女川原子力発電所 2 号炉

「実用発電用原子炉に係る発電用原子炉設置

者の重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力に係 る審査基準」への適合状況について平成31年3月
東北電力株式会社

枠囲みの内容は商業機密又は防護上の観点から公開できません。

1．重大事故等対策
1．0 重大事故等対策における共通事項
1．1 緊急停止失敗時に発電用原子炉を未臨界にするための手順等
1.2 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却するための手順等
1.3 原子炉冷却材圧力バウンダリを減圧するための手順等

1．4 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を泠却するための手順等
1.5 最終ヒートシンクへ熱を輸送するための手順等

1． 6 原子炉格納容器内の泠却等のための手順等
1.7 原子炉格納容器の過圧破損を防止するための手順等
1.8 原子炉格納容器下部の溶融炉心を冷却するための手順等
1.9 水素爆発による原子炉格納容器の破損を防止するための手順等
1.10 水素爆発による原子炉建屋等の損傷を防止するための手順等
1.11 使用済燃料貯蔵槽の冷却等のための手順等
1.12 発電所外への放射性物質の拡散を抑制するための手順等
1.13 重大事故等の収束に必要となる水の供給手順等
1.14 電源の確保に関する手順等
1.15 事故時の計装に関する手順等
1.16 原子炉制御室の居住性等に関する手順等
1.17 監視測定等に関する手順等
1.18 緊急時対策所の居住性等に関する手順等

1． 19 通信連絡に関する手順等

2．大規模な自然災害又は故意による大型航空機の衝突その他テロリズム～の対応 における事項
2.1 可搬型設備等による対応

1．16 原子炉制御室の居住性等に関する手順等

$$
<\text { 目 次 > }
$$

1．16．1 対応手段と設備の選定
（1）対応手段と設備の選定の考え方
（2）対応手段と設備の選定の結果
a．重大事故等時において運転員が中央制御室にとどまるために必要な対応手段と設備
（a）対応手段
（b）重大事故等対処設備と自主対策設備
b．手順等
1．16．2 重大事故等時の手順
1．16．2．1 居住性を確保するための手順等
（1）中央制御室換気空調系設備の運転手順
a．交流動力電源が確保されている場合
b．常設代替交流電源設備により中央制御室換気空調系設備を復旧する場合
c．中央制御室待避所に待避する場合
（2）中央制御室待避所の運用手順
a．中央制御室待避所加圧設備による中央制御室待避所の加圧手順
（3）中央制御室の照明を確保する手順
（4）中央制御室の酸素及び二酸化炭素の濃度測定と濃度管理手順
（5）中央制御室待避所の照明を確保する手順
（6）中央制御室待避所の酸素及び二酸化炭素の濃度測定と濃度管理手順
（7）中央制御室待避所データ表示装置によるプラントパラメータ等の監視手順
（8）その他の放射線防護措置等に関する手順等
a．炉心損傷の判断後に全面マスク等を着用する手順
b．放射線防護に関する教育等
c．重大事故等時の運転員の被ばく低減及び被ばく線量の平準化
（9）その他の手順項目について考慮する手順
（10）重大事故等時の対応手段の選択
（11）操作の成立性
1．16．2．2 汚染の持込みを防止するための手順等
（1）チェンジングエリアの設置及び運用手順
1．16．2．3 運転員等の被ばくを低減するための手順等
（1）非常用ガス処理系による運転員等の被ばく防止手順
a．非常用ガス処理系起動手順
（a）原子炉建屋ブローアウトパネル部が開放している場合
（b）原子炉建屋ブローアウトパネル部が閉止している場合
（c）自動起動しない場合の非常用ガス処理手動起動手順
b．非常用ガス処理系停止手順
c．原子炉建屋ブローアウトパネル部の閉止手順
（a）中央制御室での原子炉建屋ブローアウトパネル部の閉止手順
（b）現場での原子炉建屋ブローアウトパネル部の閉止手順

添付資料 1．16． 1 2号炉中央制御室給電系統概要図（重大事故等時）
添付資料 1．16．2 審査基準，基準規則と対処設備との対応表
添付資料 1．16．3 重大事故等時における中央制御室の被ばく評価に係る事象の選定 について
添付資料1．16．4 中央制御室換気空調系隔離時の酸素濃度及び二酸化炭素濃度につ いて
添付資料1．16．5 炉心損傷の判断基準について
添付資料 1．16．6 中央制御室の可搬型照明（SA）について
添付資料 1．16．7 チェンジングエリアについて
添付資料 1．16．8 中央制御室内に配備する資機材の数量について
添付資料1．16．9 交替要員体制を考慮した運転員の被ばく評価について
添付資料 1．16．10 交替要員の放射線防護と移動経路について
添付資料 1．16．11 重大事故等対策の成立性について
添付資料 1．16．12 解釈一覧
1.16 原子炉制御室の居住性等に関する手順等

【要求事項】

発電用原子炉設置者において，原子炉制御室に関し，重大事故が発生した場合 においても運転員がとどまるために必要な手順等が適切に整備されているか，又 は整備される方針が適切に示されていること。

【解釈】

1 「運転員がとどまるために必要な手順等」とは，以下に揭げる措置（原子炉制御室の遮蔽設計及び換気設計に加えてマネジメント（マスク及びボンべ等） により対応する場合）又はこれらと同等以上の効果を有する措置を行らための手順等をいう。
a）重大事故が発生した場合においても，放射線防護措置等により，運転員が とどまるために必要な手順等を整備すること。
b）原子炉制御室用の電源（空調及び照明等）が，代替交流電源設備からの給電を可能とする手順等（手順及び装備等）を整備すること。

重大事故が発生した場合において，運転員が中央制御室にとどまるために必要 な設備と資機材を整備する。ここでは，この対処設備と資機材を活用した手順等 について説明する。

1．16．1 対応手段と設備の選定

（1）対応手段と設備の選定の考え方
重大事故が発生した場合において，運転員が中央制御室にとどまるために必要 な対応手段と重大事故等対処設備を選定する。

重大事故等対処設備，設計基準事故対処設備，自主対策設備 ${ }^{*}{ }^{1}$ 及び資機材 ${ }^{2} 2$ を用いた対応手段を選定する。
※1 自主対策設備：技術基準上全ての要求事項を満たすことや全てのプラン ト状況で使用することは困難であるが，プラント状況に よっては，事故対応に有効な設備。
※2 資機材：防護具類及びチェンジングエリア設営用資機材については，資機材であるため重大事故等対処設備としない。

また，選定した重大事故等対処設備により，技術的能力審査基準（以下「審査基準」という。）だけでなく，設置許可基準規則第五十九条及び技術基準規則第七十四条（以下「基準規則」という。）の要求機能を満足する設備が網羅されて いることを確認するとともに，自主対策設備との関係を明確にする。
（添付資料 1．16．1，1．16．2）
（2）対応手段と設備の選定の結果
審査基準及び基準規則要求により選定した対応手段と，その対応に使用する重大事故等対処設備，設計基準事故対処設備，自主対策設備及び資機材を以下に示 す。

なお，重大事故等対処設備，設計基準事故対処設備，自主対策設備及び資機材 と整備する手順についての関係を第1．16．1表に示す。
a．重大事故等時において運転員が中央制御室にとどまるために必要な対応手段と設備
（a）対応手段
重大事故が発生した場合に環境に放出された放射性物質等による放射線被ばくから運転員を防護するため，全交流動力電源が喪失した場合は常設代替交流電源設備から中央制御室用の電源を確保する手段がある。

中央制御室の居住性を確保する設備は以下のとおり。

- 中央制御室遮蔽
- 中央制御室送風機
- 中央制御室排風機
- 中央制御室再循環送風機
- 中央制御室再循環フィルタ装置
- 中央制御室換気空調系ダクト・ダンパ
- 中央制御室待避所遮蔽
- 中央制御室待避所加圧設備（空気ボンベ）
- 中央制御室待避所加圧設備（配管•弁）
- 差圧計
- 酸素濃度計
- 二酸化炭素濃度計
- トランシーバ（固定）
- 衛星電話（固定）
- トランシーバ（屋外アンテナ）
- 衛星電話（屋外アンテナ）
- データ表示装置（待避所）
- 非常用照明
- 可搬型照明（SA）
- 可搬型照明
- 常設代替交流電源設備（ガスタービン発電機）

中央制御室の外側が放射性物質により汚染したような状況下において，中央制御室への汚染の持込みを防止する手段がある。

中央制御室への汚染の持込みを防止するための設備は以下のとおり。

- 非常用照明
- 乾電池内蔵型照明
- 防護具類及びチェンジングエリア設営用資機材

原子炉建屋原子炉棟内を負圧に維持することで，重大事故等により原子炉格納容器から原子炉建屋原子炉棟内に漏えいしてくる放射性物質が原子炉建屋原子炉棟から直接環境へ放出されることを防ぎ，運転員等の被ばくを低減する手段がある。

運転員等の被ばくを低減するための設備は以下のとおり。

- 非常用ガス処理系排風機
- 非常用ガス処理系空気乾燥装置
- 非常用ガス処理系フィルタ装置
- 非常用ガス処理系配管•弁
- 排気筒
- 原子炉建屋原子炉棟
- 原子炉建屋ブローアウトパネル閉止装置
- 非常用交流電源設備
- 常設代替交流電源設備（ガスタービン発電機）
（b）重大事故等対処設備と自主対策設備
中央制御室の居住性を確保する設備及び運転員の被ばく線量を低減する設備のうち中央制御室遮蔽，中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室換気空調系 ダクト・ダンパ，中央制御室待避所，中央制御室待避所遮蔽，中央制御室待避所加圧設備（空気ボンベ，配管•弁），差圧計，酸素濃度計，二酸化炭素濃度計，トランシーバ（固定），衛星電話（固定），トランシーバ（屋外ア ンテナ），衛星電話（屋外アンテナ），データ表示装置（待避所），可搬型照明（SA），常設代替交流電源設備（ガスタービン発電機），非常用交流電源設備，非常用ガス処理系排風機，非常用ガス処理系空気乾燥装置，非常用 ガス処理系フィルタ装置，非常用ガス処理系配管•弁，排気筒，原子炉建屋原子炉棟，原子炉建屋ブローアウトパネル閉止装置は重大事故等対処設備と位置付ける。

以上の設備により，重大事故が発生した場合においても中央制御室に運転員がとどまることができるため，以下の設備は自主対策設備と位置付ける。 あわせてその理由を示す。
－非常用照明
非常用照明は設計基準事故対処設備であり，耐震性は確保されていない が，全交流動力電源喪失時に常設代替交流電源設備から給電可能であるた め，可搬型照明（SA）の代替設備として有効である。

なお，乾電池内蔵型照明，防護具類及びチェンジングエリア設営用資機材 については，資機材であるため重大事故等対処設備とはしない。

b．手順等

上記（2）a．により選定した対応手段に係る手順を整備する。また，重大事故時に監視が必要となる計器及び重大事故時に給電が必要となる設備につい ても整備する。（第1．16．2表，第1．16．3表）

これらの手順は，運転員及び重大事故等対応要員の対応として，全交流動力電源喪失の対応手順等に定める。

また，放射線管理班員 ${ }^{* 3}$ の対応として汚染の持込みを防止するための手順に定める。
※3 放射線管理班員：重大事故等対策要員のうち所内外の放射線•放射能 の状況把握，被ばく・汚染管理を行う班員をいう。

1．16．2 重大事故等時の手順

1．16．2．1 居住性を確保するための手順等

重大事故が発生した場合において，中央制御室にとどまる運転員の被ばく量を7日間で 100 mSv を超えないようにするために必要な設備として，中央制御室遮蔽，中央制御室換気空調系設備を設け，外気を遮断し閉回路循環運転 （以下「事故時運転モード」という。）を行い，環境に放出された放射性物質等による放射線被ばくから運転員を防護する。

さらに，原子炉格納容器フィルタベント系を使用した際のプルームの影響 による運転員の被ばくを低減させるための設備として，中央制御室換気空調系バウンダリの内側に中央制御室待避所を設置する。中央制御室待避所は遮蔽及び中央制御室待避所加圧設備により，居住性を確保する設計とする。中央制御室換気空調系バウンダリ及び中央制御室待避所の正圧化バウンダリ構成を第1．16．1図に示す。

なお，重大事故等時の中央制御室の居住性に係る被ばく評価については，炉心損傷が早く原子炉格納容器内の圧力が高く推移する事象が中央制御室 の運転員の被ばく評価上最も厳しくなる事故シーケンスとなることから，「大破断LOCA＋HPCS失敗＋低圧ECCS失敗＋全交流動力電源喪失」事象を選定 する。
（添付資料 1．16．3）

中央制御室換気空調系設備が事故時運転モードとなった場合，中央制御室 の居住性確保の観点より，中央制御室の酸素濃度が許容濃度の 18% を下回る おそれがある場合又は二酸化炭素濃度が許容濃度の 1% を上回るおそれが ある場合は，中央制御室にて中央制御室少量外気取入ダンパで酸素及び二酸化炭素濃度を調整する。

中央制御室待避所を使用する場合，居住性確保の観点より，中央制御室待避所の酸素濃度が許容濃度の 18% を下回るおそれがある場合又は二酸化炭素濃度が許容濃度の 1% を上回るおそれがある場合は，中央制御室待避所内 にて給気弁，室圧調整弁で酸素及び二酸化炭素濃度を調整する。
（添付資料 1．16．4）

中央制御室待避所への酸素の供給は空気ボンベで行い，基準値を逸脱する ことはない設計となっている。

なお，これらの運用解除については，発電所対策本部との協議の上，中央制御室制御盤エリアでの対応を再開する。

さらに，運転員の被ばく低減のため，発電所対策本部は，長期的な保安確保の観点から，運転員の交替体制を整備する。
（1）中央制御室換気空調系設備の運転手順
環境に放出された放射性物質等による放射線被ばくから運転員等を防護する ため，中央制御室換気空調系設備にて外気を遮断した状態で事故時運転モードを行い，隣接区域からの放射性物質のインリークを防止する。

