－7 主要建屋の構造概要及び解析モデルについて
別添－8 入力地震動について
（別 紙）
別紙－1 既工認との手法の相違点の整理（設置変更許可申請段階での整理）
別紙— 2 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討
別紙—3水平2方向及び鉛直方向の適切な組合せに関する検討について
別紙—4 サプレッションチェンバ内部水質量の考え方の変更について
別紙— 5 竜巻防護ネットの耐震構造設計について
別紙－6 原子炉本体の基礎の復元力特性について
別紙－7 使用済燃料貯蔵ラックの減衰定数について
別紙－8 規格適用範囲外の動的機能維持の評価
別紙－9 海水ポンプ室門型クレーン～の非線形時刻歴応答解析の適用別紙－10 地震時における燃料被覆管の閉じ込め機能の維持について
別紙－1 1 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法へ の反映について
別紙－12 埋め込まれた建屋の周辺地盤による影響について
別紙－13 原子炬建屋屋根トラスの解析モデルへの弾塑性解析の適用
別紙－14 原子炬建屋基礎版の応力解析モデルへの弾塑性解析の適用
別紙－15 土木構造物の解析手法及び解析モデルの精緻化について
別紙－16 後施工せん断補強筋による耐震補強について
別紙－17 液状化影響の検討方針について
別紙－18 地下水位低下設備について

## 女川原子力発電所 2 号炉

地震時における燃料被覆管の
閉じ込め機能の維持について

## 目 次

1．はじめに ..... － 1
2．基本方針 ..... － 1
2.1 要求事項の整理 ..... － 1
2.2 追加要求事項への適合性に係る設計方針 ..... 5
3．追加要求事項に係る評価項目の選定 ..... ． 5
4．地震時の燃料被覆管閉じ込め機能評価方針 ..... 6
5．追加要求事項を踏まえた燃料被覆管応力評価条件 ..... － 9
6．評価手法 ..... 9
6．1 応力評価手法 ..... － 9
6.2 疲労評価手法 ..... 10
7．評価結果 ..... 10
8．まとめ ..... 11

添付資料1：燃料被覆管の応力評価に考慮する応力について
添付資料2：燃料被覆管下部端栓溶接部における応力の取扱いについて
添付資料3：地震による応力を考慮した燃料被覆管応力評価（閉じ込め機能の維持）について
添付資料4：地震による繰り返し荷重を考慮した燃料被覆管疲労評価（閉じ込 め機能の維持）について

添付資料5：燃料被覆管応力評価における許容応力について
添付資料6：燃料被覆管応力評価におけるモンテカルロ法による統計処理につ いて
添付資料 7 ：下部端栓溶接部の応力評価に使用する有限要素法解析コードにつ いて
添付資料8：9×9燃料（B 型）における地震時鉛直方向加速度の考慮方法につ いて
添付資料9：評価部位の選定理由について
添付資料10：燃料被覆管の応力評価に用いる各評価手法の保守性について

## 1．はじめに

燃料被覆管の応力評価に関しては，燃料の健全性を確認する観点から，原子炉設置 （変更）許可申請書添付書類八及び燃料体設計認可申請書添付書類II（応力解析）に おいて，通常運転時及び運転時の異常な過渡変化時に発生する内外圧力差による応力，熱応力等を考慮し，解析コードを用いて燃料被覆管の応力設計比の評価を行っている。 また，工事計画認可申請書及び燃料体設計認可申請書添付書類II（耐震解析）におい て，崩壊熱除去可能な形状の維持の観点から，地震時の一次応力も考慮した応力評価 を実施している。

一方，平成 29 年 8 月 30 日の原子力規制委員会において「実用発電用原子炉及びそ の附属施設の位置，構造及び設備の基準に関する規則」（以下「設置許可基準規則」 という。）及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」（以下「技術基準規則」という。）の改正が決定，平成29年9月11日に施行され，地震時 の燃料被覆管の閉じ込め機能の維持についての要求が追加された。

本資料では，地震時の燃料被覆管の閉じ込め機能の維持に係る設計方針及び地震動 の暫定値 ${ }^{* 1}$ による基準適合性の見通しについて説明する。なお，詳細評価については工事計画認可申請で説明する。
※1：平成 25 年 12 月設置変更許可申請時の弾性設計用地震動 Sd 及び基準地震動 Ss

## 2．基本方針

## 2.1 要求事項の整理

設置許可基準規則第 4 条及び設置許可基準規則の解釈第 4 条を第 2．1－1 表に，ま た，技術基準規則第 5 条及び技術基準規則の解釈第 5 条を第 2．1－2 表に示す。

なお，本規則改正に伴う要求事項については，「実用発電用原子炉の燃料体に対 する地震の影響の考慮について（平成 29 年 2 月 15 日，原子力規制庁）」において以下のとおり示されている。
『…地震時の燃料被覆管の閉じ込め機能の維持に係る評価として，より精緻化する観点から，地震力並びに地震力と重畳する可能性のある 1 次応力及び 2 次応力を加味した評価を実施することを求める必要がある。

よって，原子力規制庁としては，通常運転時及び運転時の異常な過渡変化時に，基準地震動 Ss の地震が発生した場合でも，燃料被覆管の閉じ込め機能が維持でき ることを新たに要求し，耐震重要度分類 S クラスの耐震設計の考え方にならって， その判断基準として，基準地震動 S s の地震による 1 次応力を加味した運転状態に おける応力が設計引張強さを下回ること，また，弾性設計用地震動 Sd の地震によ る 1 次応力を加味した運転状態における応力が設計降伏点を下回ることとしたい。』

第 2．1－1 表 設置許可基準規則第4条及び設置許可基準規則の解釈第4条（1／2）

| 設置許可基準規則 <br> 第4条（地震による損傷の防止） | 設置許可基準規則の解釈 <br> 第4条（地震による損傷の防止） | 備考 |
| :---: | :---: | :---: |
| 設計基準対象施設は，地震力に十分に耐えることができるものでなけ ればならない。 | 一 第1項に規定する「地震力に十分 に耐える」とは，通常運転時及び運転時の異常な過渡変化時に生じるそ れぞれの荷重と，弾性設計用地震動 による地震力（本規程別記 2 第 4 条第 4 項第 1 号に規定する弾性設計用地震動による地震力をいう。）又は静的地震力（同項第2号に規定する静的地震力をいい，S クラスに属する機器に対し算定されるものに限る。） のいずれか大きい方の地震力を組み合わせた荷重条件に対して，炉心内 の燃料被覆材の応答が全体的におお むね弾性状態に留まることをいう。 | 解釈 <br> 追記 |
| 2 前項の地震力は，地震の発生に よって生ずるおそれがある設計基準対象施設の安全機能の喪失に起因す る放射線による公衆への影響の程度 に応じて算定しなければならない。 | － | 変更 <br> なし |
| 3 耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及 ぼすおそれがある地震による加速度 によって作用する地震力（以下「基準地震動による地震力」という。）に対して安全機能が損なわれるおそれ がないものでなければならない。 | － | 変更 なし |
| 4 耐震重要施設は，前項の地震の発生によって生ずるおそれがある斜面の崩壊に対して安全機能が損なわ れるおそれがないものでなければな らない。 | － | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ |

第 2．1－1 表 設置許可基準規則第4条及び設置許可基準規則の解釈第4条（2／2）

| 設置許可基準規則 <br> 第4条（地震による損傷の防止） | 設置許可基準規則の解釈第4条（地震による損傷の防止） | 備考 |
| :---: | :---: | :---: |
| 5 炉心内の燃料被覆材は，基準地震動による地震力に対して放射性物質の閉じ込めの機能が損なわれるお それがないものでなければならな い。 | 二 第5項に規定する「基準地震動に よる地震力に対して放射性物質の閉 じ込めの機能が損なわれるおそれが ない」とは，通常運転時及び運転時 の異常な過渡変化時に生じるそれぞ れの荷重と基準地震動による地震力 を組み合わせた荷重条件により塑性 ひずみが生じる場合であっても，そ の量が小さなレベルに留まって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及 ぼさないことをいう。 | 追加要求事項 |

第 2．1－2 表 技術基準規則第5条及び技術基準規則の解釈第5条

| 技術基準規則 <br> 第 5 条（地震による損傷の防止） | 技術基準規則の解釈 <br> 第 5 条（地震による損傷の防止） | 備考 |
| :---: | :---: | :---: |
| 設計基準対象施設は，これに作用す る地震力（設置許可基準規則第四条第二項の規定により算定する地震力 をいう。）による損壊により公衆に放射線障害を及ぼさないように施設し なければならない。 | － | 変更 <br> なし |
| 2 耐震重要施設（設置許可基準規則第三条第一項に規定する耐震重要施設をいう。以下同じ。）は，基準地震動による地震力（設置許可基準規則第四条第三項に規定する基準地震動による地震力をいう。以下同じ。） に対してその安全性が損なわれるお それがないように施設しなければな らない。 | － | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ |
| 3 耐震重要施設が設置許可基準規則第四条第三項の地震により生ずる斜面の崩壊によりその安全性が損な われるおそれがないよう，防護措置 その他の適切な措置を講じなければ ならない。 | － | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ |
| 4 炉心内の燃料被覆材は，基準地震動による地震力に対して放射性物質の閉じ込めの機能が損なわれるお それがないように施設しなければな らない。 | 5 第4項に規定する「基準地震動 による地震力に対して放射性物質の閉じ込めの機能が損なわれるおそれ がない」とは，通常運転時及び運転時の異常な過渡変化時に生じるそれ ぞれの荷重と基準地震動による地震力を組み合わせた荷重条件により塑性ひずみが生じる場合であっても， その量が小さなレベルに留まって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及ぼさないことをいう。 | 追加 <br> 要求 <br> 事項 |

2.2 追加要求事項への適合性に係る設計方針

本規則改正に係る要求事項を満足し，追加要求事項への適合性を示すため，燃料被覆管の閉じ込め機能の維持に係る設計方針を定め，発電用原子炉設置変更許可申請書に以下のとおり追記する。
（本文）
炉心内の燃料被覆管の放射性物質の閉じ込めの機能については，以下のとおり設計する。
－弾性設計用地震動による地震力又は静的地震力のいずれか大きい方の地震力に対して，炬心内の燃料被覆管の応答が全体的におおむね弾性状態に留まるよう に設計する。
－基準地震動による地震力に対して，放射性物質の閉じ込めの機能に影響を及ぼ さないように設計する。

