令和元年5月21日 東北電力株式会社

女川原子力発電所2号炉 指摘事項に対する回答一覧表 (耐震設計の基本方針について)

No.	項目	審 査 会合日	対応状況	回 答
1	チャンネルボックスの健全性評 価の見通しに関し,制御棒挿入性 確認試験の条件及び燃料集合体 の冷却材流路維持確認を含めた 試験結果を提示すること。	H31.3.5	H31.4.16 ご説明済	制御棒挿入性の確認試験について, チャ ンネルボックスの相対変位を大きくするため 原子炉運転中の高温状態を模擬した剛性 を再現しているが, それ以外の条件は建設 時に実施している内容と同一の条件で試験 を実施している。
2	機器・配管系の設計用地震力の 設定について,考慮する不確かさ ケースの設定方針を提示すること。	H31.3.5	H31.4.16 ご説明済	設計用地震力の設定に当たっては,建 屋,地盤物性及び原子炉本体基礎の物性 をパラメータとして不確かさケースを検討す る。
3	1次固有振動数が 20Hz以下の 設備について,スペクトルモーダル 解析における高次固有振動数の 評価方針を提示すること。	H31.3.5	H31.4.16 ご説明済	1 次固有周期が 20Hz 以下で 2 次以降が 20Hz 以上となる設備を選定し、50Hz 以下 の範囲で作成した FRS を適用した耐震評価 を実施することで、20Hz 以下の FRS を用い た耐震評価との比較検証を行う。
4	水平2方向及び鉛直方向地震 力の組合せにおける影響検討対 象設備の抽出の考え方を提示する とともに,影響検討対象設備を網 羅的に整理して提示すること。	H31.3.5	H31.4.16 ご説明済	対象設備である耐震重要施設,重大事 故等対処施設,波及的影響設備等につい て,先行プラントの抽出方法及び結果につ いても再度確認し,整理した。 (4 条-別紙 3-39~59,4 条-別紙 3-別 1-2~22に記載) なお,重大事故等対処施設等の一部に ついては評価部位等を検討中であるため, 設計が確定する工認段階で抽出,影響評 価を行う。 (4 条-別紙 3-37 に記載)
5	使用済燃料プールのスロッシン グによる溢水量評価等の,スロッシ ング評価について,水平2方向入 力の評価方針を提示すること。	H31.3.5	H31.4.16 ご説明済	スロッシング評価については,水平2方向 の影響が考えられることから,水平2方向に よる影響を確認することを追記した。 (4 条-別紙 3-34 に記載)
6	耐震設計上の論点のうち建物・ 構築物の周辺地盤の非線形性を 考慮して低減効果を見込んだ評価 方法について,先行プラントも含め た既工認実績を踏まえ,論点の区 分を再整理して提示すること。	H31.3.5	H31.4.16 ご説明済	対象建屋の周辺地盤の影響を考慮して 入力地震動を設定する手法は,先行適用 例があるが,逐次非線形解析については適 用例がないため,論点の重み付け評価を 「B3」から「A」に見直した。 (4 条-別紙1-6,別紙1-添2-2参照)

No.	項目	審 査 会合日	対応状況	回 答
7	地下水位の設定を含めた液状 化影響評価方針について,既工 認実績との相違点及びこれらを踏 まえた土木構造物の地震応答解 析手法の評価方針を提示するこ と。	H31.3.5	H31.4.16 ご説明済	「液状化影響の検討」を論点として追加 する。 「液状化影響の検討」は,他社プラントで 新規制審査実績があるものの,敷地の地質 が異なるため,論点の重み付けは「A」とす る。(別紙-1参照) 地下水位低下設備を考慮の上設定した 地下水位及び液状化検討対象層の分布状 況を踏まえて,液状化検討の必要性を判断 し,液状化考慮と液状化非考慮で耐震安全 性評価上どちらが保守的な評価となるかを 確認するため,全応力解析と有効応力解析 の結果を比較して,解析手法を選定するこ ととする。(4条-20,68 他に記載)
8	機器・配管系の疲労評価に用い る地震の等価繰返し回数の設定に ついて,評価方針を提示すること。	H31.3.5	H31.4.16 ご説明済	疲労評価は,原子力発電所耐震設計技 術指針 JEAG4601-1987 の手順のうち,等 価繰返し回数を用いた評価を基本とする。 また,女川2号炉では,ピーク応力法を用い て算定する方針とする。
9	弁の動的機能維持評価におけ る弁駆動部の応答加速度の算定 について,高周波数領域の加速度 応答スペクトルの算定方針を提示 すること。	H31.3.5	H31.4.16 ご説明済	高振動数領域を考慮した検討において 適用する FRS は, 20Hz 以上の範囲につい て, 20Hz 以下の範囲での FRS 作成方法と 同様に, 建屋応答解析や大型機器連成解 析から得られた地震応答を用いて算出す る。
10	東北地方太平洋沖地震等による影響を踏まえた機器・配管系の 補強・改造等の実施要否の考え方 を提示すること。	H31.3.5	H31.4.16 ご説明済	取替補修の実施要否の考え方について は、別紙(東北地方太平洋沖地震等による 影響を踏まえた耐震設計への反映事項の 判断フロー)参照。 (資料 1-1-9)
11	東北地方太平洋沖地震等によ る影響を踏まえた建屋,土木構造 物,機器・配管系の耐震設計への 反映事項の要否について,判断プ ロセスを整理して提示すること。	H31.3.5	H31.4.16 ご説明済	別紙に建物・構築物,土木構造物を含め た,東北地方太平洋沖地震等による影響を 踏まえた耐震設計への反映事項の判断フロ ーを追記した。 (資料 1-1-9)