全交流動力電源が喪失した場合は，常設代替交流電源設備による給電後，中央制御室換気空調系設備を運転する。
a．交流動力電源が確保されている場合
重大事故が発生し，交流動力電源が確保されている場合において，中央制御室換気空調系設備は通常運転と事故時運転モードのいずれかで運転している ため，状態を確認し通常運転であれば事故時運転モードへ切り替える。
（a）手順着手の判断基準
灲心損傷を判断した場合※1
※ 1：格納容器内雰囲気放射線モニタ（CAMS）で原子灲格納容器内のガン マ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍を超え た場合，又は格納容器内雰囲気放射線モニタ（CAMS）が使用できな い場合に原子炉圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を確認した場合。
（添付資料 1．16．5）
（b）操作手順
i ．中央制御室換気空調系設備が通常運転している場合
事故時運転モードへの切り替え操作の概要は以下のとおり。
中央制御室換気空調系の概要図を第1．16．2図に示す。タイムチャート
を第1．16．4図に示す。
（1）発電課長は，手順着手の判断基準に基づき運転員に中央制御室換気空調系設備を通常運転から事故時運転モードへ切り替えるよう指示する。
（2）運転員（中央制御室）Aは，中央制御室換気空調系設備の事故時運転モ ードの運転に必要な中央制御室再循環送風機，中央制御室送風機，中央制御室排風機，中央制御室再循環フィルタ装置入口ダンパ，中央制御室外気取入ダンパ，中央制御室排風機出ロダンパ及び監視計器の電源が確保されていることを状態表示にて確認する。
③運転員（中央制御室）Aは，中央制御室にて中央制御室再循環フィルタ装置入口ダンパを全開操作し，中央制御室再循環送風機を起動する。
（4）運転員（中央制御室）Aは，中央制御室にて中央制御室外気取入ダンパ及び中央制御室排風機出ロダンパを全閉操作し，中央制御室排風機が自動停止することで事故時運転モードに切り替わったことを確認し，発電課長へ報告する。
ii．中央制御室換気空調系設備が事故時運転モードで運転している場合事故時運転モードの状態確認の概要は以下のとおり。
中央制御室換気空調系の概要図を第1．16．3図に示す。タイムチャートを第1．16．5図に示す。
（1）発電課長は，運転員に中央制御室換気空調系設備が事故時運転モードで運転されていることを確認するよう指示する。
（2）運転員（中央制御室）Aは，中央制御室再循環フィルタ装置入口ダンパ が全開，中央制御室外気取入ダンパ，中央制御室少量外気取入ダンパ，中央制御室排風機出口ダンパが全閉，中央制御室再循環送風機及び中央制御室送風機が起動していることを確認し，事故時運転モードとなって いることを発電課長に報告する。
（c）操作の成立性
上記の中央制御室換気空調系設備の通常運転から事故時運転モードへの切り替え操作は，運転員（中央制御室） 1 名で実施し， 20 分以内で対応可能 である。

また，中央制御室換気空調系設備が事故時運転モードで運転している場合 の状態確認は，運転員（中央制御室）1名で実施し，5分以内で対応可能で ある。
b．常設代替交流電源設備により中央制御室換気空調系設備を復旧する場合全交流動力電源喪失時には，中央制御室換気空調系設備が停止中であるため，常設代替交流電源設備より給電後，事故時運転モードとする。
（a）手順着手の判断基準
常設代替交流電源設備により非常用高圧母線 C 系又はD系の受電が完了 した場合。
（b）操作手順
全交流動力電源喪失時における中央制御室換気系空調設備，隔離ダンパに給電する手順は「1．14 電源の確保に関する手順等」にて整備する。

中央制御室換気空調系設備の事故時運転モードの起動操作の概要は以下 のとおり。

中央制御室換気空調系の概要図を第1．16．3図に示す。タイムチャート を第1．16．6図に示す。
（1）発電課長は，手順着手の判断基準に基づき電源復旧後，運転員に中央制御室換気空調系設備を事故時運転モードで起動するよう指示する。
（2）運転員（中央制御室）Aは，中央制御室換気空調系設備の事故時運転モ

ードの運転に必要な中央制御室再循環送風機，中央制御室送風機，中央制御室再循環フィルタ装置入口ダンパ，中央制御室外気取入ダンパ，中央制御室少量外気取入ダンパ，中央制御室排風機出ロダンパ及び監視計器の電源が確保されていることを状態表示にて確認する。
③運転員（中央制御室）Aは，中央制御室にて中央制御室再循環フィルタ装置入口ダンパが全開，中央制御室外気取入ダンパ，中央制御室少量外気取入ダンパ及び中央制御室排風機出ロダンパが全閉していることを確認する。なお，中央制御室再循環フィルタ装置入口ダンパが全開，中央制御室外気取入ダンパ，中央制御室少量外気取入ダンパ及び中央制御室排風機出ロダンパが全閉していないことを確認した場合，中央制御室再循環フィルタ装置入ロダンパを全開，中央制御室外気取入ダンパ，中央制御室少量外気取入ダンパ及び中央制御室排風機出ロダンパを全閉 する。
（4）運転員（中央制御室）Aは，中央制御室再循環送風機及び中央制御室送風機を起動させ，事故時運転モードになったこと確認し，発電課長に報告する。
（c）操作の成立性
上記の電源復旧後，中央制御室換気空調系設備の事故時運転モードの起動操作は，運転員（中央制御室） 1 名で実施し， 25 分以内で対応可能である。
c．中央制御室待避所に待避する場合
中央制御室待避所に待避する場合において，中央制御室換気空調系設備を事故時運転モード（少量外気取入）で運転している場合は，事故時運転モードへ切り替える。
（a）手順着手の判断基準
中央制御室待避所に待避する場合。
（b）操作手順
事故時運転モード（少量外気取入）から事故時運転モードへの切り替え操作の概要は以下のとおり。

概要図を第1．16．2図に示す。タイムチャートを第1．16．7図に示す。
（1）発電課長は，手順着手の判断基準に基づき運転員に中央制御室換気空調系設備を事故時運転モード（少量外気取入）から事故時運転モードへ切り替 えるよう指示する。
（2）運転員（中央制御室）Aは，中央制御室換気空調系設備の事故時運転モー ドの運転に必要な中央制御室再循環送風機，中央制御室送風機，中央制御

室排風機，中央制御室再循環フィルタ装置入ロダンパ，中央制御室外気取入ダンパ，中央制御室少量外気取入ダンパ，中央制御室排風機出ロダンパ及び監視計器の電源が確保されていることを状態表示にて確認する。
③運転員（中央制御室）Aは，中央制御室にて中央制御室少量外気取入ダン パを閉操作し，事故時運転モードへの切り替えを行い，発電課長へ報告す る。
（c）操作の成立性
上記の中央制御室換気空調系設備の事故時運転モード（少量外気取入）か ら事故時運転モードへの切り替え操作は，運転員（中央制御室）1名で実施 し，15分以内で対応可能である。
（2）中央制御室待避所の運用手順
原子炉格納容器フィルタベント系を使用する際に待避する中央制御室待避所 を中央制御室待避所加圧設備により加圧し，中央制御室待避所の居住性を確保す るための手順を整備する。
a．中央制御室待避所加圧設備による中央制御室待避所の加圧手順
（a）手順着手の判断基準
灲心損傷を判断した場合 ${ }^{*}{ }^{1}$ において，原子炉格納容器フィルタベント系 を作動させる必要がある場合。
※ 1：格納容器内雰囲気放射線モニタ（CAMS）で原子炉格納容器内のガン マ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍を超え た場合，又は格納容器内雾囲気放射線モニタ（CAMS）が使用できな い場合に原子炉圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を確認した場合。
（添付資料 1．16．5）

（b）操作手順

中央制御室待避所加圧設備による加圧手順の概要は以下のとおり。
概要図を第1．16．8図に示す。タイムチヤートを第1．16．9図に示す。
（1）発電課長は，手順着手の判断基準に基づき運転員に中央制御室待避所への ボンべ加圧を指示する。
（2）運転員（中央制御室）Aは，中央制御室換気空調系設備が事故時運転モー ド（少量外気取入）の場合は，「1．16．2．1（1）c．（b）中央制御室換気空調系設備の運転手順（中央制御室待避所に待避する場合）」の操作手順 により，事故時運転モードへの切り替えを実施する。
③発電課長は，運転員に原子炉格納容器フィルタベント系を使用する約 20 分前，又は運転員（現場）にFCVSベントライン隔離弁の開操作を指示し，運転員（現場）が現場へ移動開始した時に，中央制御室待避所へのボンベ加

圧の開始を指示する。
（4）運転員（中央制御室）Aは，中央制御室待避所のボンベ加圧に必要な中央制御室待避所加圧設備の電源が確保されていることを状態表示にて確認 する。
（5）運転員（中央制御室）Aは，中央制御室待避所にて加圧空気供給ライン入口弁を全開し，ボンベ加圧を開始する。
⑥発電課長は，運転員に中央制御室待避所の圧力を中央制御室より正圧に維持するよう指示する。
⑦運転員（中央制御室）Aは，中央制御室待避所にて差圧計を確認しながら，室圧調整弁を操作し，中央制御室待避所が正圧に維持されていることを発電課長へ報告する。
（c）操作の成立性
上記の中央制御室待避所対応は，発電課長の加圧指示後（原子炉格納容器 フィルタベント系を使用する約20分前，又は運転員（現場）に原子炉格納容器フィルタベント系の隔離弁の開操作を指示し，運転員（現場）が現場へ移動開始した時），運転員（中央制御室）1名で実施し，20分以内で対応可能 である。
（3）中央制御室の照明を確保する手順
中央制御室の居住性確保の観点から，中央制御室の非常用照明が使用できない場合において，可搬型照明（SA）により照明を確保する手順を整備する。
a．手順着手の判断基準
全交流動力電源喪失時や電気系統の故障により，中央制御室の非常用照明が使用できない場合。

b．操作手順

全交流動力電源喪失時に，中央制御室の非常用照明が使用できない場合の可搬型照明（SA）による照明確保の手順の概要は以下のとおり。タイムチャート を第1．16．10図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に中央制御室の照明を確保するため，可搬型照明（SA）の装着を指示する。
（2）運転員（中央制御室）Aは，可搬型照明（SA）が点灯することを確認の上，可搬型照明（SA）を装着し，中央制御室の照明を確保する。
③発電課長は，運転員に常設代替交流電源設備による非常用母線の受電操作が完了していることの確認を指示する。
（4）運転員（中央制御室）Aは，常設代替交流電源設備による非常用母線の受電

操作が完了していることを確認し，発電課長へ報告する。
⑤発電課長は，運転員に中央制御室の非常用照明の点灯確認を指示する。
⑥運転員（中央制御室）Aは，中央制御室の非常用照明が点灯していることを確認し，発電課長へ報告する。
c．操作の成立性
上記の中央制御室の照明確保は，運転員（中央制御室）1 名で実施し， 15 分以内で対応可能である。
（添付資料 1．16．6）
（4）中央制御室の酸素及び二酸化炭素の濃度測定と濃度管理手順
中央制御室の居住性確保の観点から，中央制御室内の酸素及び二酸化炭素の濃度測定及び管理を行う手順を整備する。
a．手順着手の判断基準
中央制御室換気空調系設備が事故時運転モードとなった場合。
b．操作手順
中央制御室の酸素及び二酸化炭素の濃度を測定•管理する手順の概要は以下 のとおり。タイムチャートを第1．16．11図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に中央制御室の酸素濃度及び二酸化炭素濃度の測定を指示する。
②運転員（中央制御室）Aは，酸素濃度計及び二酸化炭素濃度計にて中央制御室内の酸素濃度及び二酸化炭素濃度の測定を開始し，発電課長へ報告する。
③発電課長は，中央制御室の酸素濃度及び二酸化炭素濃度を適宜確認し，運転員に酸素濃度が 18% を下回るおそれがある場合又は二酸化炭素濃度が 1% を上回るおそれがある場合は，外気取入による換気を行うよう指示する。
（4）運転員（中央制御室）Aは，中央制御室換気空調系設備の事故時運転モード （少量外気取入）の運転に必要な中央制御室少量外気取入ダンパ，中央制御室排風機出ロダンパ，中央制御室排風機の電源が確保されていることを状態表示にて確認する。
（5）運転員（中央制御室）Aは，中央制御室にて中央制御室少量外気取入ダンパ を開操作し，事故時運転モード（少量外気取入）への切替えを行い酸素及び二酸化炭素の濃度調整を行い，発電課長へ報告する。
事故時運転モード（少量外気取入）への切り替え操作時の概要図を第1．16．2図に示す。
c．操作の成立性
上記の中央制御室対応は，運転員（中央制御室） 1 名で実施し，事故時運転 モード（少量外気取入）への切り替え操作まで行った場合でも 20 分以内で対応可能である。
（5）中央制御室待避所の照明を確保する手順
中央制御室待避所の居住性確保の観点から，中央制御室待避所の非常用照明が使用できない場合において，可搬型照明（SA）により照明を確保する手順を整備 する。
a．手順着手の判断基準
全交流動力電源喪失時や電気系統の故障により，中央制御室待避所の非常用照明が使用できない場合。
b．操作手順
全交流動力電源喪失時に，中央制御室待避所の非常用照明が使用できない場合の可搬型照明（SA）による照明確保の手順の概要は以下のとおり。タイムチ ヤートを第1．16．12図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に中央制御室待避所の照明を確保するため，可搬型照明（SA）の装着を指示する。
（2）運転員（中央制御室）Aは，可搬型照明（SA）が点灯することを確認の上，可搬型照明（SA）を装着し，中央制御室待避所の照明を確保する。
③発電課長は，運転員に常設代替交流電源設備による非常用母線の受電操作が完了していることの確認を指示する。
（4）運転員（中央制御室）Aは，常設代替交流電源設備による非常用母線の受電操作が完了していることを確認し，発電課長へ報告する。
⑤発電課長は，運転員に中央制御室待避所の非常用照明の点灯確認を指示する。
⑥運転員（中央制御室）Aは，中央制御室待避所の非常用照明が点灯している ことを確認し，発電課長へ報告する。
c．操作の成立性
上記の中央制御室待避所の照明確保は，運転員（中央制御室）1 名で実施し， 15分以内で対応可能である。
（6）中央制御室待避所の酸素及び二酸化炭素の濃度測定と濃度管理手順中央制御室待避所の居住性確保の観点から，中央制御室待避所内の酸素及び二酸化炭素の濃度測定及び管理を行ら手順を整備する。
a．手順着手の判断基準
運転員が中央制御室待避所へ待避した場合。
b．操作手順
中央制御室待避所の酸素及び二酸化炭素の濃度を測定•管理する手順の概要 は以下のとおり。タイムチャートを第1．16．13図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に中央制御室待避所の酸素濃度及び二酸化炭素濃度の測定を指示する。
（2運転員（中央制御室）Aは，酸素濃度計及び二酸化炭素濃度計にて中央制御室待避所内の酸素濃度及び二酸化炭素濃度の測定を開始し，発電課長へ報告 する。
③発電課長は，中央制御室待避所の酸素濃度及び二酸化炭素濃度を適宜確認し，運転員に酸素濃度が 18% を下回るおそれがある場合又は二酸化炭素濃度が 1% を上回るおそれがある場合は，給•排気の調整による換気を行うよう指示する。
（4）運転員（中央制御室）Aは，加圧設備制御盤，加圧設備操作バルブセットの電源が確保されていることを状態表示にて確認する。
（5）運転員（中央制御室）Aは，中央制御室待避所にて中央制御室待避所の圧力 を中央制御室より正圧に維持しながら，給気弁，室圧調整弁を開閉操作し，酸素及び二酸化炭素の濃度調整を行い，発電課長へ報告する。
c．操作の成立性
上記の中央制御室待避所対応は，運転員（中央制御室）1名で実施し，20分以内で対応可能である。
（7）中央制御室待避所データ表示装置によるプラントパラメータ等の監視手順運転員が中央制御室待避所に待避後も，データ表示装置（待避所）にてプラン トパラメータを継続して監視できるよう手順を整備する。
a．手順着手の判断基準
炉心損傷を判断した場合 ${ }^{*} 1$ において，原子炉格納容器フィルタベント系を作動させる必要がある場合。
※ 1：格納容器内雰囲気放射線モニタ（CAMS）で原子炉格納容器内のガンマ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍を超えた場合，又は格納容器内雰囲気放射線モニタ（CAMS）が使用できない場合 に原子炉圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を確認した場合。
（添付資料 1．16．5）

b．操作手順

中央制御室待避所にて，データ表示装置（待避所）を起動し，監視する手順 の概要は以下のとおり。データ表示装置（待避所）に関するデータ伝送の概要図を第1．16．14図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員にデータ表示装置（待避所）の起動，パラメータ監視を指示する。
（2）運転員（中央制御室）Aは，データ表示装置（待避所）を電源に接続した後，端末を起動し，プラントパラメータの監視準備を行う。
c．操作の成立性
上記のデータ表示装置（待避所）の起動操作対応は，運転員（中央制御室） 1 名で実施し，室内での端末起動等のみであるため，短時間での対応が可能で ある。
（8）その他の放射線防護措置等に関する手順等
a．炉心損傷の判断後に全面マスク等を着用する手順
炉心損傷の判断後に運転員の中央制御室滞在時及び現場作業を実施する場合において，全面マスク等（電動ファン付き全面マスク又は全面マスク）を着用する手順を整備する。なお，中央制御室の被ばく評価において，事故後1日目の滞在時は，電動ファン付き全面マスクを着用するとして評価していること から，事故後 1 日目の滞在時は電動ファン付き全面マスクを着用する。