## （添付書類八）

炉心内の燃料被覆管の放射性物質の閉じ込めの機能については，以下のとおり設計する。
－通常運転時及び運転時の異常な過渡変化時に生じるそれぞれの荷重と，弾性設計用地震動による地震力又は静的地震力のいずれか大きい方の地震力を組み合 わせた荷重条件に対して，炉心内の燃料被覆管の応答が全体的におおむね弾性状態に留まる設計とする。
－通常運転時及び運転時の異常な過渡変化時に生じるそれぞれの荷重と基準地震動による地震力を組み合わせた荷重条件により塑性ひずみが生じる場合であっ ても，その量が小さなレベルに留まって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及ぼさない設計とする。

3．追加要求事項に係る評価項目の選定
BWR 燃料集合体は「沸騰水型原子灲に用いられる 8 行 8 列型の燃料集合体について （昭和 49 年 12 月 25 日，原子炉安全専門審査会）」に従い，構造強度設計で以下を考慮している。なお，損傷限界は $1 \%$ 塑性歪及び沸騰遷移であり，それぞれ最大線出力密度と最小限界出力比を通常運転時の熱的制限値として管理することで損傷限界 に至らないことを確認しているため，地震の影響は問題とならない。
（1）被覆管にかかる応力は，設計応力強さ限界を超えないこと。
（2）累積疲労サイクル数は，設計疲労寿命を超えないこと。
（3）使用中に燃料棒の変形等による過度の寸法変化を生じないこと。
上記のらち，（3）の燃料集合体に異常な寸法形状変化を生じさせないための以下の配慮は地震の影響が問題とならないことから評価対象としない。

- 燃料被覆管製造時における残留応力除去
- スペーサによる燃料棒の間隔保持及び燃料棒の軸方向伸縮を拘束しない接触圧保持
－上部タイプレートを通して燃料棒の軸方向伸びを自由に逃げられるようにするこ と
－スペーサ等によるウォータロッドと燃料棒の軸方向伸びの差への処置
地震動により燃料被覆管に外力として応力が作用し，また，地震動が継続する間，繰り返し応力として作用するため，（1）及び（2）について地震影響を考慮した評価を行 う。

4．地震時の燃料被覆管閉じ込め機能評価方針
第 4－1 図に燃料被覆管閉じ込め機能評価フロー，第 4－2 図に評価対象部位（スペー サ間，スペーサ部及び下部端栓溶接部）を示す。

燃料被覆管閉じ込め機能の評価は，燃料棒熱•機械設計解析コードから得られる被覆管温度や燃料棒内圧のほか，炉心条件，地震動 ${ }^{*}$ に対する燃料集合体の応答加速度等を入力値とした応力評価及び疲労評価により行う。被覆管温度，燃料棒内圧，炉心条件，被覆管寸法等については不確かさを考慮した値を用いる。なお，弾性設計用地震動 Sd 及び基準地震動 Ss（7 波）を用いた応力評価及び疲労評価の詳細手法につい ては工事計画認可申請で説明する。

また，燃料集合体の浮き上がりの可能性については，冷却材による流体力，水平方向加速度（10G）及び鉛直方向加速度（2G）においても，浮き上がりの影響がない（燃料支持金具から外れない）ことが過去の解析評価により確認されている ${ }^{[1]}$ 。上記に加 え，制御棒挿入時の突き上げや燃料と上部格子板との摩擦を考慮した場合においても， ほぼ同様の結果となることが別の試験及び解析で確認されている ${ }^{[2]}$ 。
※2：平成 25 年 12 月設置変更許可申請時の弾性設計用地震動 Sd 及び基準地震動 Ss


第 4－1 図 燃料被覆管閉じ込め機能評価フロー


第 4－2 図 評価対象部位（イメージ）

5．追加要求事項を踏まえた燃料被覆管応力評価条件
「実用発電用原子炉の燃料体に対する地震の影響の考慮について（平成 29 年 2 月 15 日，原子力規制庁）」を踏まえた燃料被覆管の応力評価条件を第5－1 表に示す。な お，既許認可より実施している第5－2表に示す応力評価条件についても引き続き評価 を行う。

評価対象燃料は，原子炉設置変更許可済の $9 \times 9$ 燃料（A 型）及び $9 \times 9$ 燃料（B型）とする。

第5－1表 追加要求事項を踏まえた燃料被覆管の応力評価条件

| 運転状態 | 要求機能 | 考慮すべき応力 ${ }^{*}$ c地震動 | 許容応力 |
| :---: | :---: | :---: | :---: |
| 地震時 | 燃料被覆管の <br> 閉じ込め機能 | 一次応力（Sd を考慮） <br> ＋二次応力（Sdを考慮） | 降伏応力（Sy） |
|  |  | $\begin{aligned} & \text { 一次応力 (Ss を考慮) } \\ & + \text { 二次応力 (Ss を考慮) } \end{aligned}$ | 引張強さ（Su） |

第5－2表 既許認可より実施している燃料被覆管の応力評価条件

| 運転状態 | 要求機能 | 考慮すべき応力 | 許容応力 |
| :---: | :---: | :---: | :---: |
| 通常運転時及び <br> 運転時の異常な <br> 過渡変化時 | 燃料被覆管の <br> 閉じ込め機能 | 一次応力 | 降伏応力 $(\mathrm{Sy})$ |
| 地震時 | 崩壊熱除去可能な <br> 形状の維持 | 一次応力＋二次応力＊3 | 引張強さ $(\mathrm{Su})$ |

※3：考慮すべき応力には熱応力を含む（添付資料 1 参照）

## 6．評価手法

6． 1 応力評価手法 ${ }^{[3]}$
燃料被覆管応力評価は，燃料被覆管のスペーサ間，スペーサ部及び下部端栓溶接部 の各位置において，せん断歪エネルギー説（von Mises 理論）に基づき燃料被覆管の相当応力を求め応力設計比 ${ }^{* 4}$ を評価することにより行う。応力計算は，燃料被覆管に発生するすべての応力を三軸方向（半径方向，円周方向及び軸方向）について解析し， それらより相当応力を評価する。燃料被覆管の応力評価に考慮する応力を添付資料 1 に示す。

スペーサ間及びスペーサ部における応力評価では，燃料被覆管に発生する各応力に ついての厚肉円筒式を用いた弾性解析により，厚肉円筒式の入力変数の統計的分布に

基づくモンテカルロ法（添付資料 6 参照）による統計評価を行う。このため応力設計比は，被覆管寸法，被覆管温度，燃料棒内圧，炉心条件，許容応力等の統計的入力変数の関数となる。入力変数の統計的分布は，製造実績，実機運転データ等を考慮して設定した値を用いる。モンテカルロ法による評価では，1 回の試行ごとに乱数が用い られ，統計的分布に従い設定された入力条件から 1 つの応力設計比が得られる。この試行を繰り返すことにより応力設計比の $95 \%$ 確率上限値を求める。応力設計比の $95 \%$確率上限値が 1 以下であることで燃料の健全性を確認する。

下部端栓溶接部における応力評価については，形状が複雑であることから有限要素法による決定論的評価を実施し，一次応力＋二次応力と許容応力を比較して応力設計比が 1 以下であることを確認している。なお，既許認可における下部端栓溶接部の応力評価では簡便な扱いとしてピーク応力を含んだ値を用いていたが，今回申請ではピ ーク応力を含まない一次応力十二次応力にて応力評価を行う（添付資料2参照）。ま た，入力変数については，保守的な条件（変数の $95 \%$ 確率上下限値）を使用している。
※4：応力設計比＝発生応力（通常運転時及び運転時の異常な過渡変化時にかかる応力＋地震時にかかる応力）／許容応力

## 6．2疲労評価手法

燃料の疲労限界に対する設計基準は，累積損傷の法則（Miner の仮説）及び Langer－ $0^{\prime}$ Donnell の考え方に基づく。具体的には炉内滞在期間 8 年を仮定した温度•圧力及 び出力の予測サイクル＊5による疲労に加え，地震動による繰り返し荷重を考慮し，累積疲労係数が 1.0 未満であることを確認する。疲労評価においては，一次応力と二次応力に加えてピーク応力を考慮する。また，地震荷重の繰り返し数は，建設時の評価 に用いた 60 回とその倍の 120 回を用いて暫定的に影響を確認する。なお，詳細評価 については，別途，等価繰り返し回数の検討結果を踏まえて工事計画認可申請にて行 う。
※5：予測サイクルを以下に示す。（原子炉設置（変更）許可申請書添付書類八より）

| サイクル条件 | 予測サイクル |
| :---: | :---: |
| 室温から $100 \%$ 出力 | $\sim 4 /$ 年 |
| 高温待機状態から $100 \%$ 出力 | $\sim 12 /$ 年 |
| $50 \%$ 出力から $100 \%$ 出力 | $\sim 60 /$ 年 |
| $75 \%$ 出力から $100 \%$ 出力 | $\sim 250 /$ 年 |
| $100 \%$ 出力から $121 \%$ 出力 | $\sim 0.5 /$ 年 |

## 7．評価結果

燃料被覆管応力評価結果（暫定条件による概算値）を添付資料 3 に示す。通常運転

時及び運転時の異常な過渡変化時に発生する応力に加えて地震による応力を考慮し た場合においても，応力設計比は最大で $0.73 ~(9 \times 9$ 燃料（A型））及び $0.73 ~(9 \times$ 9 燃料（B 型））となり， 1.0 より小さいことを確認した。
燃料被覆管疲労評価結果（暫定条件による概算値）を添付資料 4 に示す。基準地震動 Ss による地震力が繰り返された場合の応力振幅と繰り返し回数，ジルカロイの設計疲労曲線を用いて評価された疲労係数の増分は繰り返し数 60 回の場合で 0.00333 （ $9 \times 9$ 燃料（A 型））及び $0.00536 ~(9 \times 9$ 燃料（B 型）），繰り返し数 120 回の場合で $0.00667(9 \times 9$ 燃料（A 型））及び $0.01071 ~(9 \times 9$ 燃料（ B 型））となった。 よって，全寿命を通した累積疲労係数（約 $0.003^{[4]}\left(9 \times 9\right.$ 燃料（A型））及び約 $0.006^{[5]}$ （ $9 \times 9$ 燃料（ $B$ 型）））に，地震動による疲労係数増分を加えても累積疲労係数は 1.0 より小さいことを確認した。