No.	項目	審 査 会合日	対応状況	回 答
12	東北地方太平洋沖地震等によ る影響を踏まえた機器・配管系の 耐震設計への反映の妥当性の観 点から,地震応答解析による設備 健全性評価について,対象設備, 評価部位の選定方針,評価方法 等を含めた評価概要を整理して提 示すること。	H31.3.5	H31.4.16 ご説明済	参考 2-2 に地震応答解析を実施する機 器・配管系の評価対象設備の考え方及び 評価方法の概要を整理して追記した。 (資料 1-1-9)
13	土木構造物の解析手法及び解 析モデルの精緻化における材料 非線形解析によるせん断力評価 手法について、3次元材料非線形 解析を適用する箱形構造物及び CCb 工法を用いた構造物を含め て、土木構造物への適用範囲を提 示すること。	H31.3.5	H31.4.16 ご説明済	材料非線形解析は,二次元時刻歴応答 解析を適用し,限界状態設計法により耐震 安全性評価を実施する線状構造物のうち, 後施工せん断補強筋による耐震補強を行 っていない部材に適用する。 (4 条-別紙 1-8,9,4 条-別紙 16-23 に記 載)
14	「東北地方太平洋沖地震等による影響を踏まえた機器・配管系への耐震設計への反映事項」のうち地震応答解析による機器・配管系の評価について,全ての評価結果を含め,評価内容を網羅的に提示すること。	H31.4.16	本日回答	地震応答解析結果及び耐震設計への反 映事項について記載した。 (4条-別紙1-参6-1~36に記載)
15	制御棒挿入性確認試験について,既往のJNES機器耐力試験と 今回試験の目的及びJNES試験 内容との差異を整理して提示する こと。	H31.4.16	本日回答	女川 2 号炉の制御棒挿入性試験の目的 及び JNES 知見との差異について考察を記 載した。 (4 条-別紙 1-参 5-9 に記載)
16	制御棒挿入性確認試験につい て,燃料集合体の相対変位45m m以下の範囲における既工認での 試験結果と今回試験結果の同等 性を提示すること。	H31.4.16	本日回答	既工認での試験結果と今回試験の試験 結果を比較し,相対変位45mm以下の範囲 で制御棒挿入性が同様な傾向を示している ことを記載した。 (4条-別紙1-参5-4に記載)

No.	項目	審 査 会合日	対応状況	回 答
17	制御棒挿入性確認試験につい て,燃料集合体相対変位と挿入時 間のばらつき,試験後の制御棒の 状態,振動台の入力加速度と相対 変位の関係及び高温条件がチャ ンネルボックスの塑性変形,耐力 に及ぼす影響を提示すること。ま た,4つのチャンネルボックスの振 動性状を確認した上で,結果を提 示すること。	H31.4.16	本日回答	制御棒挿入性試験における相対変位と 挿入時間のばらつき,挿入性試験後の制 御棒の確認結果,振動台の入力加速度と 相対変位の関係及び高温条件が及ぼす影 響について記載した。また,試験時のチャン ネルボックス 4 体の挙動について記載し同 位相で振動していることを確認した。 (4 条-別紙 1-参 5-4, 5, 7~11,13 に記 載)
18	弾塑性特性を有するチャンネル ボックスを線形でモデル化した場 合について,地震応答解析により 得られる応答相対変位を評価で用 いることの妥当性を提示すること。	H31.4.16	本日回答	燃料集合体相対変位について,線形モ デルより算出していることに対して弾塑性特 性を考慮した場合の影響の考察を記載し た。 (4 条-別紙 1-参 5-10,11 に記載)
19	機器・配管系の疲労評価につい て,等価繰返し回数を 60 回と設定 した根拠を提示すること。	H31.4.16	本日回答	等価繰返し回数 60 回の根拠について, 建設時の考え方を整理して記載しました。 (4 条-別紙 1-参 3-1)