ただし，いずれの期間においても空気中の放射性物質の濃度が推定できる場合は，空気中の放射性物質の濃度に応じて，着用する全面マスク等を決定する。
（a）手順着手の判断基準
炉心損傷を判断した場合 ${ }^{* 1}$
※ 1：格納容器内雰囲気放射線モニタ（CAMS）で原子炉格納容器内のガン マ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍を超え た場合，又は格納容器内雰囲気放射線モニタ（CAMS）が使用できな い場合に原子炉圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を確認した場合。
（添付資料 1．16．5）
（b）操作手順
炬心損傷等の判断後に全面マスク等を着用する手順の概要は以下のとお り。
（1）発電課長は，手順着手の判断基準に基づき中央制御室滞在時及び現場作業 を実施する場合において，運転員に電動ファン付き全面マスクの着用を指

示する。
（2）運転員（中央制御室）Aは，電動ファン付き全面マスクの使用前点検を行 い，異常がある場合は予備品と交換する。運転員（中央制御室）Aは，電動ファン付き全面マスクを着用しリークチェックを行う。
（c）操作の成立性
全交流動力電源喪失時においても，運転員（中央制御室）は可搬型照明（SA） の装着を行うことで照明を確保できるため，全面マスク等の装着は対応可能 である。
b．放射線防護に関する教育等
放射線業務従事者指定時及び定期的に，放射線防護に関する教育•訓練を実施している。講師による指導のもとフィッティングテスターを使用したマスク着用訓練において，漏れ率（フィルタ透過率を含む）2 \％を担保できるよう正 しくマスクを着用できることを確認する。
c．重大事故等時の運転員の被ばく低減及び被ばく線量の平準化
炉心損傷又はその徴候がある場合，運転員の被ばく低減及び被ばく線量の平準化のため，長期的な保安確保の観点から運転員の交替体制を整備する。交替体制は，交替要員として通常勤務帯の運転員を当直交替サイクルに充当する等 の運用を行うことで，被ばく線量の平準化を行う。また，運転員について運転員交替に伴う移動時の放射線防護措置や，チェンジングエリア等の各境界にお ける汚染管理を行うことで運転員の被ばく低減を図る。
（添付資料 1．16．8～1．16．10）
（9）その他の手順項目について考慮する手順
原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱（現場操作含む）に関する手順は「1．7 原子炉格納容器の過圧破損を防止するため の手順等」にて整備する。

常設代替交流電源設備による中央制御室の電源への給電に関する手順は「1．14電源の確保に関する手順等」にて整備する。

操作の判断，確認に係る計装設備に関する手順は「1．15 事故時の計装に関す る手順等」に整備する。

中央制御室，屋内現場，緊急時対策所等の通信連絡をする必要のある場所と通信連絡を行う手順は，「1．19 通信連絡に関する手順等」に整備する。
（10）重大事故等時の対応手段の選択
中央制御室の照明は，設計基準事故対処設備の非常用照明を優先して使用する。

非常用照明が使用できない場合は，可搬型照明（SA）により照明を確保する。常設代替交流電源設備からの受電操作が完了した場合は，非常用照明へ給電を行い，引き続き中央制御室の照明を確保する。
（11）操作の成立性
中央制御室及び中央制御室待避所の居住性確保のための設備である中央制御室換気空調系設備，中央制御室待避所加圧設備の運転は，炉心損傷の確認が起因 となっており，当該操作は運転員の被ばく防護の観点から，手順着手の判断後の短い時間で対応することが望ましい。よって，現状の有効性評価シーケンスにお いて，炉心損傷が起こるシーケンスである「大破断LOCA＋HPCS失敗＋低圧ECCS失敗＋全交流動力電源喪失」のタイムチャート（第1．16．15図）で作業の全体像と必要な要員数を示し，それぞれ個別の運転員のタイムチャート（第1．16．16図） で作業項目の成立性を確認した。

1．16．2．2 汚染の持込みを防止するための手順等

（1）チェンジングエリアの設置及び運用手順
中央制御室の外側が放射性物質により汚染したような状況下において，中央制御室への汚染の持込みを防止するため，モニタリング及び作業服の着替え等を行 うためのチェンジングエリアを設置する手順を整備する。

チェンジングエリアには，靴及びヘルメット等を脱衣する下足エリア，防護具類を脱衣する脱衣エリア，放射性物質による要員や物品の汚染を確認するための サーベイエリア，汚染が確認された際に除染を行ら除染エリアを設け，放射線管理班員等が身体サーベイ及び除染を行うとともに，チェンジングエリアの汚染管理を行う。除染エリアは，サーベイエリアに隣接して設置し，除染はウェットテ イッシュでの拭き取りを基本とするが，拭き取りにて除染できない場合は，簡易 シャワーにて水洗による除染を行う。簡易シャワーで発生した汚染水は，必要に応じてウェスへ染み込ませる等により固体廃棄物として廃棄する。

また，チェンジングエリア設置場所付近の全照明が消灯した場合は，乾電池内蔵型照明を設置する。
（添付資料 1．16．7）

a．手順着手の判断基準

原子力災害対策特別措置法第 10 条特定事象が発生した後，放射線管理班長が，事象進展の状況（炉心損傷を判断した場合 ${ }^{*} 1$ 等），参集済みの要員数を考慮し て，チェンジングエリア設営を行うと判断した場合。
※ 1：格納容器内雰囲気放射線モニタ（CAMS）で原子炉格納容器内のガンマ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍を超えた場合，又 は格納容器内雰囲気放射線モニタ（CAMS）が使用できない場合に原子炉
b．操作手順
チェンジングエリアを設置するための手順の概要は以下のとおり。タイムチ ャートを第1．16．17図に示す。
（1）放射線管理班長は，手順着手の判断基準に基づき放射線管理班員に中央制御室の出入口付近に，チェンジングエリアを設置するよう指示する。
（2）放射線管理班員は，チェンジングエリア設置場所へ移動後，チェンジングエ リア用資機材を準備し，チェンジングエリア設置場所の照明が確保されてい ない場合，乾電池内蔵型照明を設置し，照明を確保する。
③放射線管理班員は，中央制御室出入口付近に平常時より設置済みの床，壁の養生シートに破損等がないことを確認し，必要に応じて補修作業を実施する。
（4）放射線管理班員は，各エリアの必要箇所にバリア，棚，ゴミ箱及び積層シー ト等を設置する。
（5）放射線管理班員は，除染エリア用ハウスの組立て及び簡易シャワーを設置す る。
⑥放射線管理班員は，中央制御室入口付近に可搬型空気浄化設備を設置する。
⑦放射線管理班員は，サーベイエリアにサーベイメータを設置する。
c．操作の成立性
上記の対応は，放射線管理班員 2 名で行い，作業開始から 90 分以内で対応可能である。

1．16．2．3 運転員等の被ばくを低減するための手順等
（1）非常用ガス処理系による運転員等の被ばく防止手順
a．非常用ガス処理系起動手順
原子炉建屋原子炉棟内を負圧に維持することで，重大事故等により原子炉格納容器から原子炉建屋原子炉棟内に漏えいしてくる放射性物質が原子炉建屋原子炉棟から直接環境へ放出されることを防ぎ，運転員等の被ばくを未然に防 ぐために非常用ガス処理系を起動する手順を整備する。

全交流動力電源喪失により非常用ガス処理系が起動できない場合は，常設代替交流電源設備により非常用ガス処理系の電源を確保する。

常設代替交流電源設備に関する手順等は「1．14 電源の確保に関する手順等」にて整備する。
（a）原子炉建屋ブローアウトパネル部が開放している場合
i．手順着手の判断基準
原子炉水位低（L－3），ドライウェル圧力高，原子炉建屋原子炉棟排気放射能高，燃料取替エリア放射能高及び原子炉建屋原子炉棟換気空調系全停のいずれかの信号が発生した場合又は，原子炉建屋原子炉棟換気空調系 が全停している場合で原子炉建屋ブローアウトパネル部が開放している場合

ii ．操作手順

非常用ガス処理系を起動する手順は以下のとおり。非常用ガス処理系の概要図を第1．16．18図に示す。タイムチャートを第1．16．19図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に非常用ガス処理系 A系及びB系の自動起動の確認を指示する。
（2）運転員（中央制御室）Aは，中央制御室にて，隔離信号により非常用が ス処理系排風機 A 系及びB系が起動したことを確認するとともに，SGTS トレイン出口流量指示値の上昇を確認する。
③運転員（中央制御室）Aは，中央制御室にて，SGTS入口弁及びSGTSフィ ルタ装置出口弁が全開，SGTS空気乾燥装置入口弁が調整開となることを確認する。
（4）運転員（中央制御室）Aは，中央制御室にて，非常用ガス処理系排風機 A系及びB系が起動したことを発電課長に報告する。
⑤運転員（中央制御室）Aは，非常用ガス処理系起動後に原子炉建屋ブロ ーアウトパネル部の開放状態を確認し，「1．16．2．3（1）c．（a）中央制御室での原子炉建屋ブローアウトパネル部の閉止手順」の操作手順を実施し，原子炉建屋ブローアウトパネル部を閉止する。
iii．操作の成立性
上記の操作は，運転員（中央制御室） 1 名にて作業を実施した場合，作業開始を判断してから非常用ガス処理系の起動まで 5 分以内で対応可能 である。
原子炉建屋ブローアウトパネル閉止装置の閉止操作については，運転員 （中央制御室） 1 名にて 25 分以内で対応可能である。
（b）原子炉建屋ブローアウトパネル部が閉止している場合
i ．手順着手の判断基準
原子炉水位低（L－3），ドライウェル圧力高，原子炉建屋原子炉棟排気放射能高，燃料取替エリア放射能高及び原子炉建屋原子炉棟換気空調系全停のいずれかの信号が発生した場合又は，原子炉建屋原子炉棟換気空調系

が全停している場合で原子炉建屋ブローアウトパネル部が閉止している場合
ii．操作手順
非常用ガス処理系を起動する手順は以下のとおり。非常用ガス処理系の概要図を第1．16．18図に示す。タイムチャートを第1．16．20図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に非常用ガス処理系 A系及びB系の自動起動の確認を指示する。
（2）運転員（中央制御室）Aは，中央制御室にて，隔離信号により非常用が ス処理系排風機A系及びB系が起動したことを確認するとともに，SGTS トレイン出口流量指示値の上昇を確認する。
③運転員（中央制御室）Aは，中央制御室にて，SGTS入口弁及びSGTSフィ ルタ装置出口弁が全開，SGTS空気乾燥装置入口弁が調整開となることを確認する。
（4）運転員（中央制御室）Aは，中央制御室にて，非常用ガス処理系排風機 A系及びB系が起動したことを発電課長に報告する。
⑤運転員（中央制御室）Aは，非常用ガス処理系起動後に原子炉建屋ブロ ーアウトパネルの閉止状態を確認する。
（6）発電課長は，環境へのガス放出量の増大，フィルタトレインに湿分を含 んだ空気が流入すること等を考慮し，運転員に非常用ガス処理系A系又 はB系の停止準備を開始するよう指示する。
⑦運転員（中央制御室）Aは，中央制御室にて，非常用ガス処理系排風機 A系又はB系を停止し，発電課長に報告する。
（8）発電課長は，運転員に原子炉建屋換気空調系が隔離され全停しているこ とを確認するように指示する。
（9）運転員（中央制御室）Aは，中央制御室にて原子炉建屋換気空調系が隔離され全停していることを確認し，発電課長に報告する。
iii．操作の成立性
上記の操作は，運転員（中央制御室） 1 名にて作業を実施した場合，作業開始を判断してから非常用ガス処理系の起動まで5分以内で対応可能 である。
（c）自動起動しない場合の非常用ガス処理手動起動手順

何らかの原因により非常用ガス処理系が自動起動しない場合に非常用ガス処理系を手動で起動する手順を整備する。

なお，原子炉建屋ブローアウトパネル部が開放した場合は，「1．16．2．3
c．（a）中央制御室での原子炉建屋ブローアウトパネル部の閉止手順」に従い閉止を行う。
i ．手順着手の判断基準
原子炉水位低（L－3），ドライウェル圧力高，原子炉建屋原子炉棟排気放射能高，燃料取替エリア放射能高及び原子炉建屋原子炉棟換気空調系全停の いずれかの信号が発生した場合又は，原子炉建屋原子炉棟換気空調系が全停 している場合で非常用ガス処理系が起動しない場合。
ii ．操作手順
何らかの原因により非常用ガス処理系が自動起動しない場合に，非常用ガ ス処理系A系を再起動する手順の概要は以下のとおり。（非常用ガス処理系 B系の起動手順も同様。）非常用ガス処理系概要図を第1．16－21図に，タイム チャートを第1．16－19図に示す。

①発電課長は，手順着手の判断基準に基づき，運転員に非常用ガス処理系 の起動の準備を指示する。
（2）運転員（中央制御室）Aは，中央制御室にて原子炉建屋ブローアウトパ ネル部の閉止を確認し，非常用ガス処理系の運転を実施するために必要 な排風機，電動弁及び監視計器の電源が確保されていることを状態表示 にて確認する。
③ 運転員（中央制御室）Aは，中央制御室にてSGTS 入口弁及びSGTSフィ ルタ装置出口弁が全開であることを確認する。

なお，SGTS 入口弁及びSGTSフィルタ装置出口弁が全開でない場合は，中央制御室にて系統構成を実施する。
（4）運転員（中央制御室）Aは，中央制御室にて発電課長に非常用ガス処理系の準備が完了したことを報告する。
⑤ 発電課長は，運転員に非常用ガス処理系の起動を指示する。
（6）運転員（中央制御室）Aは，中央制御室にて非常用ガス処理系排風機（A） を起動し，SGTS トレイン出口流量指示値の上昇を確認した後，発電課長 に報告する。
iii．操作の成立性
上記の操作は，運転員（中央制御室）1名にて作業を実施した場合，作業開始を判断してから非常用ガス処理系の起動まで 15 分以内で対応可能で ある。
b．非常用ガス処理系停止手順
非常用ガス処理系が運転中に，原子炉建屋内の水素濃度の上昇を確認した場合は，非常用ガス処理系の系統内での水素爆発を回避するため，非常用ガス処理系を停止する。