## 8．まとめ

地震時の燃料被覆管の閉じ込め機能の維持に係る設計方針を示すとともに，地震動 の暫定値＊66よる評価により，基準に適合する見通しであることを確認した。なお，詳細評価については工事計画認可申請で説明する。
$※ 6$ ：平成 25 年 12 月設置変更許可申請時の弾性設計用地震動 Sd 及び基準地震動 Ss

## 参考文献

［1］平成 17 年度原子力施設等の耐震性評価技術に関する試験及び調査機器耐力 その 2 （BWR 制御棒挿入性）に係る報告書（平成 18 年 9 月原子力安全基盤機構）
［2］浜岡原子力発電所 $3, ~ 4$ 号機「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う耐震安全性評価に関わる報告のうち耐震設計上重要な機器•配管系の耐震安全性評価（補足説明資料）（平成19年10月23日 中部電力株式会社）
［3］発電用軽水型原子炉の燃料設計手法について（昭和 63 年 5 月 12 日 原子力安全委員会了承）
［4］女川原子力発電所第2号機「燃料体設計認可申請書」（GNF 燃設認第 35 号，平成 21年10月16日認可）
［5］女川原子力発電所第2号機及び第3号機「燃料体設計認可申請書」（ 20 原燃東 第 802 号，平成 21 年 1 月 7 日認可）

## 燃料被覆管の応力評価に考慮する応力について

各評価対象部位において考慮する応力を添付 1－1表に，評価対象部位（スペーサ間， スペーサ部及び下部端栓溶接部）を添付1－1図に示す。また，燃料集合体の構造図（9 $\times 9$ 燃料（A 型））を添付 1－2 図に，燃料集合体の構造図（ $9 \times 9$ 燃料（B 型））を添付1－3図に示す。 $9 \times 9$ 燃料（A型）には 2 本の太径のウォータロッドがあるが， 9 $\times 9$ 燃料（B 型）では 1 本の角管のウォータチャンネルであり，また $9 \times 9$ 燃料（A型）のみに部分長燃料棒が存在するといった違いがある。

添付 1－1 表 各評価対象部位において考慮する応力

| 考慮する応力 | スペーサ間 | スペーサ部 | 下部端栓溶接部 |
| :---: | :---: | :---: | :---: |
| （1）内外圧力差に基づく応力 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| （2）水力振動に基づく応力 | $\bigcirc$ | $\bigcirc{ }^{* 1}$ | － |
| （3）楕円度に基づく応力 | $\bigcirc$ | $\bigcirc$ | － |
| （4）スペーサ（支持格子）の接触力に基づく応力 | － | $\bigcirc$ | － |
| （5）半径方向温度差に基づく応力 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| （6）円周方向温度差に基づく応力 | $\bigcirc$ | $\bigcirc$ | ${ }^{* 1}$ |
| （7）膨張スプリング等による軸方向荷重に基づく応力 | $\bigcirc$ | $\bigcirc$ | $\bigcirc{ }^{* 1}$ |
| （8）ウォータチャンネルと燃料被覆管の熱膨張差による応力 | $\bigcirc{ }^{*}$ | $\bigcirc{ }^{*}$ | － |
| （9）端栓取付角公差による曲がりに基づく応力 | － | － | $\bigcirc{ }^{* 1}$ |
| （10）スペーサ（支持格子）間の水平地震力に よる燃料被覆管のたわみに基づく応力 ${ }^{2} 3$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| （11）チャンネルボックスの水平地震力によ るたわみに基づく応力 ${ }^{3}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| （12）鉛直方向地震加速度に基づく応力＊3 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

※1：9×9燃料（A 型）の場合に考慮
$※ 2: ~ 9 \times 9$ 燃料（ B 型）の場合に考慮
※ 3 ：地震動を考慮する場合に新たに加わる応力

## ［解 説］

1．運転中（通常運転時及び運転時の異常な過渡変化時）に発生する応力
（1）内外圧力差に基づく応力
燃料被覆管内部ガス圧力と冷却材圧力の差圧により発生する応力。


燃料被覆管
（2）水力振動に基づく応力
冷却材の流れによって生じる燃料被覆管の微小振動に基づき発生する応力。


燃料被覆管
（3）楕円度に基づく応力
燃料被覆管製作時に生じる真円からのわずかな歪みにより，燃料被覆管内部ガス圧力と冷却材圧力の差圧により発生する応力。

（4）スペーサ（支持格子）の接触力に基づく応力 スペーサ（支持格子）のばね押圧により，スペーサ部に発生する応力。

（5）半径方向温度差に基づく応力
燃料被覆管内外面の温度差に基づく熱膨張差が拘束されることにより発生する応力。

（6）円周方向温度差に基づく応力
燃料被覆管の円周方向温度分布の不均一による燃料被覆管の湾曲がスペーサ（支持格子）により拘束されることで発生する応力（ $9 \times 9$ 燃料（B 型）の熱湾曲矯正 による応力も同様の応力）。

（7）膨張スプリング等による軸方向荷重に基づく応力
膨張スプリング及びプレナムスプリング（内部スプリング）により発生する応力 （ $9 \times 9$ 燃料（A 型）については，燃料自重による応力も含む）。

（8）ウォータチャンネルと燃料被覆管の熱膨張差による応力
ウォータチャンネルと燃料被覆管の熱膨張差により，燃料被覆管の伸びが拘束さ れることにより発生する応力 $(9 \times 9$ 燃料（B 型））。


燃料被覆管
（9）端栓取付角公差による曲がりに基づく応力
下部端栓の取付角の公差により，下部端栓とスペーサ（支持格子）との間で燃料被覆管に曲げが生じることにより発生する応力 $(9 \times 9$ 燃料（A 型））。


2．地震時に付加される応力
（10）スペーサ（支持格子）間の水平地震力による燃料被覆管のたわみに基づく応力水平地震荷重により，スペーサ（支持格子）を支持点として燃料被覆管がたわむ ことにより発生する応力。


燃料被覆管
（11）チャンネルボックスの水平地震力によるたわみに基づく応力
水平地震荷重によるチャンネルボックスのたわみに従って，燃料被覆管がたわむ ことにより発生する応力。

（12）鉛直方向地震加速度に基づく応力
鉛直方向地震加速度により，燃料被覆管に見かけの質量が軸方向に付加されるこ とにより発生する応力。なお， $9 \times 9$ 燃料（B 型）では「（10）スペーサ（支持格子）間の水平地震力による燃料被覆管のたわみに基づく応力」に加味する形で考慮して いる。


添付1－1図 評価対象部位（イメージ）【第4－2図再掲】


添付1－2図 燃料集合体の構造図（9×9燃料（A 型））


添付1－3図 燃料集合体の構造図（9×9燃料（B 型））

燃料被覆管下部端栓溶接部における応力の取扱いについて

燃料被覆管下部端栓溶接部は，切り欠き形状を含む複雑な形状（添付 2－1 図参照） であるため有限要素法（以下「FEM」という。）を用いた解析により発生応力を求めて いる。FEM 解析から得られる下部端栓溶接部の応力値には一次応力及び二次応力に加 えて，切り欠き形状に伴うピーク応力が含まれる（添付2－2図参照）。ピーク応力は，荷重の繰り返しがなければ直ちに破損につながることはなく ${ }^{[1]}$ ，JEAG 4601•補－1984 ${ }^{[2]}$ においてもピーク応力は疲労評価が対象とされている（添付 2－1 表参照）。よって，等価線形処理により FEM 解析結果から一次応力 + 二次応力を求め，応力設計比の計算 を行う。

等価線形処理はFEM解析で得られた応力分布を一次応力及び二次応力並びにピーク応力に数値処理により分離する手法であり，圧力容器等のプラント機器の応力解析に適用されている。

一次応力及び二次応力に相当するのは，肉厚方向に分布する応力の平均値に等しい応力成分（膜応力）及び肉厚方向に分布する応力による正味の曲げモーメントと等し いモーメントによって生じる応力成分（曲げ応力の等価直線成分）である。ピーク応力に相当するのは，これらと元の応力分布との差である。

なお，応力が最も厳しい条件となるのはピーク応力の方向と正味の曲げモーメント の方向が一致するケースであり，下部端栓溶接部の応力解析では燃料被覆管内面位置 が該当する。よって，応力設計比の評価には燃料被覆管内面位置での応力を用いる。

## 参考文献

［1］「構造解析のための有限要素法実践ハンドブック」，森北出版，第1版第6刷，2012年
［2］JEAG 4601•補－1984，「原子力発電所耐震設計技術指針 重要度分類•許容応力編」， （社）日本電気協会