また，耐圧強化ベント系による原子炉格納容器ベント操作を実施する場合に ついても，原子炉格納容器ベント時の系統構成のため，非常用ガス処理系を停止する。
（a）手順着手の判断基準
原子炉建屋地上 3 階（原子炉建屋原子炉棟内）の水素濃度が， 1.3% に到達した場合，又は耐圧強化ベント系による原子炉格納容器ベント操作を実施 する場合。
（b）操作手順
非常用ガス処理系を停止する手順は以下のとおり。非常用ガス処理系の概要図を第1．16．18図に示す。タイムチャートを第1．16．22図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に非常用ガス処理系の停止準備を開始するよう指示する。
（2運転員（中央制御室）Aは，非常用ガス処理系排風機の操作スイッチを「引 ロック」とし，非常用ガス処理系排風機が停止及びSGTS空気乾燥装置入口弁が全閉となることを確認する。
（3）運転員（中央制御室）Aは，SGTS入口弁及びSGTSフィルタ装置出口弁を全閉操作する。
（4）運転員（中央制御室）Aは，非常用ガス処理系の停止操作が完了したこと を発電課長に報告する。
（c）操作の成立性
上記の操作は，運転員（中央制御室）1名にて作業を実施した場合，作業開始を判断してから非常用ガス処理系の停止まで5分以内で対応可能であ る。
c．原子炉建屋ブローアウトパネル部の閉止手順
原子炉建屋原子炉棟は，重大事故等時においても非常用ガス処理系により内部の負圧を確保することができる。
原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋に設置する原子炉建屋ブローアウトパネル部が非常用ガス処理系運転時に開放状態となって

いる場合は，内部の負圧を確保するために閉止する。
（a）中央制御室での原子炉建屋ブローアウトパネル部の閉止手順
i ．手順着手の判断基準
原子炉建屋ブローアウトパネル部が開放状態で交流動力電源が健全な場合で非常用ガス処理系が運転している場合。
ii．操作手順
中央制御室からの原子炉建屋ブローアウトパネル部を閉止する手順は以下のとおり。タイムチャートを第1．16．23図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に原子炉建屋ブロー アウトパネル部の閉止操作を指示する。
（2）運転員（中央制御室）Aは，原子炉建屋ブローアウトパネル閉止装置及 び監視計器の電源が確保されていることを状態表示にて確認する。
③運転員（中央制御室）Aは，中央制御室にて非常用ガス処理系の運転を停止する。
（4）運転員（中央制御室）Aは，原子炉建屋ブローアウトパネル閉止装置の遠隔操作により原子炉建屋ブローアウトパネル部閉止操作を実施する。
（5）運転員（中央制御室）Aは，原子炉建屋ブローアウトパネル閉止装置が閉止されていることを確認し，発電課長に報告する。
⑥発電課長は，運転員に非常用ガス処理系の起動の準備を指示する。
⑦運転員（中央制御室）Aは，中央制御室にてSGTS 入口弁及びSGTS フィ ルタ装置出口弁が全開であることを確認する。
なお，SGTS 入口弁及び SGTS フィルタ装置出口弁が全開でない場合は，中央制御室にて系統構成を実施する。
（8）運転員（中央制御室）Aは，中央制御室にて発電課長に非常用ガス処理系の準備が完了したことを報告する。
⑨発電課長は，運転員に非常用ガス処理系の起動を指示する。
（10運転員（中央制御室）Aは，中央制御室にて非常用ガス処理系排風機A系又はB系を起動し，SGTS トレイン出口流量指示値の上昇を確認した後，発電課長に報告する。
iii．操作の成立性
上記の操作は，運転員（中央制御室） 1 名にて作業を実施した場合，作業開始を判断してから原子炉建屋ブローアウトパネル閉止装置の閉止操作まで 25 分以内で対応可能である。
（b）現場での原子炉建屋ブローアウトパネル部の閉止手順
i ．手順着手の判断基準
原子炉建屋ブローアウトパネル部が開放状態で全交流動力電源が喪失及び炉心が健全であることを確認した場合
ii ．操作手順
現場での原子炉建屋ブローアウトパネル部を閉止する手順は以下のと おり。タイムチャートを第1．16．24図に示す。
（1）発電課長は，手順着手の判断基準に基づき，運転員に原子炉建屋ブロー アウトパネル部の閉止操作を指示する。
（2）運転員（現場）A，Bは，原子炉建屋原子炉棟の開放状態の原子炉建屋 ブローアウトパネル部へ移動後，人力での原子炉建屋ブローアウトパネ ル閉止装置の操作により，原子炉建屋ブローアウトパネル開口部の閉止 を行う。
③運転員（現場）A，Bは，原子炉建屋ブローアウトパネル部の閉止操作完了を発電課長へ報告する。
iii．操作の成立性
上記の操作は，運転員（現場）2名で実施し，作業開始を判断してから原子炉建屋ブローアウトパネル閉止装置の閉止操作まで 200 分以内で対応可能である。

第1．16．1表 機能喪失を想定する設計基準事故対処設備と整備する手順

対応手段，対処設備，手順書一覧（1／2）

機能喪失を想定する 設計基準事故対処設備	対応 手段	対処設備		手順書
（	$\begin{aligned} & \text { 居 } \\ & \text { 住 } \\ & \text { 性 } \\ & \text { 確 } \\ & \text { 保 } \end{aligned}$	中央制御室遮蔽	$\begin{aligned} & \text { 重 } \\ & \text { 事 } \\ & \text { 整 } \\ & \text { 文 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	－
		中央制御室送風機		非常時操作手順書（設備別） 「中央制御室換気空調系運転」 「中央制御室の酸素及び二酸化炭素濃度の測定手順」
		中央制御室排風機		
		中央制御室再循環送風機		
		中央制御室再循環フィルタ装置		
		中央制御室換気空調系ダクト・ダンパ		
		中央制御室待避所遮蔽		－
		中央制御室待避所加圧設備（空気ボンベ）		非常時操作手順書（設備別） 「中央制御室待避所の運用手順」 「中央制御室待避所の酸素及び二酸化炭素濃度の測定手順」
		中央制御室待避所加圧設備（配管•弁）		
		差圧計		
		酸素濃度計		非常時操作手順書（設備別） 「中央制御室の酸素及び二酸化炭素濃度の測定手順」 「中央制御室待避所の酸素及び二酸化炭素濃度の測定手順」
		二酸化炭素濃度計		
		トランシーバ（固定）		重大事故等対応要領書
		衛星電話（固定）		
		トランシーバ（屋外アンテナ）		
		衛星電話（屋外アンテナ）		
		データ表示装置（待避所）		非常時操作手順書（設備別） 「中央制御室待避所デー タ表示装置によるプラン トパラメータ等の監視手順」
		可搬型照明（SA）		非常時操作手順書（設備別） 「中央制御室の照明を確保する手順」 「中央制御室待避所の照明を確保する手順」
		常設代替交流電源設備 （ガスタービン発電機）※1		－
		非常用照明	$\begin{aligned} & \text { 対 設 } \\ & \text { 処 計 } \\ & \text { 設 基 } \\ & \text { 備 } \\ & \text { 漼 } \\ & \text { 事 } \\ & \text { 故 } \end{aligned}$	非常時操作手順書（設備別） 「中央制御室の照明を確保する手順」 「中央制御室待避所の照明を確保する手順」
		可搬型照明	資 機 材	重大事故等対応要領書

※ 1：手順は「1．14 電源の確保に関する手順等」にて整理する。

対応手段，対処設備，手順書一覧（2／2）

機能喪失を想定する設計基準事故対処設備	対応手段	対処設備		手順書
－	$\begin{aligned} & \text { 被 } \\ & \text { 俭 } \\ & \text { 線 } \\ & \hline \text { 低 } \\ & \text { 減 } \end{aligned}$	非常用ガス処理系排風機		非常時操作手順書（設備別） 「非常用ガス処理系運転」
		非常用が下処理系空気乾燥装置		
		非常用がス処理系フィルタ装置		
		非常用ガス処理系配管•弁		
		排気筒		
		原子炬建屋原子炉棟		
		原子炉建屋ブローアウトパネル閉止装置		
		非常用交流電源設備＊1		
		常設代替交流電源設備 （ガスタービン発電機）＊1		－
		非常用照明	$\begin{aligned} & \text { 対設 } \\ & \text { 処誰 } \\ & \text { 設基 } \\ & \text { 備 } \\ & \text { 倳 } \\ & \text { 故 } \end{aligned}$	－
	込	乾電池内蔵型照明		
		防護具類及びチェンジングエリア設営用資機材		

※ 1 ：手順は「1．14 電源の確保に関する手順等」にて整理する。

第1．16．2表 重大事故等対処に係る監視計器

監視計器一覧（1／4）

対応手段		重大事故等の対応に必要となる監視項目	監視パラメータ（計器）
中央制御室換気空調系設備 の運転手順	$\begin{aligned} & \text { 判 } \\ & \text { 䉼 } \\ & \text { 基 } \end{aligned}$	原子炉格納容器内の放射線量率	格納容器内雰囲気放射線モニタ（D／W） 格納容器内雰囲気放射線モニタ（S／C）
		原子炉圧力容器内の温度	原子炉圧力容器温度
		電源（確保）	4－2C 母線電圧 4－2D 母線電圧 125 V 直流主母線盤 2 A 電圧 125 V 直流主母線盤2B 電圧 $125 V$ 直流主母線盤2A－1 電圧 $125 V$ 直流主母線盤 $2 \mathrm{~B}-1$ 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	中央制御室換気空調系設備の運転状態	－
中央制御室待避所加圧設備 による中央制御室待避所の加圧手順	$\begin{aligned} & \text { 判 } \\ & \text { 䉼 } \\ & \text { 基 } \\ & \text { 隼 } \end{aligned}$	原子炉格納容器内の放射線量率	格納容器内雰囲気放射線モニタ（D／W） 格納容器内雰囲気放射線モニタ（S／C）
		原子炉圧力容器内の温度	原子炉圧力容器温度
		電源（確保）	4－2C 母線電圧 4－2D 母線電圧 125 V 直流主母線盤 2 A 電圧 125 V 直流主母線盤2B 電圧 125 V 直流主母線盤2A－1 電圧 $125 V$ 直流主母線盤 2B－1 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	中央制御室待避所加圧設備による加圧	差圧計
中央制御室の照明を確保す る手順	判 断 基 準	電源（喪失）	4－2C 母線電圧 4－2D 母線電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	可搬型照明（SA）の装着	－

監視計器一覧（2／4）

対応手段		重大事故等の対応に必要となる監視項目	監視パラメータ（計器）
中央制御室の酸素及び二酸化炭素の濃度測定と濃度管理手順	$\begin{aligned} & \text { 判 } \\ & \text { 䉼 } \\ & \text { 基 } \\ & \text { 隼 } \end{aligned}$	中央制御室換気空調系設備の運転状態	－
		電源（確保）	4－2C 母線電圧 4－2D 母線電圧 125 V 直流主母線盤 2 A 電圧 $125 V$ 直流主母線盤 2 B 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	中央制御室内の環境監視	酸素濃度計 二酸化炭素濃度計
		中央制御室換気空調系設備の運転状態	－
中央制御室待避所の照明を確保する手順	判 断 基 準	電源（喪失）	4－2C 母線電圧 4－2D 母線電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	可搬型照明（SA）の装着	－
中央制御室待避所の酸素及 び二酸化炭素の濃度測定と濃度管理手順	$\begin{aligned} & \text { 判 } \\ & \text { 断 } \\ & \text { 基 } \end{aligned}$	中央制御室待避所の環境監視	差圧計
		電源（確保）	4－2C 母線電圧 4－2D 母線電圧 125 V 直流主母線盤2B－1 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	中央制御室待避所内の環境監視	酸素濃度計 二酸化炭素濃度計
		中央制御室待避所の給•排気の調整	差圧計
中央制御室待避所データ表示装置によるプラントパラ メータ等の監視手順	$\begin{aligned} & \text { 判 } \\ & \text { 断 } \\ & \text { 基 } \\ & \text { 隼 } \end{aligned}$	原子炉格納容器内の放射線量率	格納容器内雰囲気放射線モニタ（D／W） 格納容器内雰囲気放射線モニタ（S／C）
		原子炉圧力容器内の温度	原子炉圧力容器温度
		電源（確保）	125 V 直流主母線盤 2 A 電圧 $125 V$ 直流主母線盤2B 電圧 $125 V$ 直流主母線盤2A－1 電圧 $125 V$ 直流主母線盤 $2 B-1$ 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	データ表示装置（待避所） の起動	－

1．16－29

監視計器一覧（3／4）

対応手段		重大事故等の対応に必要となる監視項目	監視パラメータ（計器）
チェンジングエリアの設置 及び運用手順	$\begin{aligned} & \text { 判 } \\ & \text { 䉼 } \\ & \text { 基 } \\ & \text { 隼 } \end{aligned}$	原子炉格納容器内の放射線量率	格納容器内雰囲気放射線モニタ（D／W） 格納容器内雰囲気放射線モニタ（S／C）
		原子炉圧力容器内の温度	原子炉圧力容器温度
		電源（確保）	125 V 直流主母線盤 2 A 電圧 125 V 直流主母線盤2B 電圧 125 V 直流主母線盤2A－1 電圧 $125 V$ 直流主母線盤 $2 \mathrm{~B}-1$ 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	```チェンジングエリアの設 置```	サーベイメータ
非常用ガス処理系起動手順	$\begin{aligned} & \text { 判 } \\ & \text { 断 } \\ & \text { 基 } \end{aligned}$	以下のいずれかの信号 －原子炉建屋原子炉棟排気放射能高 - 燃料取替エリア放射能高 - ドライウェル圧力高 - 原子炉水位低（ $\mathrm{L}-3$ ） - 原子炉建屋原子炉棟換気空調系全停	原子炉建屋原子炉棟排気放射線モニタ燃料取替エリア放射能モニタ ドライウェル圧力 原子炬水位（広帯域）
		原子炉建屋原子炉棟換気空調系全停	－
		電源（確保）	4－2C 母線電圧 4－2D 母線電圧 125 V 直流主母線盤 2 A 電圧 $125 V$ 直流主母線盤 2 B 電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	非常用ガス処理系起動	SGTS トレイン出口流量 原子炉建屋外気間差圧（東側） 原子炉建屋外気間差圧（西側） 原子炉建屋外気間差圧（南側） 原子炉建屋外気間差圧（北側）
非常用ガス処理系停止手順	判 断 基 準	原子炉建屋原子炉棟内の水素濃度	原子炉建屋内水素濃度
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	非常用ガス処理系停止	SGTS トレイン出口流量 原子炉建屋外気間差圧（東側） 原子炉建屋外気間差圧（西側） 原子炉建屋外気間差圧（南側） 原子炉建屋外気間差圧（北側）

監視計器一覧（4／4）

対応手段		重大事故等の対応に必要となる監視項目	監視パラメータ（計器）
原子炉建屋ブローアウトパ ネル部の閉止手順	$\begin{aligned} & \text { 判 } \\ & \text { 断 } \\ & \text { 基 } \\ & \text { 準 } \end{aligned}$	非常用ガス処理系の運転状態	－
		原子炉泠却材圧力バウン ダリ破損時の隔離及び減圧完了確認	原子炬水位（広帯域）原子炉圧力 エリア放射線モニタ
		電源（確保）	4－2C 母線電圧
	$\begin{aligned} & \text { 操 } \\ & \text { 作 } \end{aligned}$	原子炉建屋ブローアウト パネル閉止装置による閉止	原子炬建屋ブローアウトパネル閉止装置開閉状態表示

第1．16．3表 審査基準における要求事項毎の給電対象設備

対象条文	供給対象設備	供給元	
		設備	母線
【1．16】 原子炉制御室の居住性等に関する手順等	中央制御室送風機	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 P／C 2C 系
			非常用低圧母線 P／C 2D 系
	中央制御室排風機	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 MCC 2C 系
			非常用低圧母線 MCC 2D 系
	中央制御室再看環送風機	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 MCC 2 C 系
			非常用低圧母線 MCC 2D 系
	中央制御室換気空調系ダク ト・ダンパ（MCR 外気取入ダ ンパ，MCR 少量外気取入ダン パ，MCR 再循環フィルタ装置入口ダンパ，MCR 排風機出口 ダンパ）	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 MCC 2C 系
			非常用低圧母線 MCC 2D 系
	中央制御室待避所加圧設備	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 MCC 2 C 系
			非常用低圧母線 MCC 2D 系
	非常用ガス処理系	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 MCC 2 C 系
			非常用低圧母線 MCC 2D 采
	原子炉建屋ブローアウトパ ネル閉止装置	常設代替交流電源設備 （ガスタービン発電機）	非常用低圧母線 MCC 2C 系

第1．16．1図 中央制御室換気空調系バウンダリ及び中央制御室待避所の正圧化バウンダリ構成図

事故時運転モード（少量外気取入）

第1．16．2図 運転モードごとの中央制御室換気空調系概要図 $(1 / 2)$

第1．16．3図 運転モードごとの中央制御室換気空調系概要図 $(2 / 2)$

第1．16．4図 中央制御室換気空調系設備の運転手順タイムチャート （中央制御室換気空調系設備が通常運転している場合）

第1．16．5図 中央制御室換気空調系設備の運転手順タイムチャート
（中央制御室換気空調系設備が事故時運転モードで運転している場合）

$※ 2:$ 機器の操作時間及び機器の動作時間に余䛦を見込んだ時間
第1．16．6図 中央制御室換気空調系設備の運転手順タイムチャート
（常設代替交流電源設備により中央制御室換気空調系設備を復旧する場合）

第1．16．7図 中央制御室換気空調系設備の運転手順タイムチャート （中央制御室待避所に待避する場合（中央制御室換気空調系設備が事故時運転モード（少量外気取入）で運転している場合））

第1．16．8図 中央制御室待避所加圧設備概要図

第1．16．9図 中央制御室待避所加圧設備による中央制御室待避所の加圧手順 タイムチャート

第1．16．10図 中央制御室の照明を確保する手順タイムチャート

※2：訓練実結に基づく中央制御室での状汾碓認に必要な想定時間
$※ 3:$ 機器の操作時間及び機器の動作時間に余裕を見込んだ時間
第1．16．11図 中央制御室の酸素及び二酸化炭素の濃度測定と濃度管理手順
タイムチャート

※ 2 ：訓練実績に基づく中央制御室待避所での状沉碓認に必要な想定時間
第1．16．12図 中央制御室待避所の照明を確保する手順タイムチャート

第1．16．13 図 中央制御室待避所の酸素及び二酸化炭素の濃度測定と濃度管理手順
タイムチャート

第1．16．14図 データ表示装置（待避所）に関するデータ伝送の概要図

第1．16．15図 「大破断 LOCA＋HPCS 失敗＋低圧 ECCS 失敗＋全交流動力電源喪失」シーケンス

1．16－40

第1．16．16図 「大破断 LOCA＋HPCS 失敗＋低圧 ECCS 失敗＋全交流動力電源喪失」シーケンス（運転員）

第1．16．17図 中央制御室チェンジングエリア設置手順タイムチャート

第1．16．18図 非常用ガス処理系概要図

※ $1:$ 機器の動作時間に余裕を見込んだ時間
※ 2 ：刺祵実績に基づく中央制御室での状㫛碓認に必要な想定時間
※ 3 ：原子炬建屋ブローアウトパネル部の開放状態を碓認後は「中央制御室での原子炬建屋ブローアウトパネル部の閉止手順」の操作へ移行する。
第1．16．19図 非常用ガス処理系起動手順タイムチャート
（原子炉建屋ブローアウトパネル部が開放している場合）

第1．16．20図 非常用ガス処理系起動手順タイムチャート （原子炉建屋ブローアウトパネル部が閉止している場合）

$※ 1:$ 機器の動作時間に余裕を見込んだ時間
$※ 2:$ 訓湅実績に基づく中央制御室での状况碓認に必要な想定時間
第1．16．21図 非常用ガス処理系起動手順タイムチャート
（自動起動しない場合の非常用ガス処理系手動起動手順）

第1．16．22図 非常用ガス処理系停止手順タイムチャート

第1．16．23図 原子炬建屋ブローアウトパネル部の閉止手順タイムチャート （中央制御室からの原子炉建屋ブローアウトパネル部の閉止手順）

第1．16．24図 原子炬建屋ブローアウトパネル部の閉止手順タイムチャート （現場での原子炉建屋ブローアウトパネル部の閉止手順）

審査基準，基準規則と対処設備との対応表（1／3）

技救能力審査基準（1．16）	番号
［本文】 発電用原子炉設置者に打いて，原子炉制御室に関し，重大事故が発生した場合においても運転員がとどまるために必要 な手順等が適切に整備されているか，又は整備される方針が適切に示されていること。	（1）
【解积】 1 「運転員がとどまるために必要な手順等」とは，以下に掲げる措置（原子炉制御室の遮蔽設計及び換気設計に加えて マネジメント（マスク及びボンバ等）により対応する場合）又はこれらと同等以上の効果を有する措置を行らための手順等をいう。	－
a）重大事故が発生した場合においても，放射線な方蓃措置等 により，運転員がとどまるために必要な手順等を整備するこ と。	（2）
b）原子炉制御室用の電源（空調及び照明等）が，代替交流電源設備からの給電を可能とする手順等（手順及び装備等） を整備すること。	※1
※1原子炉制御室用の電源（空調及び照明等）が，代替交流電原設備からの給電を可能とする手順等 （手順及び装備等）は，技術的能力「1．14電源の碓保 に関する手順等」で整理	

設置許可基準規則（59 条）	技術基淮規則（74 条）	番号
$\begin{array}{\|l\|} \hline \text { [本文] } \end{array}$ 第二十六条第一項の規定により設置される原子炉制御室には，重大事故が発生した場合においても運転員がとどまるために必要な設備を設けなければ ならない。	［本文】 第三十八条第一項の規定により設置される原子炬制御室 には，重大事故が発生した場合においても運転員がとど まるために必要な設備 を施設しなければならない。	（1）
［解利】 1第59条に規定する「運転員がとどまるために必要な設備」とは，以下に掲げる措置又はこれらと同等以上の効果を有する措置を行らための設備を いう。	【解柇】 1 第 74 条に規定する「運転員がとどまるために必要な設備」とは，以下に掲げる措置又はこれらと同等以上の効果を有する措置を行らための設備をいう。	－
a）原子炉制御室用の電源（空調及び照明等）は，代替交流電源設備からの給電を可能とすること。	a）原子炬制御室用の電源（空調及び照明等）は，代替交流電原設備からの給電を可能とすること。	※1
b）炉心の著しい塤傷が発生した場合の原子炉制御室の居住性について，次の要件を満たすものである こと。 （1）本規程第37条の想定する格納容器破損モード 結果が最も厳しくなる事故収束に成功した事故シ ーケンス（例えば，炬心の著しい顒傷の後，格納容器圧力逃がし装置等の格納容器破損防止対策が有効に機能した場合）を想定すること。 （2）運転員はマスクの着用を考慮してもよい。ただ しその場合は，実施のための体制を整備すること。 （3）交代要員体制を考慮してもよい。ただしその場合は，実施のための体制を整備すること。 （4）判断基集は，運転員の実効線量が 7 日間で 100 mSv を超えないこと。	b）炬心の著しい損傷が発生した場合の原子炉制御室の居住性について，次の要件を満た すものであること。 （1）設置許可基集規則解釈第37条の想定する格納容器破損モードのうち，原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シ ーケンス（例えば，炉心の著しい損傷の後，格納容器圧力逃がし装置等の格納容器破損防止対策が有効に機能し た場合）を想定すること。 （2）運転員はマスクの着用を考慮してもよい。ただしその場合は，実施のための体制を整備すること。 （3）交代要員体制を考慮してもよい。ただし その場合は，実施のための体制を整備すること。 （4）判断基準は，運転員の実効線量が 7 日間で 100 mSv を超えないこと。	（2）
c）原子炉制御室の外側が放身性物質により污染し たような状況下において，原子炉制御室への污染の持ち込みを防止するため，モニタリング及び作業服 の着替え等を行らための区画を設けること。	c）原子炬制御室の外側が放射甡物質により活染したよ うな状況下において，原子炉制御室への污染の持ち，込み を防止するため，モニタリング及び作業服の着替え等を行うための区画を設けること。	（3）
d）上記b）の原子炉制御室の居住性を碓保するた めに原子炉格䋉容器から漏えいした空気中の放射性物質の濃度を低減する必要がある場合は，非常用 ガス処理系等（BWRの場合）又はアニュラス空気再循鲴設備等（PVRの場合）を設置すること。	d）上記b）の原子炉制御室の居住性を碓保するために原子炉格納容器から漏えいした空気中の放射性物質の濃度を低減する必要がある場合は，非常用ガス处理系等 （BVR の場合）又はアニュラス空気再循睘設備等（PVK の場合）を設置すること。	（4）
e）BUVRにあっては，上記b）の原子炬制御室の居住性を碓保するために原子炉建屋に設置されたづ ローアウトパネルを閉止する必要がある場合は，容易かつ確実に閉止操作ができること。また，ブロー アウトパネルは，現場において人力による操作が可能なものとすること。	e）BVN にあっては，上記b）の原子炬制御室の居住性 を碓保するために原子炉建屋に設置されたブローアウト パネルを閉止する必要がある場合は，容易かつ確実に閉止操作ができること。また，ブローアウトパネルは，現場において人力による操作が可能なものとすること。	（5）

審査基準，基準規則と対処設備との対応表（2／3）

審査基準，基準規則と対処設備との対応表（3／3）

重大事故等対処設備を使用した手段審査基漼の要求に適合するための手段				自主対策					
機能	機器名称	$\begin{aligned} & \hline \text { 既設 } \\ & \text { 新設 } \end{aligned}$	$\begin{gathered} \hline \text { 解积 } \\ \text { 対応勫号 } \end{gathered}$	機能	機器名称	$\begin{aligned} & \text { 常設 } \\ & \text { 可搬 } \end{aligned}$	必要時間内に使用可能か	対応可能な人数で使用可能加	備考
	非常用がス処理系排風機	既設	$(1)$$(2)$（4）	－	－	－	－	－	－
	非常用がス処理系空気乾燥装置	既設							
	非常用がス処理系フイルタ装置	既設							
	非常用がス処理系配管•升	既設							
	排気筒	既設							
	原子炉建屋原子炬棟	既設							
	原子炬建屋ブローアウト閉止装置	新設							
	非常用交流電源設備	既設							
	常設代替交流電源設備（ガスタービン発電機）	新設							
$\begin{aligned} & \text { 远鿄 } \\ & \text { 泳 } \\ & \text { 斿㕠 } \end{aligned}$	乾電池内蔵型照明	新設	$\begin{aligned} & (1) \\ & (3) \end{aligned}$		非常用照明	常設	－	－	自主対策とする理由は本文参照
	防護具類及びチェンジング エリア設営用資機材	新設			－	－	－	－	

重大事故等時における中央制御室の被ばく評価に係る事象の選定について

炉心の著しい損傷が発生した場合の中央制御室の居住性に係る被ばく評価に当 たっては，評価事象として，重大事故等対策の有効性評価において想定する格納容器破損モードのうち，運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンスを選定する必要がある。

女川原子力発電所 2 号炉においては，炉心の著しい損傷が発生した場合の中央制御室の居住性を確認する上で想定する事故シナリオとして，炉心損傷が発生する
「大破断 LOCA + HPCS 失敗＋低圧 ECCS 失敗＋全交流動力電源喪失」シナリオを選定 した。

なお，女川原子力発電所 2 号灲においては，灲心の著しい損傷が発生したと想定 する場合，第一に代替循環冷却系を用いて事象を収束することとなる。しかしなが ら，被ばく評価においては代替循環冷却系の運転に失敗することも考慮し，原子炉格納容器フィルタベント系を用いてサプレッションチェンバの排気ラインを使用 した格納容器ベントを実施する場合も評価対象とする。

1．事象の概要（格納容器ベント実施時）
（1）大破断 LOCA が発生し，格納容器内に冷却材が大量に漏えいする。
（2）更に HPCS 失敗，低圧 ECCS 失敗，全交流動力電源喪失（SBO）を想定するた め，原子炉圧力容器への注水が出来ず炉心損傷に至る。事象発生 25 分後に低圧代替注水系（常設）（復水移送ポンプ）による原子炉圧力容器への注水 を開始することで，原子炉圧力容器破損は回避される。
（3）その後，原子炉圧力容器への注水及び格納容器へのスプレイを実施するが，事象発生から約 44 時間経過した時点で，外部水源注水量限界（サプレッシ ヨンプール水位が真空破壊装置下端－ 0.4 m （通常運転水位＋約 2 m ））に到達 しスプレイを停止する。
（4）格納容器スプレイを停止後，事象発生から約 45 時間後に原子炉格納容器フ イルタベント系を用いたベントを実施する。

2．想定事故シナリオ選定

想定事故シナリオ選定については，事故のきつかけとなる起因事象の選定を行 い，起因事象に基づく事故シナリオの抽出及び分類を行う。その後，重大事故等対策の有効性評価及び事故シナリオの選定を行う。
（1）起因事象の選定
プラントに影響を与える事象について，内部で発生する事象と外部で発生す る事象（地震，津波，その他自然現象）をそれぞれ分析し，事故のきっかけと なる事象（起因事象）について選定する。

プラント内部で発生する事象については，プラントの外乱となる事象として，従前より許認可解析の対象としてきた事象である運転時の異常な過渡変化（外部電源喪失等）及び設計基準事故（原子炉冷却材喪失等）を選定する。また，原子炉の運転に影響を与える事象として，非常用交流電源母線の故障，原子炉補機冷却系の故障等を選定する。