添付2－1図 下部端栓溶接部の有限要素法による応力解析体系（模式図）


添付2－2 図 応力分布と等価線形処理結果の模式図

## 添付 2－1 表 第1種容器の許容応力（JEAG 4601•補－1984 ${ }^{[2]}$ からの抜粋）

## 2．1．1 第1種容器の許容応力

第 1 種容器の許容応力を次に示す。

| $\begin{array}{\|l\|l} \text { 応力分類 } \\ \text { 許容状態 } \end{array}$ | 1 次一般漠応力 | 1 次膜応力 + 1 次曲げ応力 | 1 次＋2 次応力 | $\begin{aligned} & 1 \text { 次 }+2 \text { 次+ } \\ & \text { ピーク応力 } \end{aligned}$ | 特別な応力限界 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{array}{\|c\|} \hline \text { 純せん断 } \\ \text { 応 } \end{array}$ | 支圧応力 |
| 設計条件 | $S_{\text {m }}$ | $1.5 \mathrm{~S}_{\mathrm{m}}$ | － | － | － | － |
| $\mathrm{I}_{\text {A }}$ | － | － | $3 \mathrm{~S}_{\mathrm{m}}^{(1)}$ | 運転状態 I 及び IIにおける荷重 0組合せについ て疲れ解析を行 い疲れ累積係数 が 1.0 以下であ るとと。 | $0.6 \mathrm{~S}_{\mathrm{m}}^{(7)}$ | $\left.\begin{gathered} \mathrm{S}_{\mathrm{y}}^{(8)(9)} \\ \left(1.5 \mathrm{~S}_{y}\right) \end{gathered} \right\rvert\,$ |
| $\mathbb{I N A}_{\text {A }}$ | － | － |  |  | $0.6 \mathrm{~S}_{\mathrm{m}}^{(7)}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}}^{(8 / 99)} \\ \left(1.5 \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$ |
| $\mathbb{I I A}_{A}$ | $\mathrm{S}_{\mathrm{y}}$ と $2 / 3 \mathrm{~S}_{\mathrm{u}}$ の小さい方。ただ しオーステナイト系ステンレス鋼及び高ニッケル合金については $1.2 \mathrm{~S}_{\mathrm{m}}$ とする。 | 左欄の 1.5 倍の値 | － | － | $0.6 \mathrm{~S}_{\mathrm{m}}^{(77)}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}}^{(8 / 9)} \\ \left(1.5 \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$ |
| $\mathrm{IV}_{\text {A }}$ |  | 左欄の 1.5 倍の値 | － | － | － | － |
| $\mathbb{I I}_{A} S$ | $\mathrm{S}_{\mathrm{y}}$ と $2 / 3 \mathrm{~S}_{\mathrm{u}}$ の小さい方。ただ しオーステナイ ト系ステンレス鋼及び高二ッケ ル合金について は $1.2 \mathrm{~S}_{\mathrm{m}}$ とする。 | 左欄の1．5倍の值 |  | （5）$(6$ <br> $S_{1}$ 又は $S_{2}$ 地震動のみそよる疲 れ解析を行い疲 れ累積係数を求 め，運転状態 I， IIにおける疲れ累積係数との和 が 1.0 以下であ るとと。 | $0.6 \mathrm{~S}_{\mathrm{m}}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}}^{(9)} \\ \left(1.5 \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$ |
| $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  | 左欄の1．5倍の値 |  |  | $0.4 \mathrm{~S}_{\mathrm{u}}$ | $\left(\begin{array}{c} \mathrm{S}_{\mathrm{u}}{ }^{(9)} \\ \left(1.5 \mathrm{~S}_{\mathrm{u}}\right) \end{array}\right.$ |

地震による応力を考慮した燃料被覆管応力評価（閉じ込め機能の維持）について

通常運転時及び運転時の異常な過渡変化時に発生する応力に加え地震による応力 を考慮した燃料被覆管の応力評価結果を以下に示す。

1． $9 \times 9$ 燃料（A 型）の評価結果（添付 3－1 表）
（1）評価部位：スペーサ間，スペーサ部，下部端栓溶接部
（2）解析コード：＜スペーサ間，スペーサ部＞
弾性解析コード FURST Ver． $5^{* 1}$（設置許可，設計認可と同じ）

## $<$ 下部端栓溶接部＞

有限要素法解析コードANSYS Ver． $14^{* 2}$（添付資料 7 参照）
（3）評価点：燃料寿命初期，中期，末期
（4）運転状態：出力過渡（ $121 \%$ 出力（出力運転中の制御棒の異常な引き抜き））又は圧力過渡（冷却材圧力 $\square \mathrm{MPa}$［abs］（負荷の喪失））
（5）考慮する応力：（1）内外圧力差に基づく応力（一次応力）
（2）水力振動に基づく応力（一次応力）
（3）楕円度に基づく応力（一次応力）
（4）スペーサの接触力に基づく応力（スペーサ部評価のみ）（二次応力）
（5）半径方向温度差に基づく熱応力（二次応力）
（6）円周方向温度差に基づく熱応力（二次応力）
（7）膨張スプリング等による軸方向荷重に基づく応力（一次応力）
（8）端栓取付角公差による曲がりに基づく応力（二次応力）
地震による影響を評価する場合は下記応力を追加する。ここで燃料集合体の加速度（水平方向）は燃料集合体軸方向で分布を持つが，スペーサ間及びスペーサ部に ついては最大値を固定値として入力する。

⑨スペーサ間の水平地震力による燃料被覆管のたわみに基づく応力（一次応力）
（10チャンネルボックスの水平地震力によるたわみに基づく応力 （二次応力）
（11）鉛直地震加速度に基づく応力（一次応力）
（6）許容応力：弾性設計用地震動（Sd）において，一次十二次応力に対して降伏応力（Sy）基準地震動（Ss）において，一次十二次応力に対して引張強さ（Su） （添付資料5参照）
（7）入力値 ${ }^{* 3}:<$ スペーサ間，スペーサ部 $>$
水平加速度 4.66 G （ Ss 応答加速度概算値）
鉛直加速度 $1.38 G^{* 4}$（同上）

4条一別紙 10 －添 3－1
枠囲みの内容は，商業機密に属するため公開できません。

## 22

燃料集合体相対変位 $45.3 \mathrm{~mm}{ }^{*}{ }^{*}$（ Ss 応答変位概算値）
水平加速度 2.68 G （ Sd 応答加速度概算値）
鉛直加速度 0.69 G （同上）
燃料集合体相対変位 25.1 mm （ Sd 応答変位概算値）
$<$ 下部端栓溶接部＞
水平加速度 3.07 G （Ss 応答加速度概算値）
鉛直加速度 $1.38 G^{* 4}$（同上）
燃料集合体相対変位 $45.3 \mathrm{~mm}{ }^{* 5}$（ Ss 応答変位概算値）
水平加速度 1.63 G （ Sd 応答加速度概算値）
鉛直加速度 0.69 G （同上）
燃料集合体相対変位 25.1 mm （ Sd 応答変位概算値）

ここで，工事計画認可申請における評価では，燃料集合体に作用する水平地震加速度及び鉛直地震加速度，燃料集合体の相対変位として，基本ケースの最大応答加速度に対し，材料物性の不確かさ等を考慮した値を用いる。材料物性の不確かさは，別紙6「原子炉本体の基礎の復元力特性について」に示す原子炉本体基礎の復元力特性の不確かさを考慮したケースと別紙 11 「東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」に示す原子炉建屋の材料物性の不確 かさを考慮したケースについて検討する。今回の暫定評価は平成 25 年 12 月設置変更許可申請時の基準地震動（Ss－1，2）及び弾性設計用地震動（Sd－1，2）に対するも のであり，今後工認段階において基準地震動 Ss 及び弾性設計用地震動 Sd（各 7 波）
（材料物性の不確かさを考慮したケースを含む）に対する評価を実施する。なお，暫定評価の地震動条件は，工認段階で用いる地震動とほぼ同等レベルと見込まれる こと，また，暫定評価での発生応力値は許容応力に余裕があることから，工認段階 における評価については，概ね問題ないものと考えている。

また，工認段階の評価においては水平 2 方向及び鉛直方向を考慮した評価も実施 する。燃料被覆管の水平 2 方向の地震動を考慮した評価では，別紙3「水平2方向及び鉛直方向の適切な組合せに関する検討について」参考資料 3 に示すとおり，女川原子力発電所の基準地震動 Ss には水平方向の地震動に方向性がないことから，水平 2 方向及び鉛直方向地震力の同時入力による影響検討を行ら場合，水平 2 方向のうち 1 方向について位相の異なる模擬地震波を作成し入力する方法を適用す る予定である。別紙3に示すとおり，位相の異なる水平地震動を用いた場合，水平 2 方向の地震動によるオービットには偏りがない傾向となることから，水平 2 方向 を考慮した場合の影響は軽微であると考えられるが，今後，工認段階で水平 2 方向 への影響について詳細検討を実施する。
※1：地震時に燃料被覆管に発生する応力は，燃料棒を梁モデルに置換し水平方向の加速度による燃料被覆管のたわみに基づく応力の計算式，チャンネルボックス

のたわみにより強制変位を受けた際の応力計算式及び燃料棒に鉛直方向地震力 が加わった場合に燃料被覆管断面にかかる圧縮及び引張り応力の計算式で計算 する。これは，通常運転時及び運転時の異常な過渡変化時に発生する応力の計算式を材料力学に基づいて設定している点と同様であり，応力計算方法は同じ である。FURST はこれらを組み合わせて計算することが可能である。
※2：燃料被覆管下部端栓溶接部の切り欠き形状の先端近傍では応力集中が生じるが ピーク応力は荷重の繰り返しがなければ直ちに破損につながることはないため，一次応力＋二次応力を評価に用いる。
$※ 3:$ 平成 25 年 12 月設置変更許可申請時の弾性設計用地震動 Sd 及び基準地震動 Ss
※4：鉛直加速度が $1 G$ を超過するため，燃料集合体が浮き上がる可能性について検討 した結果は別紙1「既工認との手法の相違点の整理（設置変更許可申請段階での整理）」参考資料 4 に示しているが，既往知見より鉛直加速度 1.5 G の場合でも燃料集合体の浮き上がりは 5 mm 程度と小さく，浮き上がりに伴う衝突荷重の影響や冷却材流路に及ぼす影響は小さいものと考えているが，工認段階で女川 2号炉の地震応答に対する燃料集合体の浮き上がりの影響について詳細検討を行 う。
$※ 5: ~$ 燃料集合体を含めた制御棒挿入性試験について，別紙 1「既工認との手法の相違点の整理（設置変更許可申請段階での整理）」参考資料5に示しているが，燃料集合体相対変位 60 mm における試験においても，チャンネルボックスに微小な変形が発生する程度であり，燃料集合体へ有意な影響を及ぼすことがないことを確認している。

添付 3－1 表 燃料被覆管応力の評価結果（ $9 \times 9$ 燃料（A 型））

| 地震動と <br> 許容応力 | 運転条件 | 評価点 | スペーサ間 （応力設計比） | スペーサ部 （応力設計比） | 下部端栓溶接部 （応力設計比） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { 一次応力+ } \\ \text { 二次応力 } \end{gathered}$ | $\begin{gathered} \text { 一次応力+ } \\ \text { 二次応力 } \end{gathered}$ | $\begin{gathered} \text { 一次応力+ } \\ \text { 二次応力 } \end{gathered}$ |
| 弾性設計用地震動 Sd に対して降伏応力 Sy | 圧力過渡 | 寿命初期 | 0.73 | 0.58 | 0.66 |
|  |  | 寿命中期 | 0.27 | 0.25 | 0.31 |
|  |  | 寿命末期 | 0． 23 | 0． 22 | 0． 24 |
|  | 出力 <br> 過渡 | 寿命初期 | 0.70 | 0.49 | 0.60 |
|  |  | 寿命中期 | 0.29 | 0.27 | 0.29 |
|  |  | 寿命末期 | 0.24 | 0.22 | 0． 22 |
| 基準地震動 Ssに対して引張強さ Su | 圧力 <br> 過渡 | 寿命初期 | 0.49 | 0.45 | 0.44 |
|  |  | 寿命中期 | 0． 30 | 0.27 | 0.34 |
|  |  | 寿命末期 | 0.26 | 0.27 | 0． 29 |
|  | 出力 <br> 過渡 | 寿命初期 | 0.49 | 0.40 | 0.41 |
|  |  | 寿命中期 | 0.32 | 0.29 | 0.31 |
|  |  | 寿命末期 | 0.27 | 0.26 | 0.26 |