プラント外部で発生する事象については，地震，津波及び地震•津波以外の自然現象の 55 事象から，地域性等を考慮して 11 事象（洪水，風（台風），竜巻，低温（凍結），降水，積雪，落雷，地すべり，火山，生物学的事象及び森林火災）を選定する。また，設計基準を大幅に超える規模の事象発生を想定し た上で，プラントに有意な頻度で影響を与えると考えられる場合は，考慮すべ き起因事象とする。
（2）起因事象に基づく事故シナリオの抽出及び分類 イベントツリー等により，事故のきっかけとなる事象（起因事象）を出発点 に，事象がどのように進展して最終状態に至るかを，安全機能を有する系統の動作の成否を分岐として樹形状に展開し，事故シナリオを漏れなく抽出する。抽出した事故シナリオを事故進展の特徴によって，第1表のとおりグループ別に分類する。

第1表 運転中の炉心損傷に係る事故シナリオグループ

出力運転中の炉心損傷に係る 事故シナリオグループ	概要
崩壊熱除去機能喪失	崩壊熱の除去に失敗して 炉心損傷に至るグループ
高圧•低圧注水機能喪失	低圧注水に失敗して 炉心損傷に至るグループ
高圧注水•減圧機能喪失	高圧注水に失敗して 炉心損傷に至るグループ
全交流動力電源喪失	電源を失うことにより 炉心損傷に至るグループ
原子炉停止機能喪失	止める機能を喪失して 炉心損傷に至るグループ
LOCA時注水機能喪失	LOCA時に注水に失敗して 炉心損傷に至るグループ

（3）重大事故等対策の有効性評価及び事故シナリオの選定
（2）で分類した事故シナリオのうち，出力運転中の原子炉における崩壊熱除去機能喪失，高圧•低圧注水機能喪失，高圧注水•減圧機能喪失，全交流動力電源喪失及び原子炉停止機能喪失については，炉心損傷に至らないため，重大事故等対処設備が機能しても炉心損傷を避けられない事故シナリオは，LOCA時注水機能喪失のみとなる。

しかしながら，重大事故等対策の有効性評価においては，格納容器破損モー ドとして，雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）（LOCA時注水機能喪失）に加えて，高圧溶融物放出／格納容器雰囲気直接加熱（DCH），原子炉圧力容器外の溶融燃料—冷却材相互作用（FCI），水素燃焼，溶融炉心• コンクリート相互作用（MCCI）の計5つを想定している 1 。

これらのモードにおける原子炉格納容器の破損防止のための対応は，LOCA時注水機能喪失と DCH に集約されているため，LOCA 時注水機能喪失と DCH のう ち，運転員の被ばくの観点から結果が厳しくなる事故シーケンスを確認した結果，LOCA 時注水機能喪失の方が厳しくなる結果となった。

以上より，炬心損傷が発生する LOCA 時注水機能喪失を想定事故シナリオとして選定した。

なお，前述のとおり，炉心の著しい損傷が発生したと想定する場合，第一には代替循環冷却系を用いて事象を収束することとなる。しかしながら，被ばく評価にお いては代替循環冷却系の運転に失敗することも考慮し，原子炉格納容器フィルタベ ント系を用いてサプレッションチェンバの排気ラインを使用した格納容器ベント を実施する場合も評価対象とした。
※1 格納容器破損モード「DCH」，「FCI」及び「MCCI」は，重大事故等対処設備に期待する場合はこれらの現象の発生を防止することができるが，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」第 37 条2－1（a）において，「必ず想定する格納容器破損モード」として定 められているため，評価を成立させるために，重大事故等対処設備の一部に期待しないものとしている。

中央制御室換気空調系隔離時の酸素濃度及び二酸化炭素濃度について

設計基準事故及び重大事故の発生時において，隔離ダンパを閉操作し，外気か ら隔離した場合の中央制御室の居住性について，以下のとおり評価した。

1．評価

外気隔離時の中央制御室内に滞在する運転員の操作環境の悪化防止のため，酸素濃度及び二酸化炭素濃度の評価を行った。
（1）酸素濃度
「空気調和•衛生工学便覧 空調設備編」に基づき，酸素濃度について評価した。
a．評価条件

- 在室人員 7名
- 中央制御室バウンダリ容積 $8,800 \mathrm{~m}^{3}$
- 空気流入はないものとする。
- 初期酸素濃度 20.95%
- 1 人あたりの呼吸量は，事故時の運転操作を想定し，歩行時の呼吸量を適用して，241／minとする。
－許容酸素濃度 18% 以上（酸素欠乏症等防止規則から）
b．評価結果
上記評価条件から求めた酸素濃度は，以下のとおりであり，566時間外気取入を遮断したままでも，中央制御室内に滞在する運転員の操作環境に影響を与えない。

時間	6 時間	12 時間	24 時間	566 時間
酸素濃度	20.9%	20.8%	20.8%	18.0%

（2）二酸化炭素濃度
「空気調和•衛生工学便覧 空調設備編」に基づき，二酸化炭素濃度につ いて評価した。
a．評価条件

- 在室人員 7 名
- 中央制御室バウンダリ容積 $8,800 \mathrm{~m}^{3}$
- 空気流入はないものとする。
- 初期二酸化炭素濃度 0．03\％
- 1人あたりの二酸化炭素吐出量は，事故時の運転操作を想定し，中等作業時の吐出量を適用して， $0.046 \mathrm{~m}^{3} / \mathrm{min}$ とする。
－許容二酸化炭素濃度 1.0% 以下（労働安全衛生規則の許容炭酸ガス濃度 1．5\％に余裕を見た数値）
なお，米国での研究レポート（U．S．Naval Medical Research Lab．Report No．228）には， 1.5% 環境下に 42 日間滞在しても，生理学的な機能や精神運動機能の明らかな低下はないとされている。
また，消防庁が発行している通知文書「二酸化炭素消火設備の安全対策 について（通知）」（平成 8 年 9 月 20 日）には， 2% 未満において，はっき りした影響は認められないとされている。
b．評価結果
上記評価条件から求めた二酸化炭素濃度は，以下のとおりであり， 265時間外気取入を遮断したままでも，中央制御室内に滞在する運転員の操作環境に影響を与えない。

時間	6 時間	12 時間	24 時間	265 時間
二酸化炭素濃度	0.06%	0.08%	0.12%	1.00%

中央制御室内の酸素濃度及び二酸化炭素濃度に関する法令要求について

酸素濃度管理目標値は，酸素欠乏症等防止規則に基づき， 18% 以上とし，また二酸化炭素濃度管理目標値は，労働安全衛生規則の炭酸ガス濃度に余裕を見て 1.0% 以下とする。管理目標値を超える恐れがある場合は，中央制御室換気空調系を事故時運転モード（少量外気取入）へ切り替え，外気をフィルタで浄化しな がら取り入れる。

酸素欠乏症等防止規則（一部抜粋）

（定義）

第二条 この省令において，次の各号に掲げる用語の意義は，それぞれ当該各号に定めるところによる。
一 酸素欠乏 空気中の酸素の濃度が十八パーセント未満である状態をいう。 （換気）
第五条 事業者は，酸素欠乏危険作業に労働者を従事させる場合は，当該作業 を行う場所の空気中の酸素の濃度を十八パーセント以上（第二種酸素欠乏危険作業に係る場所にあっては，空気中の酸素の濃度を十八パーセント以上， かつ，硫化水素の濃度を百万分の十以下）に保つように換気しなければなら ない。ただし，爆発，酸化等を防止するため換気することができない場合又 は作業の性質上換気することが著しく困難な場合は，この限りでない。

○酸素濃度及び症状等（厚生労働省 HP より抜粋）

酸 濃	素 度
21%	症 状 等
18%	常の空気の状態
16%	限界だが連続換気が必要
12%	目まき気
8%	失神昏倒， $7 \sim 8$ 筋力低下
6%	瞬時に昏倒，呼吸停止，死亡

○二酸化炭素消火設備の安全対策について（通知）
（平成8年9月20日付け 消防予第193号，消防危第117号）
－表 二酸化炭素の濃度と人体への影響

二酸化炭素の 濃度（\％）	症状発現までの 暴露時間	人体への影響
＜ 2%		はっきりした影響は認められない
2～3\％	$5 \sim 10$ 分	呼吸深度の増加，呼吸数の増加
3 $\sim 4 \%$	$10 \sim 30$ 分	頭痛，めまい，悪心，知覚低下
4～6\％	$5 \sim 10$ 分	上記症状，過呼吸による不快感
6～8\％	$10 \sim 60$ 分	意識レベルの低下，その後意識喪失へ進む， ふるえ，けいれんなどの不随意運動を伴う こともある
8～10\％	$1 \sim 10$ 分	同上
10\％＜	＜数分	意識喪失，その後短時間で生命の危険あり
30\％	$8 \sim 12$ 呼吸	同上

炉心損傷の判断基準について

炉心損傷に至るケースとしては，注水機能喪失により原子炉水位が有効燃料頂部（TAF）以上に維持できない場合において，原子炉水位が低下し，炉心が露出 し冷却不全となる場合が考えられる。
事故時運転操作手順書（徴候ベース）では，原子炉圧力容器への注水系統を十分に確保できず原子炉水位が TAF 未満となった際に，格納容器内雰囲気放射線モ ニタ（CAMS）を用いて，ドライウェル又はサプレッションチェンバ内のガンマ線線量率の状況を確認し，第1図に示す設計基準事故相当のガンマ線線量率の 10倍を超えた場合を，炉心損傷の判断としている。

炉心損傷等により燃料被覆管から原子炉内に放出される希ガス等の核分裂生成物が，逃がし安全弁等を介して原子炉格納容器内に流入する事象進展を捉まえ て，原子炉格納容器内のガンマ線線量率の値の上昇を，運転操作における炉心損傷の判断，及び炉心損傷の進展割合の推定に用いているものである。

また，福島第一原子力発電所の事故時に原子炉水位計，格納容器内雰囲気放射線モニタ等の計器が使用不能となり，炉心損傷を迅速に判断出来なかったことに鑑み，格納容器内雾囲気放射線モニタに頼らない炉心損傷の判断基準について検討しており，その結果，格納容器内雰囲気放射線モニタの使用不能の場合は，「原子炉圧力容器温度計： $300^{\circ} \mathrm{C}$ 以上」を炉心損傷の判断基準として手順に追加する方針である。

原子炉圧力容器温度は，炉心が冠水している場合には，SRV 動作圧力（安全弁機能の最大 8． 20 MPa ［gage］）における飽和温度約 $298^{\circ} \mathrm{C}$ を超えることはなく， $300^{\circ} \mathrm{C}$以上にはならない。一方，原子炉水位の低下により炉心が露出した場合には過熱蒸気雰囲気となり，温度は飽和温度を超えて上昇するため， $300^{\circ} \mathrm{C}$ 以上になると考えられる。

上記より，炉心損傷の判断基準を $300^{\circ} \mathrm{C}$ 以上としている。なお，炬心損傷の判断は格納容器内雰囲気放射線モニタが使用可能な場合は，当該計器にて判断を行 う。

添付資料1．16．5

（1）ドライウェルのガンマ線線量率

（2）サプレッションチェンバのガンマ線線量率

第1図 シビアアクシデント導入条件判断図

中央制御室の可搬型照明（SA）について

中央制御室には全照明が消灯した場合に使用する可搬型照明（SA）を配備して おり，シミュレータ施設を用いて運転操作に必要な照度が確保できることを確認 している。

また，可搬型照明（ランタン）も配備し，更に照度を確保できるようにしてい る。

シミュレータにおける可搬型照明確認状況

運転員のシミュレータ訓練において，全照明消灯下でも可搬型照明（SA）を活用して対応操作が実施できることを確認している。

全照明点灯時

全照明消灯時
（訓練）

－可搬型照明（SA）の配備状況

重大事故等が発生した場合においても，運転操作に必要な照度を確保するた め，中央制御室にて用いる可搬型照明（SA）を配備する。

以下に可搬型照明（SA）の配備状況を示す。

可搬型照明（SA）の配備状況

＜参 考＞その他中央制御室に配備する可搬型照明

名称	保管場所	数量	仕様
	中央制御室	10 個 （運転員7名分 ＋予備 3 個）	電源：乾電池（単三×4）点灯時間： 155 時間
	中央制御室	10 個 （運転員7名分 ＋予備 3 個）	電源：乾電池（単三 $\times 3$ ）点灯時間： High モード 12 時間 Low モード 120 時間
ランタン	中央制御室	4 個 （発電課長1個 + 発電副長1個 ＋運転員1個 ＋予備 1 個）	電源：乾電池（単一 $\times 4$ ）点灯時間：45時間

```
チェンジングエリアについて
```

（1）チェンジングエリアの基本的な考え方
チェンジングエリアの設営にあたっては，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」第59条第1項（運転員が原子炉制御室にとどまるための設備）並びに「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第 74 条第 1 項（運転員が原子炉制御室にと どまるための設備）に基づき，原子炉制御室の外側が放射性物質により汚染した ような状況下において，原子炉制御室への汚染の持ち込みを防止するため，モニ タリング及び作業服の着替え等を行らための区画を設けることを基本的な考え方とする。
（実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈第 74 条第 1項（運転員が原子炉制御室にとどまるための設備）抜粋）

原子炉制御室の外側が放射性物質により汚染したような状況下において，原子炉制御室への汚染の持ち込みを防止するため， モニタリング及び作業服の着替え等を行うための区画を設ける こと。
（2）チェンジングエリアの概要
チェンジングエリアは，下足エリア，脱衣エリア，サーベイエリア，除染エリ アからなり，中央制御室バウンダリに隣接するとともに，要員の被ばく低減の観点から制御建屋内に設営する。概要は第1表のとおり。

第1表 チェンジングエリアの概要

	項目	概要
$\begin{aligned} & \text { 設 } \\ & \text { 営 } \\ & \text { 場 } \\ & \text { 所 } \end{aligned}$	制御建屋 中央制御室 北東側通路	中央制御室の外側が放射性物質により汚染し たような状況下において，中央制御室への汚染の持ち込みを防止するため，モニタリング及び作業服の着替え等を行うための区画を設ける。
$\begin{aligned} & \text { 設 } \\ & \text { 営 } \\ & \text { 型 } \\ & \text { 俗 } \end{aligned}$	通路区画化	中央制御室出入口通路を活用し，通路を区画化 する。 なお，平常時から養生シートにより予め養生し ておくことにより，速やかな設置作業を可能とす る。
判手 断順 基着 準手 の	原子力災害対策特別措置法第 10 条特定事象が発生した後，放射線管理班長が，事象進展の状況（格納容器内雾囲気モニタ（CAMS）等により炉心損傷を判断した場合等），参集済みの要員数を考慮し て，チェンジングエリア設営 を行うと判断した場合。	中央制御室の外側が放射性物質により汚染す るようなおそれが発生した場合，チェンジングエ リアの設営を行う。
$\begin{aligned} & \text { 実 } \\ & \text { 施 } \\ & \text { 者 } \end{aligned}$	放射線管理班	チェンジングエリアを速やかに設営できるよ ら定期的に訓練を行っている放射線管理班が設営を行う。