2． $9 \times 9$ 燃料（B 型）の評価結果（添付 $3-2$ 表）
（1）評価部位：スペーサ間，スペーサ部，下部端栓溶接部
（2）解析コード ：＜スペーサ間，スペーサ部＞
弾性解析コード BSPAN2 Ver． 2.2 ※ ${ }^{2}$（設置許可，設計認可と同じ） $<$ 下部端栓溶接部＞
有限要素法解析コードANSYS Ver． 13 ※2
（3）評価点：燃料寿命初期，中期，末期
（4）運転状態：出力過渡（121\％出力（出力運転中の制御棒の異常な引き抜き））又は圧
力過渡（冷却材圧力 $\square \mathrm{MPa}[\mathrm{abs}]$（負荷の喪失））
（5）考慮する応力：①冷却材による外圧及び燃料被覆管内圧によって生じる応力（一次応力）
（2）燃料被覆管楕円度による曲げ応力（一次応力）
③流力振動による応力（スペーサ間評価のみ）（一次応力）
（4）支持格子での保持力による応力（スペーサ部評価のみ）（二次応力）
（5）燃料被覆管の径方向温度勾配による応力（二次応力）
⑥燃料被覆管の周方向温度勾配による応力（二次応力）
（7）熱湾曲矯正による応力（二次応力）
（8）ウォータチャンネルと燃料被覆管の熱膨張差による応力（二次応力）
（9）膨張スプリング及び内部スプリングによる応力（二次応力）
地震による影響を評価する場合は下記応力を追加する。ここで燃料集合体の加速度（水平方向）は燃料集合体軸方向で分布を持つが，スペーサ間及びスペーサ部に ついては最大値を固定値として入力する。
（10）支持格子間の水平地震力による燃料被覆管のたわみに基づく応力 （一次応力）
（11）チャンネルボックスの水平地震力によるたわみに基づく応力 （二次応力）
鉛直方向の地震加速度は燃料要素単位長質量に加速度を考慮することでみかけの質量増加として扱い，（10に加味することで計算する。なお，水平方向の地震加速度 がおよそ

ㅁG を超える範囲において，地震時鉛直方向加速度を直接軸方向応力と して作用させる手法に対して本手法が保守的な評価となることを確認している（添付資料8参照）。
（6）許容応力：弾性設計用地震動（Sd）において，一次十二次応力に対して降伏応力（Sy）基準地震動（Ss）において，一次＋二次応力に対して引張強さ（Su） （添付資料5参照）
（7）入力値 ${ }^{* 3}: ~<~$ スペーサ間，スペーサ部＞
水平加速度 4.66 G （ Ss 応答加速度概算値）
鉛直加速度 $1.38 G^{* 4}$（同上）
燃料集合体相対変位 $45.3 \mathrm{~mm}{ }^{* 5}$（ Ss 応答変位概算値）

4 条一別紙 10 －添 3－5
枠囲みの内容は，商業機密に属するため公開できません。

水平加速度 2.68 G （ Sd 応答加速度概算値）
鉛直加速度 0.69 G （同上）
燃料集合体相対変位 25.1 mm （ Sd 応答変位概算値）
$<$ 下部端栓溶接部＞
水平加速度 3.07 G （Ss 応答加速度概算値）
鉛直加速度 $1.38 G^{* 4}$（同上）
燃料集合体相対変位 $45.3 \mathrm{~mm}{ }^{* 5}$（ Ss 応答変位概算値）
水平加速度 1.63 G （ Sd 応答加速度概算値）
鉛直加速度 0.69 G （同上）
燃料集合体相対変位 25.1 mm （ Sd 応答変位概算値）

ここで，工事計画認可申請における評価では，燃料集合体に作用する水平地震加速度及び鉛直地震加速度，燃料集合体の相対変位として，基本ケースの最大応答加速度に対し，材料物性の不確かさ等を考慮した値を用いる。材料物性の不確かさは，別紙6「原子炉本体の基礎の復元力特性について」に示す原子炉本体基礎の復元力特性の不確かさを考慮したケースと別紙 11 「東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」に示す原子炉建屋の材料物性の不確 かさを考慮したケースについて検討する。今回の暫定評価は平成 25 年 12 月設置変更許可申請時の基準地震動（Ss－1，2）及び弾性設計用地震動（Sd－1，2）に対するも のであり，今後工認段階において基準地震動 Ss 及び弾性設計用地震動 Sd（各 7 波）
（材料物性の不確かさを考慮したケースを含む）に対する評価を実施する。なお，暫定評価の地震動条件は，工認段階で用いる地震動とほぼ同等レベルと見込まれる こと，また，暫定評価での発生応力値は許容応力に余裕があることから，工認段階 における評価については，概ね問題ないものと考えている。

また，工認段階の評価においては水平 2 方向及び鉛直方向を考慮した評価も実施 する。燃料被覆管の水平 2 方向の地震動を考慮した評価では，別紙 3 「水平 2 方向及び鉛直方向の適切な組合せに関する検討について」参考資料 3 に示すとおり，女川原子力発電所の基準地震動 Ss には水平方向の地震動に方向性がないことから，水平 2 方向及び鉛直方向地震力の同時入力による影響検討を行ら場合，水平 2 方向のらち 1 方向について位相の異なる模擬地震波を作成し入力する方法を適用す る予定である。別紙3に示すとおり，位相の異なる水平地震動を用いた場合，水平 2 方向の地震動によるオービットには偏りがない傾向となることから，水平 2 方向 を考慮した場合の影響は軽微であると考えられるが，今後，工認段階で水平 2 方向 への影響について詳細検討を実施する。
※1：地震時に燃料被覆管に発生する応力は，燃料棒を梁モデルに置換し水平方向の加速度による燃料被覆管のたわみに基づく応力の計算式，チャンネルボックス

のたわみにより強制変位を受けた際の応力計算式及び燃料棒に鉛直方向地震力 が加わった場合に燃料被覆管断面にかかる圧縮及び引張り応力の計算式で計算 する。これは，通常運転時及び運転時の異常な過渡変化時に発生する応力の計算式を材料力学に基づいて設定している点と同様であり，応力計算方法は同じ である。BSPAN2 はこれらを組み合わせて計算することが可能である。
※2：燃料被覆管下部端栓溶接部の切り欠き形状の先端近傍では応力集中が生じるが ピーク応力は荷重の繰り返しがなければ直ちに破損につながることはないため，一次応力＋二次応力を評価に用いる。
$※ 3:$ 平成 25 年 12 月設置変更許可申請時の弾性設計用地震動 Sd 及び基準地震動 Ss
※4：鉛直加速度が $1 G$ を超過するため，燃料集合体が浮き上がる可能性について検討 した結果は別紙1「既工認との手法の相違点の整理（設置変更許可申請段階での整理）」参考資料 4 に示しているが，既往知見より鉛直加速度 1.5 G の場合でも燃料集合体の浮き上がりは 5 mm 程度と小さく，浮き上がりに伴う衝突荷重の影響や冷却材流路に及ぼす影響は小さいものと考えているが，工認段階で女川 2号炉の地震応答に対する燃料集合体の浮き上がりの影響について詳細検討を行 う。
$※ 5: ~$ 燃料集合体を含めた制御棒挿入性試験について，別紙 1「既工認との手法の相違点の整理（設置変更許可申請段階での整理）」参考資料5に示しているが，燃料集合体相対変位 60 mm における試験においても，チャンネルボックスに微小な変形が発生する程度であり，燃料集合体へ有意な影響を及ぼすことがないことを確認している。

添付 3－2 表 燃料被覆管応力の評価結果（ $9 \times 9$ 燃料（ B 型））

| 地震動と <br> 許容応力 | 運転条件 | 評価点 | $\begin{aligned} & \text { スペーサ間 } \\ & \text { (応力設計比) } \end{aligned}$ | $\begin{aligned} & \text { スペーサ部 } \\ & \text { (応力設計比) } \end{aligned}$ | 下部端栓溶接部 （応力設計比） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 一次応力＋二次応力 | 一次応力＋二次応力 | 一次応力＋二次応力 |
| 弾性設計用地震動 Sd に対して降伏応力 Sy | 圧力 <br> 過渡 | 寿命初期 | 0.68 | 0.73 | 0.64 |
|  |  | 寿命中期 | 0.33 | 0． 29 | 0.50 |
|  |  | 寿命末期 | 0． 27 | 0.26 | 0.48 |
|  | 出力 <br> 過渡 | 寿命初期 | 0.66 | 0.68 | 0.57 |
|  |  | 寿命中期 | 0.35 | 0． 30 | 0． 45 |
|  |  | 寿命末期 | 0.26 | 0.24 | 0.43 |
| 基準地震動 Ssに対して引張強さ Su | 圧力 <br> 過渡 | 寿命初期 | 0.53 | 0.53 | 0.44 |
|  |  | 寿命中期 | 0.36 | 0.34 | 0.40 |
|  |  | 寿命末期 | 0.32 | 0.30 | 0.39 |
|  | 出力 <br> 過渡 | 寿命初期 | 0.52 | 0． 49 | 0． 42 |
|  |  | 寿命中期 | 0.38 | 0.36 | 0.37 |
|  |  | 寿命末期 | 0.32 | 0． 30 | 0． 36 |

地震による繰り返し荷重を考慮した燃料被覆管疲労評価（閉じ込め機能の維持）
について

地震による振動サイクルを考慮した燃料被覆管疲労評価結果を以下に示す。燃料被覆管疲労解析の評価部位は，切り欠きと類似した形状を有し応力集中が発生する下部端栓溶接部とする。

1． $9 \times 9$ 燃料（A 型）の評価結果（添付 $4-1$ 表）
（1）評価部位：下部端栓溶接部
（2）解析コード：有限要素法解析コード ANSYS Ver． 14
（3）評価点：燃料寿命初期，中期，末期
（4）運転状態：応力評価上最も厳しい条件として圧力過渡（冷却材圧力 $\square \mathrm{MPa}[\mathrm{abs}]$ ）
（5）地震荷重の繰り返し数：60回， 120 回（暫定条件）
（6）許容サイクル数：最大応力振幅からジルカロイ設計疲労曲線（添付 4－1 図参照）
に基づき設定
（7）入力値 ${ }^{*}$ ：水平加速度 3.07 G （Ss 応答加速度概算値）
鉛直加速度 1.38 G （同上）
燃料集合体相対変位 45.3 mm （Ss 応答変位概算値）
水平加速度 1.63 G （ Sd 応答加速度概算値）
鉛直加速度 0.69 G （同上）
燃料集合体相対変位 25.1 mm （ Sd 応答変位概算値）

ここで，工事計画認可申請における評価では，燃料集合体に作用する水平地震加速度及び鉛直地震加速度，燃料集合体の相対変位として，基本ケースの最大応答加速度に対し，材料物性の不確かさ等を考慮した値を用いる。材料物性の不確かさは，別紙 6「原子炉本体の基礎の復元力特性について」に示す原子炉本体基礎の復元力特性の不確かさを考慮したケースと別紙 11 「東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」に示す原子炉建屋の材料物性の不確 かさを考慮したケースについて検討する。今回の暫定評価は平成 25 年 12 月設置変更許可申請時の基準地震動（Ss－1，2）及び弾性設計用地震動（Sd－1，2）に対するも のであり，今後工認段階において基準地震動 Ss 及び弾性設計用地震動 Sd（各 7 波） （材料物性の不確かさを考慮したケースを含む）に対する評価を実施する。なお，暫定評価の地震動条件は，工認段階で用いる地震動とほぼ同等レベルと見込まれる こと，また，暫定評価での発生応力値は許容応力に余裕があることから，工認段階 における評価については，概ね問題ないものと考えている。
また，工認段階の評価においては水平 2 方向及び鉛直方向を考慮した評価も実施

4 条一別紙 10 －添 4－1
枠囲みの内容は，商業機密に属するため公開できません。

する。燃料被覆管の水平 2 方向の地震動を考慮した評価では，別紙 3 「水平 2 方向及び鉛直方向の適切な組合せに関する検討について」参考資料 3 に示すとおり，女川原子力発電所の基準地震動 Ss には水平方向の地震動に方向性がないことから，水平 2 方向及び鉛直方向地震力の同時入力による影響検討を行う場合，水平 2 方向のらち 1 方向について位相の異なる模擬地震波を作成し入力する方法を適用す る予定である。別紙3に示すとおり，位相の異なる水平地震動を用いた場合，水平 2 方向の地震動によるオービットには偏りがない傾向となることから，水平 2 方向 を考慮した場合の影響は軽微であると考えられるが，今後，工認段階で水平 2 方向 への影響について詳細検討を実施する。

添付 4－1 表 燃料被覆管疲労評価結果（ $9 \times 9$ 燃料（A 型））

| 地震動 | 評価点 | 応力振幅 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 許容 サイクル数 <br> （回） | 地震荷重の繰り返し数 （回） | 疲労係数の増分 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 基準地震動 Ss | 寿命初期 | 90 | $1.9 \times 10^{4}$ | 60 | 0． 00316 |
|  |  |  |  | 120 | 0． 00632 |
|  | 寿命中期 | 90 | $1.9 \times 10^{4}$ | 60 | 0． 00316 |
|  |  |  |  | 120 | 0． 00632 |
|  | 寿命末期 | 91 | 1． $8 \times 10^{4}$ | 60 | 0． 00333 |
|  |  |  |  | 120 | 0． 00667 |
| 弹性設計用地震動 Sd | 寿命初期 | 49 | 1． $0 \times 10^{6}$ | 60 | 0.00006 |
|  |  |  |  | 120 | 0． 00012 |
|  | 寿命中期 | 49 | 1． $0 \times 10^{6}$ | 60 | 0． 00006 |
|  |  |  |  | 120 | 0． 00012 |
|  | 寿命末期 | 50 | 1． $0 \times 10^{6}$ | 60 | 0.00006 |
|  |  |  |  | 120 | 0． 00012 |

2． $9 \times 9$ 燃料（B型）の評価結果（添付4－2表）
（1）評価部位：下部端栓溶接部
（2）解析コード：有限要素法解析コードANSYS Ver． 13
（3）評価点：燃料寿命初期，中期，末期
（4）運転状態：応力評価上最も厳しい条件として圧力過渡（冷却材圧力 $\square \mathrm{MPa}[\mathrm{abs}]$ ）
（5）地震荷重の繰り返し数：60回，120回（暫定条件）
（6）許容サイクル数：最大応力振幅からジルカロイ設計疲労曲線（添付4－1図参照）に基づき設定
（7）入力値 ${ }^{*}$ ：水平加速度 3.07 G （ Ss 応答加速度概算値）
鉛直加速度 1.38 G （同上）
燃料集合体相対変位 45.3 mm （Ss 応答変位概算値）
水平加速度 1.63 G （ Sd 応答加速度概算値）
鉛直加速度0．69G（同上）
燃料集合体相対変位 $25.1 \mathrm{~mm}(\mathrm{Sd}$ 応答変位概算値）

ここで，工事計画認可申請における評価では，燃料集合体に作用する水平地震加速度及び鉛直地震加速度，燃料集合体の相対変位として，基本ケースの最大応答加速度に対し，材料物性の不確かさ等を考慮した値を用いる。材料物性の不確かさは，別紙 6 「原子炉本体の基礎の復元力特性について」に示す原子炉本体基礎の復元力特性の不確かさを考慮したケースと別紙11「東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法への反映について」に示す原子炉建屋の材料物性の不確 かさを考慮したケースについて検討する。今回の暫定評価は平成 25 年 12 月設置変更許可申請時の基準地震動（Ss－1，2）及び弾性設計用地震動（Sd－1，2）に対するも のであり，今後工認段階において基準地震動 Ss 及び弾性設計用地震動 $\operatorname{Sd}$（各 7 波）
（材料物性の不確かさを考慮したケースを含む）に対する評価を実施する。なお，暫定評価の地震動条件は，工認段階で用いる地震動とほぼ同等レベルと見込まれる こと，また，暫定評価での発生応力値は許容応力に余裕があることから，工認段階 における評価については，概ね問題ないものと考えている。

また，工認段階の評価においては水平 2 方向及び鉛直方向を考慮した評価も実施 する。燃料被覆管の水平 2 方向の地震動を考慮した評価では，別紙 3 「水平 2 方向及び鉛直方向の適切な組合せに関する検討について」参考資料 3 に示すとおり，女川原子力発電所の基準地震動 S水平 2 方向及び鉛直方向地震力の同時入力による影響検討を行う場合，水平 2 方向のらち 1 方向について位相の異なる模擬地震波を作成し入力する方法を適用す る予定である。別紙3に示すとおり，位相の異なる水平地震動を用いた場合，水平 2 方向の地震動によるオービットには偏りがない傾向となることから，水平 2 方向 を考慮した場合の影響は軽微であると考えられるが，今後，工認段階で水平2方向 への影響について詳細検討を実施する。

4 条一別紙 10 —添 4－3
枠囲みの内容は，商業機密に属するため公開できません。

## 32

添付4－2表 燃料被覆管疲労評価結果（ $9 \times 9$ 燃料（B 型））

| 地震動 | 評価点 | 応力振幅 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 許容 サイクル数 （回） | 地震荷重の繰り返し数 （回） | 疲労係数の増分 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 基準地震動 Ss | 寿命初期 | 112 | 1． $1 \times 10^{4}$ | 60 | 0． 00536 |
|  |  |  |  | 120 | 0． 01071 |
|  | 寿命中期 | 110 | 1． $2 \times 10^{4}$ | 60 | 0． 00508 |
|  |  |  |  | 120 | 0． 01017 |
|  | 寿命末期 | 109 | 1． $2 \times 10^{4}$ | 60 | 0． 00492 |
|  |  |  |  | 120 | 0． 00984 |
| 弾性設計用地震動 Sd | 寿命初期 | 53 | 1． $0 \times 10^{6}$ | 60 | 0． 00006 |
|  |  |  |  | 120 | 0． 00012 |
|  | 寿命中期 | 52 | 1． $0 \times 10^{6}$ | 60 | 0． 00006 |
|  |  |  |  | 120 | 0． 00012 |
|  | 寿命末期 | 51 | 1． $0 \times 10^{6}$ | 60 | 0． 00006 |
|  |  |  |  | 120 | 0． 00012 |



添付4－1図 ジルカロイの設計疲労曲線 ${ }^{*}$ 2
※1：平成25年12月設置変更許可申請時の弾性設計用地震動Sd及び基準地震動Ss
※2：ジルカロイ設計疲労曲線は，ジルカロイ－2の未照射材及び照射材についての疲労試験結果をベースに，ジルカロイ－4等の機械特性及び疲労特性がジルカロイ -2 とほぼ同等であることを確認し，ジルカロイ－2，3及び4共通の設計曲線とし て設定したものである。Langer－0’ Donne11 は，設計曲線を保守側に見積もる ため，未照射材及び照射材それぞれについて応力を $1 / 2$ ，サイクル数を $1 / 20$ と し，未照射材及び照射材の両者の包絡線をLanger－0’ Donne11 の設計疲労曲線 ${ }^{[1]}$ としている。ここで，異なる高速中性子照射量に対する疲労試験結果から，疲労特性の照射量依存性は小さいことが示されており，また，過去の研究 ${ }^{[2]}$ にお いて，高速中性子照射量約 $1.3 \times 10^{22} \mathrm{~cm}^{-2}$ までのジルカロイ -2 燃料被覆管の疲労試験データが採取され，Langer－0’ Donne1の照射材疲労試験データに包絡され ることが確認されている。なお，BWR の燃料被覆管はジルカロイ－2を用いてお り，疲労評価の対象部位である下部端栓溶接部の寿命末期に相当する高速中性子照射量は，上記疲労試験 ${ }^{[1], ~[2] ~ の ~}$ 範囲内にある。