（3）チェンジングエリアの設営場所及び屋内のアクセスルート
チェンジングエリアは，中央制御室バウンダリに隣接した場所に設置する。チ ェンジングエリアの設営場所及び屋内のアクセスルートは，第 1 図のとおり。
\square

第1図 中央制御室チェンジングエリアの設営場所
及び屋内のアクセスルート
（4）チェンジングエリアの設営（考え方，資機材）
a．考え方
中央制御室への放射性物質の持ち込みを防止するため，第2図の設営フロー に従い，第3図のとおりチェンジングエリアを設営する。チェンジングエリア の設営は，放射線管理班員 2 名で，約 90 分を想定している。なお，チェンジ ングエリアが速やかに設営できるよう定期的に訓練を行い，設営時間の短縮及 び更なる改善を図ることとしている。

チェンジングエリアの設営は，参集要員（12 時間後までに参集）のうち，チ ェンジングエリアの設営に割り当てることができる要員で行う。設営の着手は，放射線管理班長が，原子力災害対策特別措置法第 10 条特定事象が発生した後，事象進展の状況（格納容器内雰囲気モニタ（CAMS）等により炉心損傷を判断し た場合等），参集済みの要員数を考慮して判断し，速やかに実施する。

第2図 チェンジングエリア設営フロー

第3図 中央制御室チェンジングエリア
b．チェンジングエリア用資機材
チェンジングエリア用資機材については，運用開始後のチェンジングエリア の補修や汚染による養生シートの張替え等も考慮して，第2表，第4図のとお りとする。チェンジングエリア用資機材は，チェンジングエリア付近に保管す る。

第2表 中央制御室チェンジングエリア用資機材

名称	数量	根拠
養生シート（床用）	2 巻＊${ }^{1}$	チェンジング エリア設営及 び補修に必要 な数量
養生シート（壁用）	12 巻＊${ }^{2}$	
テープ	20 卷	
積層シート	6 枚	
ゴミ箱	7 個	
ポリ袋	100 枚	
ウエス	2 箱	
ウェットティッシュ	50 個	
はさみ	3 丁	
カッター	3 本	
マジック	3 本	
バリア	8 個＊3	
フェンス	12 枚 ${ }^{\text {\％}}$ 4	
ヘルメット掛け	2 台	
棚	2 台	
除染エリア用ハウス	1 式＊5	
簡易シャワー	1 台 ${ }^{6}$	
ポリタンク	1 台＊7 $^{\text {\％}}$	
トレイ	1 個	
バケツ	2 個	
可搬型空気浄化設備	1 台（予備1台）	
可搬型空気浄化設備用ダクト	1 式	
乾電池内蔵型照明	5 台（予備 1 台）	

※ $1:$ 仕様 $1,800 \mathrm{~mm} \times 50 \mathrm{~m} /$ 巻
※2：仕様 $2,100 \mathrm{~mm} \times 25 \mathrm{~m} /$ 巻
※3：仕様 $900 \mathrm{~mm} \times 240 \mathrm{~mm} \times 235 \mathrm{~mm} /$ 個（アルミ製）
※ 4：仕様 $1,200 \mathrm{~mm} \times 900 \mathrm{~mm} \times 25 \mathrm{~mm} /$ 個（アルミ製）
※5：仕様 $1,100 \mathrm{~mm} \times 1,100 \mathrm{~mm} \times 1,950 \mathrm{~mm} /$ 式（折りたたみ式，布製）
※6：仕様 タンク容量7．5リットル（手動ポンプ式）
※7：仕様 タンク容量 20 リットル（ポリタンク）

除染エリア用ハウス
＜仕様＞
$1,100 \mathrm{~mm} \times 1,100 \mathrm{~mm} \times 1,950 \mathrm{~mm}$ （折りたたみ式，ポリエステル製）

第 4 図 中央制御室チェンジングエリア用資機材
（5）チェンジングエリアの運用
（出入管理，脱衣，身体サーベイ，除染，着衣，汚染管理，廃棄物管理，環境管理）
a．出入管理
チェンジングエリアは，中央制御室の外側が放射性物質により汚染したよう な状況下において，中央制御室に待機していた要員が，中央制御室外で作業を行った後，再度，中央制御室に入室する際等に利用する。中央制御室外は，放射性物質により汚染しているおそれがあることから，中央制御室外で活動する要員は防護具類を着用し活動する。

チェンジングエリアのレイアウトは，第3図のとおりであり，チェンジング エリアには下記の（1）から（4）のエリアを設けることで中央制御室内への放射性物質の持ち込みを防止する。
（1）下足エリア
靴及びヘルメット等を着脱するエリア。
（2）脱衣エリア防護具類を適切な順番で脱衣するエリア。
（3）サーベイエリア
防護具類を脱衣した要員の身体や物品のサーベイを行うエリア。
汚染が確認されなければ中央制御室内へ移動する。
（4）除染エリア
サーベイエリアにて汚染が確認された際に除染を行うエリア。
b．脱衣
チェンジングエリアにおける防護具類の脱衣手順は以下のとおり。
（1）下足エリアで，靴，ヘルメット，ゴム手袋外側，EVAスーツ等を脱衣する。
（2）脱衣エリアで，タイベック，マスク，ゴム手袋内側，帽子，靴下，綿手袋を脱衣する。
なお，チェンジングエリアでは，放射線管理班員が要員の脱衣状況を適宜確認し，指導，助言，防護具類の脱衣の補助を行う。
c．身体サーベイ
チェンジングエリアにおける身体サーベイ手順は以下のとおり。
（1）脱衣後，サーベイエリアに移動する。
（2）サーベイエリアにおいて身体サーベイを受ける。
③汚染基準を満足する場合は中央制御室へ入室する。汚染基準を超える場合は，除染エリアに移動する。
なお，放射線管理班員でなくても身体サーベイができるように身体サーベイ の手順について図示等を行う。また，放射線管理班員は身体サーベイの状況に ついて，適宜確認し，指導，助言をする。
d．除染
チェンジングエリアにおける除染手順は以下のとおり。
（1）身体サーベイにて汚染基準を超える場合は，除染エリアに移動する。
（2）汚染箇所をウェットティッシュで拭き取りする。
（3）再度汚染箇所について身体サーベイする。
（4）汚染基準を超える場合は，簡易シャワーで除染する。（簡易シャワーでも汚染基準を超える場合は，汚染箇所を養生し，再度除染ができる施設へ移動す る。）
e．着衣
防護具類の着衣手順は以下のとおり。
（1）中央制御室内で，綿手袋，靴下，帽子，タイベック，ゴム手袋内側，マスク， ゴム手袋外側を着衣する。
（2）下足エリアで，ヘルメット，靴を着用する。
放射線管理班員は，要員の作業に応じて，EVA スーツ等の着用を指示する。
f．汚染管理
サーベイエリア内で要員の汚染が確認された場合は，サーベイエリアに隣接 した除染エリアで要員の除染を行う。

要員の除染については，ウェットティッシュでの拭き取りによる除染を基本 とするが，拭き取りにて除染できない場合も想定し，汚染箇所への水洗による除染が行えるよう簡易シャワーを設ける。

簡易シャワーで発生した汚染水は，第5図のとおり必要に応じてウエスへ染 み込ませる等により固体廃棄物として処理する。

第5図 除染及び汚染水処理イメージ図

g．廃棄物管理

中央制御室外で活動した要員が脱衣した防護具類については，チェンジング エリア内に留め置くとチェンジングエリア内の線量率の上昇及び汚染拡大へ つながる要因となることから，適宜チェンジングエリア外に持ち出しチェンジ ングエリア内の線量率の上昇及び汚染拡大防止を図る。

h．環境管理

放射線管理班員は，チェンジングエリア内の表面汚染密度，線量率及び空気中放射性物質濃度を定期的（1回／日以上）に測定し，放射性物質の異常な流入や拡大がないことを確認する。

プルーム通過後にチェンジングエリアの出入管理を再開する際には，表面汚染密度，線量率及び空気中放射性物質濃度の測定を実施し，必要に応じチェン ジングエリアの除染を実施する。なお，測定及び除染を行った要員は，脱衣エ リアにて脱衣を行う。
（6）チェンジングエリアに係る補足事項
a．可搬型空気浄化設備
チェンジングエリアには，更なる被ばく低減のため，可搬型空気浄化設備を 1 台設置する。可搬型空気浄化設備は，汚染が拡大するおそれのある脱衣エリ アの空気を吸い込み浄化するよう配置し，脱衣エリアを換気することで，中央制御室外で活動した要員の脱衣による汚染拡大を防止する。中央制御室内への汚染持込防止を目的とした可搬型空気浄化設備による換気ができていること の確認は，可搬型空気浄化設備の吸込口と吐出口において，空気の流れがある ことを目視する等により確認する。可搬型空気浄化設備は，脱衣エリア等を換気できる風量とし，仕様等を第 6 図に示す。

なお，中央制御室はプルーム通過時には，原則出入りしない運用とすること から，チェンジングエリアについても，プルーム通過時は，原則利用しないこ ととする。
従って，チェンジングエリア用の可搬型空気浄化設備についてもプルーム通過時には運用しないことから，可搬型空気浄化設備のフィルタが高線量化する ことでの居住性への影響はない。

ただし，可搬型空気浄化設備は長期的に運用する可能性があることから，フ ィルタの線量が高くなることも想定し，本体（フィルタ含む）の予備を 1 台設 ける。

なお，交換したフィルタ等は，線源とならないようチェンジングエリアから遠ざけて保管する。

	外形寸法：縦 約 500 mm ，横 約 500 mm ，高さ 約 $1,400 \mathrm{~mm}$ 風量： $10 \mathrm{~m}^{3} / \mathrm{min}$ 重量：約 65 kg フィルタ：高性能エアフィルタ（1段） チャコールエアフィルタ（1段）
外観図	高性能エアフィルタ（HEPAフィルタ） ろ材はガラス繊維であり，微粒子を含んだ空気がフィルタを通過 する際に，微粒子が捕集される。 チャコールエアフィルタ ろ材は活性炭素繊維であり，よう素を含んだ空気がフィルタを通過する際に，よう素が活性炭素繊維を通過することにより吸着•除去される。

第6図 可搬型空気浄化設備の仕様等
b．チェンジングエリアの設営状況
チェンジングエリアは，下足エリア，脱衣エリアおよびサーベイエリアの境界をバリア等により区画する。チェンジングエリアの設営状況は第 7 図のとお りである。

チェンジングエリア内面は，汚染の除去の容易さの観点から養生シートを貼 ることとし，一時閉鎖となる時間を短縮している。

また，養生シート等に損傷が生じた際は，速やかに補修が行えるよう補修用 の資機材を準備する。

第7図 チェンジングエリア設営状況
c．チェンジングエリアへの空気の流れ
中央制御室チェンジングエリアは，一定の気密性が確保された制御建屋内に設置し，第 8 図のように，汚染の区分ごとにエリアを区画し，汚染を管理する。

また，更なる被ばく低減のため，可搬型空気浄化設備を 1 台設置する。可搬型空気浄化設備は，脱衣を行うホットエリアの空気を吸い込み浄化し，ホット エリアを換気することで脱衣による汚染拡大を防止するとともに，チェンジン グエリア内を循環運転することによりチェンジングエリア内の放射性物質を低減する。

第7図のようにチェンジングエリア内に空気の流れをつくることで脱衣に よる汚染拡大を防止する。

第8図 中央制御室チェンジングエリアの空気の流れ
d．チェンジングエリアでのクロスコンタミ防止について
中央制御室に入室しようとする要員に付着した汚染が，他の要員に伝播する ことがないようサーベイエリアにおいて要員の汚染が確認された場合は，汚染箇所を養生するとともに，サーベイエリア内に汚染が移行していないことを確認する。

サーベイエリア内に汚染が確認された場合は，一時的にチェンジングエリア を閉鎖するが，速やかに養生シートを張り替える等により，要員の出入りに大 きな影響は与えないようにする。ただし，中央制御室から緊急に現場に行く必要がある場合は，張り替え途中であっても，退室する要員は防護具類を着用し ていることから，退室することは可能である。

また，中央制御室への入室の動線と退室の動線を分離することで，脱衣時の接触を防止する。なお，中央制御室から退室する要員は，防護具類を着用して いるため，中央制御室に入室しようとする要員と接触したとしても，汚染が身体に付着することはない。

（7）汚染の管理基準

第3表のとおり，状況に応じた汚染の管理基準を運用する。
ただし，サーベイエリアのバックグラウンドに応じて，第3表の管理基準での運用が困難となった場合は，バックグラウンドと識別できる値を設定する。

第3表 汚染の管理基準

状況		污染の管理基準＊${ }^{\text {1 }}$	根拠等
状 況 （1）	屋外（発電所構内全般）へ少量の放射性物質が漏えい又は放出 されるような原子力災害時	1，300 $\mathrm{cmm}^{*}{ }^{2}$	法令に定める表面污染密度限度（アルファ線を放出しない放射性同位元素の表面污染密度限度：40Bq／ cm^{2} ）の $1 / 10$
状 況 （2）	大規模プルームが放出されるような原子力災害時	$40,000 \mathrm{cpm}^{* 3}$	原子力災害対策指針における OIL4に準拠
		13， $000 \mathrm{cpm}^{*}{ }^{\text {4 }}$	原子力災害対策指針における OIL4【1ヶ月後の値】に準执

$※ 1$ ：計測器の仕様や校正により計数率が異なる場合は，計測器毎の数値を確認しておく。 また，測定する場所のバックグラウンドに留意する必要がある。
$※ 2: 4 \mathrm{~Bq} / \mathrm{cm}^{2}$ 相当。
※ $3: 120 \mathrm{~Bq} / \mathrm{cm}^{2}$ 相当。バックグラウンドが高い状況下に適用。バックグラウンドの影響が相対的に小 さくなる数値のうち，最低の水準（バックグラウンドのノイズに信号が埋まらないレベルとして 3 倍程度の余裕を見込む水準）として設定（ $13,000 \times 3 \fallingdotseq 40,000 \mathrm{cpm}$ ）。
$※ 4: 40 \mathrm{~Bq} / \mathrm{cm}^{2}$ 相当（放射性よう素の吸入により小児の甲状腺等価線量が 100 mSv に相当する内部被ば くをもたらすと想定される体表面密度）。
（8）中央制御室におけるマスク着用の要否について
中央制御室におけるマスクの着用の判断基準は第 4 表のとおりとする。
事故直後の運転員操作の輻輳を鑑みるとマスク着用の判断に迷わないことが最優先であることから，炉心損傷の判断後に運転員の中央制御室滞在時及び現場作業を実施する場合において，全面マスク等を着用する。

第4表 マスクの着用の判断基準

判断情報	判断方法	判断主体
炉心損傷を判断した場合	格納容器内雰囲気放射線モニタ（CAMS）で原子炉格納容器内のガンマ線線量率が，設計基準事故相当のガンマ線線量率の 10 倍 を超えた場合，又は格納容器内雾囲気放射線モニタ（CAMS）が使用できない場合に原子炬圧力容器温度で $300^{\circ} \mathrm{C}$ 以上を確認した場合。	中央制御室発電課長

（9）乾電池内蔵型照明
チェンジングエリア設置場所付近の全照明が消灯した場合に乾電池内蔵型照明を使用する。乾電池内蔵型照明は，脱衣，身体サーベイ，除染時に必要な照度 を確保するために第5表に示す数量及び仕様とする。