## 参考文献

［1］W．J．0＇Donnell and B．F．Langer，＂Fatigue Design Basis for Zircaloy Components＂，Nuclear Science and Engineering，20，1－12（1964）
［2］S．Ishimoto，et al．，＂Improved Zr Alloys for High Burnup BWR Fuel＂，Top＿Fuel 2006 （2006 International Meeting on LWR Fuel Performance，22－26 0ctober 2006， Salamanca，Spain）

## 燃料被覆管応力評価における許容応力について

燃料被覆管の許容応力（降伏応力及び引張強さ）は，放射線照射量と燃料被覆管温度に依存するため，燃料メーカの試験結果に基づき，添付 5－1 図～添付5－4 図のよう に設定している。参考として，今回の応力評価に用いた各条件における許容応力を添付 5－1 表，添付 5－2 表に示す。
$\square$

添付5－3 図 $9 \times 9$ 燃料（B 型）燃料被覆管のスペーサ間，
スペーサ部の引張強さ及び降伏応力設計値（公称値）

添付 5－4 図 $9 \times 9$ 燃料（ B 型）燃料被覆管の下部端栓溶接部の引張強さ及び降伏応力設計値（ $95 \%$ 確率下限値）

4条一別紙 10 －添5－2
枠囲みの内容は，商業機密に属するため公開できません。

|  |  | スペーサ間＊1 | スペーサ部 ${ }^{* 1}$ | 下部端栓溶接部 ${ }^{* 2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 降伏応力 Sy | 寿命初期 |  |  |  |
|  | 寿命中期 |  |  |  |
|  | 寿命末期 |  |  |  |
| 引張強さ <br> Su | 寿命初期 |  |  |  |
|  | 寿命中期 |  |  |  |
|  | 寿命末期 |  |  |  |

（参考）添付5－2表 $9 \times 9$ 燃料（B型）における降伏応力及び引張強さ

|  |  | スペーサ間＊1 | スペーサ部＊1 | 下部端栓溶接部 ${ }^{* 2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 降伏応力 Sy | 寿命初期 |  |  |  |
|  | 寿命中期 |  |  |  |
|  | 寿命末期 |  |  |  |
| 引張強さ <br> Su | 寿命初期 |  |  |  |
|  | 寿命中期 |  |  |  |
|  | 寿命末期 |  |  |  |

※1：モンテカルロ法における中央値
※2：95\％確率下限値

4条一別紙10—添5－3

燃料被覆管応力評価におけるモンテカルロ法による統計処理について

燃料被覆管応力評価におけるモンテカルロ法による統計処理の概要フローを添付 6－1図に示す。モンテカルロ法による統計処理では，入力変数に公称値と標準偏差を定め，一回の試行ごとに統計的分布に従った入力データセットを乱数により作成し，応力設計比を求める。本試行を繰り返すことで応力設計比の統計的分布を求め， $95 \%$確率上限値が 1 以下であることを確認する。


添付 6－1 図 モンテカルロ法による統計処理の概要フロー

## 下部端栓溶接部の応力評価に使用する有限要素法解析コードについて

下部端栓溶接部の応力評価は，端栓溶接部が切り欠き形状を含む複雑形状のため有限要素法を用いる。 $9 \times 9$ 燃料（A 型）の下部端栓溶接部の応力評価に使用する有限要素法解析コードについては，既認可の評価 ${ }^{[1]}$ ではMARC を使用しているが，本評価 においてはANSYS を使用している。いずれのコードも様々な分野の構造解析に広く利用されている汎用の解析コードであり，ANSYS は $9 \times 9$ 燃料（B 型）の下部端栓溶接部の応力評価や工事計画認可申請書における応力解析等，これまで多くの構造解析に対し使用実績がある。今回， $9 \times 9$ 燃料（A 型）の評価では，汎用有限要素法解析コ ードの集約化のため ANSYS を使用するものである。

本資料は， $9 \times 9$ 燃料（A型）の評価に ANSYSを適用するにあたり，既認可の $9 \times$ 9 燃料（A 型）の下部端栓溶接部応力解析において使用された MARCと同等な入力条件 （有限要素モデル，ペレットやジルカロイ被覆管の物性値，荷重条件及び境界条件） を設定可能なこと，MARCと本解析コードとで同等な解析結果となることを説明する。

## 1．コードの概要

本解析コードは，スワンソン・アナリシス・システムズ（現，アンシス）により開発された有限要素法による計算機プログラムである。

本解析コードは，広範囲にわたる多目的な有限要素法による計算機プログラムであ り，伝熱，構造，流体，電磁界及びマルチフィジックス解析を実施するものである。
本解析コードは，IS09001 及びASME NQA－1 の認証を受けた品質保証システムのもと で開発され，アメリカ合衆国原子力規制委員会による 10CFR50 並びに 10CFR21 の要求 を満たしており，数多くの研究機関や企業において，航空宇宙，自動車，機械，建築，土木等の様々な分野の構造解析に広く利用されている。また， $9 \times 9$ 燃料（B 型）の原子炉設置（変更）許可申請書や燃料体設計認可申請書における下部端栓溶接部の応力評価に対し使用実績がある。

本解析コードを適用するにあたり，以下の確認を行っている。
－開発元のリリースノートの例題集において，多くの解析例に対する理論解と解析結果との比較により検証されている。
－本解析コード配布時に同梱された ANSYS Mechanical APDL Verification Testing Package を入力とした解析により，上記例題集の検証を再現できるこ とを確認している。
－本解析コードの運用環境について，開発元から提示された要件を満足している ことを確認している。

## 2．下部端栓溶接部の応力評価の方法

本再現解析は，MARC による既存の解析結果と ANSYS による解析結果を比較するため，従来の下部端栓部応力評価と同等の入力条件にて MARC と ANSYS の応力設計比の比較 を行った。添付 7－1 図に解析フローを示す。
（1）下部端栓溶接部の応力評価モデル
下部端栓溶接部の応力評価では，最初に下部端栓溶接部近傍の下部端栓，被覆管及 びペレットをモデル化し（添付 7－2 図参照），有限要素法を用いた熱解析により下部端栓溶接部近傍での温度分布を評価する。次に，熱解析で得られた下部端栓溶接部近傍の温度分布を読み込み，熱膨張差による熱応力の分布，通常運転時及び運転時の異常な過渡変化時における荷重条件に基づき発生する応力分布を，有限要素法を用いた機械解析により評価する。
（2）下部端栓溶接部の熱解析での入力データ
通常運転時及び運転時の異常な過渡変化時における下部端栓溶接部近傍の温度分布を評価するため，以下の項目を入力している。

- ペレットの発熱
- ジルカロイ部材の $\gamma$ 発熱
- ペレットー被覆管ギヤップ熱伝達
- 被覆管表面熱伝達係数

－ペレット及びジルカロイ部材の熱伝導率
なお，解析モデル上下端は断熱の境界条件とし，ペレットー下部端栓接触面には熱抵抗がないものとして，上記の保守側の入力と合わせて，下部端栓溶接部近傍の温度分布による熱応力が大きくなるような解析を実施する。
（3）下部端栓溶接部の応力評価で考慮する荷重
通常運転時及び運転時の異常な過渡変化時に下部端栓溶接部に作用する荷重とし て，
- 下部端栓及び被覆管部における温度分布（熱解析結果を読み込む）
- 燃料棒内圧
- 冷却材圧力
- 内外圧力差による軸方向荷重（軸方向応力）
- 被覆管周方向温度差及び端栓取付角公差による初期曲りに基づく曲げ荷重 （曲げ応力）
を考慮する。
（4）設計比の評価
設計比の評価では，被覆管温度，燃料棒内圧，炉心条件，燃料棒寸法及び許容応力


## 4条一別紙 10－添7－2

枠囲みの内容は，商業機密に属するため公開できません。

の統計的分布を考慮し，それぞれの $95 \%$ 確率上下限値に基づき解析結果が保守側とな るように設定した入力値を用いて決定論的評価を実施する。ここで，被覆管温度，燃料棒内圧については，燃料棒熱•機械設計コードによる解析結果を用いる。応力計算 は，下部端栓溶接部に発生する三軸方向（半径方向，円周方向及び軸方向）の応力を解析し，それらより相当応力を計算する。また，許容応力については下部端栓溶接部 の温度及び照射の影響を考慮した保守側の $95 \%$ 確率下限値を用いる。

## 3．解析条件

以下に，解析条件を示す。また，MARC 及び ANSYS による下部端栓溶接部の応力評価 における解析入力値の比較を添付 $7-1$ 表にまとめる。同表に示すとおり，MARCと ANSYS の解析入力値は，一部の物性値について温度依存性を関数式で入力するかテーブル形式で入力するかの差があることを除いてはすべて同一であり，同等な入力条件を設定可能である。
（1）燃料タイプ： $9 \times 9$ 燃料（A 型）
（2）評価部位：下部端栓溶接部
（3）解析コード ：
（1）有限要素法解析コード MARC Ver．K4
（2）有限要素法解析コード ANSYS Ver． 14
（4）評価点：燃料寿命初期，中期，末期 ${ }^{*} 1$
（5）運転状態：圧力過渡（冷却材圧力 $\square \mathrm{MPa}[\mathrm{abs}]$（公称値））$*_{2}$
（6）考慮する応力：2．（3）の通り。
（7）許容応力：引張強さ（Su）
※1：燃料寿命初期，中期，末期は，燃料棒熱•機械解析で設定された評価点を引き継ぎ，炉内滞在期間がそれぞれ 0 年，2．2年， 8 年に相当する評価点。
※2：下部端栓部の燃料棒の出力は低く，出力過渡時に発生する応力は圧力過渡時の応力より小さいため，圧力過渡時を評価対象とした。

## 4．再現解析結果

以下に解析結果を示す。MARCと ANSYS による同等な入力条件に基づく解析結果の差分は 0.02 であり，判定基準（応力設計比が 1 以下であること）に対し十分小さく同等な結果が得られ，下部端栓溶接部の応力評価への適用に支障はないものと考える。

| 解析コード | 運転条件 | 許容応力 | 応力設計比 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 寿命初期 | 寿命中期 | 寿命末期 |
| MARC | 圧力過渡 | Su | 0.39 | 0.42 | 0.28 |
| ANSYS | 同上 | 同上 | 0.40 | 0.40 | 0.27 |

4 条一別紙 10 —添 $7-3$
枠囲みの内容は，商業機密に属するため公開できません。

参考文献
［1］女川原子力発電所第2号機「燃料体設計認可申請書」（GNF 燃設認第 35 号，平成 21年10月16日認可）

入力（熱解析）

- 燃料棒仕樣
- 熱伝導率
- 熱伝達係数（燃料棒熱•機械設計コード解析結果）
- ペレット及びジルカロイ部材の発熱


添付7－1図 下部端栓溶接部の応力評価のフロー

4条一別紙10—添7－5

| 解 <br> 析 | 項 目 | MARC への |
| :---: | :---: | :---: | :---: |
| 入力 | ANSYS への |  |
| 入力 |  |  |

$\square$

4 条一別紙 10－添7－6
枠囲みの内容は，商業機密に属するため公開できません。

## 44

添付7－1表 MARC及びANSYSによる下部端栓溶接部の応力評価における解析入力値 $(2 / 2)$


添付 7－2 図 下部端栓溶接部の有限要素モデル
4 条一別紙 10 －添 7－8

## $9 \times 9$ 燃料（ B 型）における地震時鉛直方向加速度の考慮方法について

$9 \times 9$ 燃料（B型）では，地震時鉛直方向加速度を地震時水平方向加速度による支持格子間たわみにより発生する軸方向応力 $\sigma_{z}$（式（1））における質量増加として考慮 している。

（1）

ただし，$W_{0}$ ：見かけの燃料要素単位長質量， 1 ：支持格子間距離，$G$ ：地震時水平方向加速度，$I$ ：断面二次モーメント，$D_{0}$ ：燃料被覆管外径とする。

なお，地震時鉛直方向加速度による見かけの質量増加を式（2）のように定めている。

（2）

ただし，$W$ ：実際の燃料要素単位長質量，$a:$ 地震時鉛直方向加速度，$g:$ 重力加速度とする。

式（1）及び式（2）より，式（3）が得られる。


式（3）の右辺第二項が地震時鉛直方向加速度による応力に相当する。
一方で，地震時鉛直方向加速度が慣性力として直接軸方向応力 $\sigma_{z}^{\prime}$ として作用する と考えると式（4）の計算式となる（ $9 \times 9$ 燃料（A型）の評価方法）。


## （4）

ただし，$m$ ：燃料棒総質量，$D_{i}:$ 燃料被覆管内径とする。
$9 \times 9$ 燃料（B型）の地震時鉛直方向加速度の考慮方法（式（3）右辺第二項）では，地震時水平方向加速度が絲 $\square$ Gを超える条件において，直接軸方向応力として考慮す る場合（式（4））よりも保守的な評価となる（添付8－1図）。女川 2 号炉では，評価に用いた炉心内の燃料集合体の地震時水平方向加速度が2．68G（Sd－1，2）以上であり $\square \mathrm{G}$ よりも十分大きいことから，地震時鉛直方向加速度に対する評価として十分保守的な

4 条一別紙 10 －添 8－1
枠囲みの内容は，商業機密に属するため公開できません。

評価となっていることを確認した。

添付 8－1 図 $9 \times 9$ 燃料（B 型）の地震時鉛直方向加速度考慮方法の保守性

4条一別紙 10－添8－2
枠囲みの内容は，商業機密に属するため公開できません。

## 評価部位の選定理由について

燃料被覆管はその構造から管部，上部端栓溶接部及び下部端栓溶接部に分類するこ とができる。管部についてはスペーサと接触しない部分（スペーサ間）とスペーサと接触する部分（スペーサ部）があり，いずれもその軸方向位置によらず同じ形状であ る。上部端栓溶接部は中空のプレナム領域を含み重量が小さいことから地震によるた わみに基づく曲げ応力が小さいこと，また，発熱部から離れており熱応力が小さいこ とから下部端栓溶接部の評価結果に包絡される。これらを踏まえ，スペーサ間，スペ ーサ部及び下部端栓溶接部を評価部位とする。評価部位の概要図を添付9－1図に示す。燃料被覆管応力評価は，JEAG4601－1987 ${ }^{[1]}$ に基づき地震動＊1により生じる燃料集合体位置の加速度及び燃料集合体の相対変位を用いて応力値を算出している。

地震動※1により生じる水平方向加速度については，各質点での値の差が大きいため， スペーサ間，スペーサ部及び下部端栓溶接部とも評価部位位置の値を使用しており， スペーサ間及びスペーサ部は複数存在することから最厳値を使用している。また，鉛直加速度については，各質点での値の差が比較的小さいため，スペーサ間，スペーサ部及び下部端栓溶接部とも全質点中の最厳値を使用している。

なお，弾性設計用地震動Sd及び基準地震動Ss（7波）を用いた評価は工事計画認可申請で説明する。
※1：平成 25 年 12 月設置変更許可申請時の弾性設計用地震動 $S d$ 及び基準地震動Ss

参考文献
［1］JEAG4601－1987「原子力発電所耐震設計技術指針」，（社）日本電気協会


添付 9－1 図 評価部位の概要図
4 条一別紙 10 －添 9－2

燃料被覆管の応力評価に用いる各評価手法の保守性について

## 1．はじめに

燃料被覆管の応力評価においては，高燃焼度 $8 \times 8$ 燃料の導入以降，スペーサ間及 びスペーサ部の弾性解析ではモンテカルロ法，下部端检溶接部のFEM解析では決定論的手法を用いて応力設計比（＝発生応力／許容応力）を評価している。

## 2．モンテカルロ法と決定論的手法の保守性の考え方

燃料被覆管（スペーサ間，スペーサ部，下部端栓溶接部）の応力評価における応力設計比は，被覆管寸法，被覆管温度，燃料棒内圧，炉心条件，許容応力等を入力変数 とした関数となっている。また，これらの入力変数の不確かさを考慮するため，製造実績，実機運転データ等を考慮し，それぞれの公称値を中央値として統計的分布を設定している。
（1）スペーサ間及びスペーサ部
モンテカルロ法では，1 回の試行ごとに乱数を用いて，各入力変数の統計的分布 から各入力条件を選定し，厚肉円筒式による弾性解析を行い，応力設計比を評価す る。この試行を繰り返し実施することにより応力設計比の統計的分布を求め， $95 \%$確率上限値における応力設計比が 1 以下であることで当該部位の健全性を確認す るとともに，評価結果に保守性を持たせている（添付10－1図参照）。

## （2）下部端栓溶接部

下部端栓溶接部は，切り欠き形状を含んだ複雑形状のため，FEM解析により応力設計比を評価する。ここで，スペーサ間及びスペーサ部と同様にモンテカルロ法を用いるとすると，入力変数となる被覆管寸法等を変動させる都度，解析モデルの修正が必要であり，対応が膨大となるため現実的ではない。よって，下部端栓溶接部 の応力設計比の評価については，決定論的手法を適用することとし，各入力変数に統計的分布における $95 \%$ 確率上下限値を用いることで保守性を持たせている（添付 10－1図参照）。

## 3．モンテカルロ法と決定論的手法における保守性の確認

モンテカルロ法での保守性の確認として，スペーサ間の応力設計比の統計的分布に おける中央値と応力評価で用いた95 \％確率上限値の対比を添付10－1表に示す。

また，決定論的手法の保守性の有無を把握する観点から，現行の解析モデルで変更可能なすべての入力変数を公称値とした解析を実施した。具体的には「内外圧力差に基づく応力」及び「温度差に基づく応力」に影響を与える入力変数，並びに「許容応

力」を対象とした。この解析結果と応力評価で用いた $95 \%$ 確率上下限値による解析結果の対比を添付10－2表に示す。なお，変更対象としなかった入力変数を公称値とする場合には，応力設計比がより中央値に近づき，さらに大きな保守性を示す結果になる と考える。

添付10－1表及び添付10－2表のとおり，モンテカルロ法及び決定論的手法による応力設計比はともに中央値，あるいは公称値による解析結果よりも保守的な評価結果とな っている。

なお，スペーサ間及びスペーサ部の弾性解析にモンテカルロ法，下部端栓溶接部の FEM解析に決定論的手法をそれぞれ用いることは，「発電用軽水型原子炉の燃料設計手法について（昭和63年5月12日，原子力安全委員会了承）」において妥当と判断されて おり，原子炉設置（変更）許可申請書添付書類八及び燃料体設計認可申請書添付書類 II（応力解析）において許認可実績を有している。
（入力値は統計分布に従いランダムに生成）

（b）決定論的手法（下部端恮溶接部）

添付 10－1 図 モンテカルロ法及び決定論的手法における保守性の概念図

添付10－1表 モンテカルロ法における保守性の確認
a．確認条件

| 項目 | 確認条件 |
| :---: | :---: |
| 燃料タイプ | $9 \times 9$ 燃料（A型） |
| 評価部位 | スペーサ間 |
| 地震動と許容応力 | 弾性設計用地震動Sdに対して降伏応力Sy |
| 運転条件 | 圧力過渡 |
| 評価点 | 寿命初期 |

b．確認結果

| 中央値 <br> （モンテカルロ法における <br> 中央値） | ベースケース <br> （モンテカルロ法における <br> 95\％確率上限値） |
| :---: | :---: |
| 0.66 | 0.73 |

添付10－2表 決定論的手法における保守性の確認
a．確認条件

| 項目 | 確認条件 |
| :---: | :---: |
| 燃料タイプ | $9 \times 9$ 燃料（A型） |
| 評価部位 | 下部端栓溶接部 |
| 地震動と許容応力 | 弾性設計用地震動Sdに対して降伏応力Sy |
| 運転条件 | 圧力過渡 |
| 評価点 | 寿命初期 |

b．確認において変更した入力変数

| 応力成分 | 変更した入力変数 | 確認解析 | ベースケース |
| :---: | :---: | :---: | :---: |
| 内外圧力差に基づく応力 | 冷却材圧力 | 公称値 |  |
|  | 燃料棒内圧 | 公称値 |  |
| 温度差に基づく応力 |  | 公称値 |  |
|  |  | 公称値 |  |
|  |  | 公称値 |  |
| 許容応力 |  | 公称値 |  |

c．確認結果

| 確認解析 <br> （公称値を入力） | ベースケース <br> $(95 \%$ 確率上下限値を入力 $)$ |
| :---: | :---: |
| 0.59 | 0.66 |


[^0]:    下線は，今回の提出資料を示す。