第5表 チェンジングエリアの乾電池内蔵型照明

	保管場所	数量	仕様
乾電池内蔵型照明			電源：乾電池（単一 $-\times 4$ ） 点灯可能时間：約11時問 （消灯した場合，予備を 点灯をせ，乾電池交換 を実施する。）

（10）チェンジングエリアのスペースについて
中央制御室における現場作業を行う運転員は，2名1組で 2 組を想定し，同時 に 4 名の運転員がチェンジングエリア内に収容できる設計とする。チェンジング エリアに同時に 4 名の要員が来た場合，全ての要員が中央制御室に入りきるまで約18分であり，全ての要員が汚染している場合でも約38分であることを確認して いる。

また，仮に想定人数以上の要員が同時にチェンジングエリアに来た場合でも， チェンジングエリアは建屋内に設置しており，屋外での待機はなく不要な被ばく を防止することができる。
（11）放射線管理班の緊急時対応のケーススタディー
放射線管理班は，チェンジングエリアの設置以外に，可搬型代替モニタリング ポストの設置（最大 380 分），可搬型モニタリングポストの設置（最大 90 分），代替気象観測設備の設置（210分）を行うことを想定している。これら対応項目 の優先順位については，放射線管理班長が状況に応じ判断する。以下にタイムチ ャートの例を示す。

例えば，平日の勤務時間帯に事故が発生した場合（ケース①）には，チェンジ ングエリアの設営を優先し，次に可搬型代替モニタリングポスト等の設置を行う ことになる。また，夜間•休日（平日の勤務時間帯以外）に事故が発生した場合 で，原子力災害対策特別措置法第 10 条発生直後から周辺環境が汚染してしまう ような事象が発生した場合（ケース（2）は，参集に 12 時間かかるとして，参集要員の放射線管理班 6 名が参集後，チェンジングエリアの設営を優先し，次に可搬型代替モニタリングポスト等の設置を行うことになる。
－ケース（1）（平日の勤務時間帯の場合）

－ケース（2）（夜間•休日（平日の勤務時間帯以外）に事故が発生した場合）

	経過時間［時間］			0
対応項目	要員	$\begin{aligned} & \text { 参 } \\ & \text { 集 } \\ & \text { 前 } \end{aligned}$	参集後	事象発生
		0	6	V
状況把握（モ二タリングポストなど）	放射線管理班		2（A）	
可搬型代替モニタリング設備の設置	放射線管理班		2（A）	
可搬型モニタリング設備の設置	放射線管理班		2（B）	
代替気象観測設備の設置	放射線管理班		2（C）	
緊急時対策所チェンジングエリアの設営	放射線管理班		2（B）	
中央制御室チェンジングエリアの設営	放射線管理班		2（C）	

中央制御室内に配備する資機材の数量について

（1）放射線管理用資機材の必要保管数
放射線管理用資機材については，中央制御室に以下の数量を配備する。
中央制御室に配備する放射線管理用資機材の内訳を第1表及び第2表に示す。
なお，放射線管理用資機材は，汚染が付着しないようビニール袋等であらかじ め養生し，配備する。

第1表 防護具類

品名	配備数※16／保管場所					
タイベック	2，100 着 ${ }^{\text {1 }}$	資機材保管エリア，地下 1 階廊下，緊急時対策所	147 着 ${ }^{8}$	中央 制御室	約 20，000 着	$\begin{aligned} & \text { 構内 } \\ & \text { (参考) } \end{aligned}$
下着（上下セット）	2，100 着 ${ }^{1}$		147 着 ${ }^{8}$		約 6， 000 着	
帽子	2， 100 個 ${ }^{*} 1$		147 個※8		約 20,000 個	
靴下	2， 100 足 ${ }^{1}$		147 足※8		約 30， 000 足	
綿手袋	2，100 双 ${ }^{1}$		147 双 $\% 8$		約 40， 000 双	
ゴム手袋	4，200 双 ${ }^{\text {2 }}$		294 双 ${ }^{\text {9 }}$		$\begin{gathered} \text { 約 150, } 000 \\ \text { 双 } \end{gathered}$	
全面マスク	900 個※3		49 個 ${ }^{10}$		約 1,800 個	
$\begin{gathered} \text { マスク 用チャコールフィ } \\ \text { ルタ (2 個 / セット) } \end{gathered}$	$\begin{gathered} 2,100 \\ \text { セット※1 } \end{gathered}$		147 セット※8		$\begin{gathered} \text { 約 8,000 } \\ \text { セット } \end{gathered}$	
EVA スーツ（上下セット）	$\begin{gathered} 1,050 \\ \text { セット※4 } \end{gathered}$		74 セット※11		$\begin{gathered} \text { 約 3, } 000 \\ \text { セット } \end{gathered}$	
励染区域用靴	40 足 ${ }^{5}$		8 足 ${ }^{12}$		約500足	
自給式呼吸器	6 セット※6		7 セット※13		10 セット	
耐熱服	－		3 セット※14		3 セット	
タングステンベスト	20 着※7		4 着 $* 15$		10 着	

※ 1：60名（本部要員 38 名 + 余裕）$\times 7$ 日及び現場要員 40 名 $\times 6$ 回 $/$ 日 $\times 7$ 日
$※ 2: ※ 1 \times 2$
$※ 3: 60$ 名（本部要員 38 名 + 余裕）$\times 3$ 日及び現場要員 40 名 $\times 6$ 回 $/$ 日 $\times 3$ 日（除染による再使用 を考慮）
$※ 4: ~(60$ 名（本部要員 38 名 + 余裕）$\times 7$ 日及び現場要員 40 名 $\times 6$ 回 $/$ 日 $\times 7$ 日）$\times 50 \%$（年間降水日数を考慮）
$※ 5$ ：現場要員 20 名（プルーム通過直後の現場要員）$\times 2$
$※ 6$ ：発電所対策本部要員（初期対応者）6名
$※ 7:$ 現場要員 20 名（プルーム通過直後の現場要員）
※ 8：2号炉運転員 7 名 $\times 3$ 回 $/$ 日 $\times 7$ 日
$※ 9: ※ 8 \times 2$
※10：2号炉運転員 7 名 $\times 7$ 日
※ 11：2号炉運転員 7 名 $\times 3$ 回／日 $\times 7$ 日 $\times 50 \%$
※ 12： 2 号炉運転員のらち現場要員 2 名 $\times 2$ 班 $\times 2$
※13：2号炉運転員7名
$※ 14:$ インターフェイスシステムLOCA対応者 2 名＋予備 1
※15：2号炉運転員のらち現場要員 2 名 $\times 2$ 班
※16：防護具類が不足する場合は，構内より適宜運搬することにより補充する

第2表 計測器（被ばく管理，汚染管理）

品名		配備台数※9／保管場所			
個人線量計	電子式線量計	200 台 ${ }^{1}$	出入管理室	14 台＊5	中央制御室
	ガラスバッジ	200 台 ${ }^{1}$		14台 ${ }^{*} 5$	
表面汚染密度測定用 サーベイメータ		8 台＊2		4 台 ${ }^{6}$	
ガンマ線測定用 サーベイメータ		8 台＊3		4 台 ${ }^{*} 7$	
可搬型エリアモニタ		4 台 ${ }^{*} 4$	緊急時対策所	4 台 ${ }^{\text {\％}}$	

※1：100名（本部要員 38 名 + 現場要員 40 名 + 余裕）$\times 2$
※2：チェンジングエリア用4台（身体サーベイを行う放射線管理班員2名分十余裕）＋緊急時対策建屋内及び屋外用 4 台（屋外等のモニタリングを行う放射線管理班員 2 名分 + 余裕）
※3：チェンジングエリア用4台（チェンジングエリアのモニタリングを行う放射線管理班員 2 名分 + 余裕）＋緊急時対策建屋内及び屋外用 4 台（屋外等のモニタリングを行う放射線管理班員 2 名分 + 余裕）
※ 4：緊急時対策所内 2 台（1台十余裕）＋緊急時対策建屋内 2 台（1台＋余裕）
※ 5： 2 号炉運転員 7 名 $\times 2$
※6：チェンジングエリア用 2 台（身体サーベイを行う放射線管理班員 1 名分 + 余裕）＋中央制御室内外用2台（モニタリングを行う放射線管理班員1名分＋余裕）
※7：チェンジングエリア用 2 台（モニタリングを行う放射線管理班員 1 名分 + 余裕）＋中央制御室内外用2台（モニタリングを行う放射線管理班員1名分十余裕）
※ 8：中央制御室内 2 台（1台＋余裕）＋待避所内 2 台（1台＋余裕）
※9：予備含む。（今後，訓練等で見直しを行う。）

（2）飲食料等

中央制御室に配備する飲食料等の内訳を第3表に示す。なお，飲食料等は，汚染が付着しないようビニール袋等であらかじめ養生し，配備する。

第3表 飲食料等

品名		配備数 ${ }^{*}$
		中央制御室
飲食料等	－食料	147食＊1
	－飲料水（1．5リットル）	98本 ${ }^{2}$
簡易トイレ		30個＊3
ヨウ素剤		56 錠 ${ }^{\text {＊}}$

※1：7名（2号炉運転員）$\times 7$ 日 $\times 3$ 食
※2：7名（ 2 号炉運転員）$\times 7$ 日 $\times 2$ 本
$※ 3: 7$ 名（ 2 号炉運転員）\times（3回／ 10 時間（プルーム通過中））+ 余裕 $=30$ 個
$※ 4: 7$ 名（ 2 号炉運転員）$\times($ 初日 2 錠 +2 日目以降 1 錠 $/ 1$ 日 $\times 6$ 日）$=56$ 錠
※5：今後，訓練等で見直しを行う

交替要員体制を考慮した運転員の被ばく評価について

被ばく評価に当たつては，評価期間を事故発生後7日間とし，運転員が交替（5直3交替）するものとして実効線量を評価した。運転員の直交替サイクルを表1に，交替スケジュール例を表2に示す。また，評価で想定した運転員の入退域及び中央制御室滞在の開始及び終了の時間並びに空調起動や格納容器ベント実施の時間の前後関係を参考図に示す。なお，本評価においては，1直（1日目）の中央制御室滞在開始時に事故が発生するものと想定した。

被ばく評価に当たって考慮した被ばく経路と被ばく経路のイメージを図 1 及び図 2 に示す。また，中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価の主要条件を表3に，被ばく評価に係る換気空調設備の概略図を図3に示す。

表1直交替サイクル

勤務	勤務時間	
1 直	21 時 30 分 ~ 9 時 00 分	11 時間 30 分
2 直	8 時 40 分 ~ 16 時 50 分	8 時間 10 分
3 直	16 時 30 分 ~ 21 時 50 分	5 時間 20 分
$2 \cdot 3$ 直	8 時 40 分 ~ 21 時 50 分	13 時間 10 分

表2直交替スケジュール例

	1 日	2 日	3 日	4 日	5 日	6 日	7 日
A班	2	23	3	／	1	1	休
B 班	3	／	1	1	休	休	2
C 班	日勤						
D班	1	1	休	休	2	23	3
E班	休	休	2	23	3	／	1

滞在時間	入退域回数
$49: 40$	10 回
$36: 30$	8 回
$0: 00$	0 回
$49: 40$	10 回
$38: 10$	8 回

休：休日，日勤：事務所勤務日

参考図 評価で想定した運転員の中央制御室滞在の時間や空調起動等の時間の前後関係

図 1 中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価において考慮する被ばく経路

図2 中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価の被ばく経路イメージ図

添付資料1．16．9
表3 中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価の主要条件（1／4）

項目			評価条件
停 歨 炉 内 内 蔵 量	発災プラント		2 号炉
	評価事象		大破断 LOCA＋HPCS 失敗＋低圧 ECCS 失敗 + 全交流動力電源喪失
	炉心熱出力		2，436MWt
	原子炉運転時間		$\begin{aligned} & 1 \text { サイクル: 10, 000h (約 } 416 \text { 日) } \\ & 2 \text { サイクル }: 20,000 \mathrm{~h} \\ & 3 \text { サイクル: 30, 000h } \\ & 4 \text { サイクル }: 40,000 \mathrm{~h} \\ & 5 \text { サイクル : 50, 000h } \\ & \hline \end{aligned}$
	取替炉心の燃料装荷割合		$\begin{aligned} & 1 \text { サイクル : } 0.229 \\ & 2 \text { サイクル }: 0.229 \\ & 3 \text { サイクル }: 0.229 \\ & 4 \text { サイクル }: 0.229 \\ & 5 \text { サイクル }: 0.084 \end{aligned}$
$\begin{aligned} & \text { 大 } \\ & \text { 気 } \\ & \text { 桩 } \\ & \text { 散 } \end{aligned}$	気象資料		女川原子力発電所における 1 年間の気象データ （2012 年 1 月～2012 年 12 月）（地上約 10 m ，地上約 71 m ）
	実効放出継続時間		全放出源：1時間
	建屋巻き込み		【原子炉格納容器フィルタベント系排気管】 考慮する 【原子炉建屋ブローアウトパネル】 考慮する 【排気筒】 巻込みの影響はないため考慮しない
	累積出現頻度		小さい方から累積して 97\％
	放出源及び放出源高さ		【原子炉格納容器フィルタベント系排気管】地上 36 m 【原子炉建屋ブローアウトパネル】 地上 0 m 【排気筒】 地上 $80 \mathrm{~m}^{* 1}$
	$\begin{aligned} & \text { 着 } \\ & \text { 䀚 } \\ & \text { 方 } \\ & \text { 位 } \end{aligned}$	中央制御室滞在時	【原子炉格納容器フィルタベント系排気管】中央制御室換気空調系の給気口：5方位中央制御室中心：8方位 【原子炉建屋ブローアウトパネル】中央制御室換気空調系の給気口：5方位中央制御室中心：6方位 【排気筒】 中央制御室換気空調系の給気口： 1 方位中央制御室中心： 1 方位
		入退域時	【原子炉格納容器フィルタベント系排気管】 出入管理所：4方位 制御建屋出入口：6方位 【原子炉建屋ブローアウトパネル】 出入管理所： 4 方位 制御建屋出入口： 6 方位 【排気筒】 出入管理所：1方位 制御建屋出入口： 1 方位

※1 排気筒の放出源高さは，敷地境界における有効高さを使用

表3 中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価の主要条件（2／4）

	項目	評価条件
原 子 炉 格 納 容 器 外 の 放 出	原子炉格納容器漏えい開始時刻	事故発生直後（なお，放射性物質は，MAAP 解析 に基づき事故発生約 5 分後から漏えい）
	原子炉格納容器から原子炉建屋への漏えい率	開口面積を格納容器圧力に応じ設定。MAAP 解析上で，格納容器圧力に応じ漏えい率が変化する ものとした。 【開口面積】 1Pd以下：1．0Pd で 0.9%／日 $1 ~ 1$ ．5Pd ：1．5Pd で $1.1 \% /$ 日 1．5～2Pd：2．0Pd で $1.3 \% /$ 日 に相当する開口面積
	原子炉圧力容器から原子炉格納容器に放出されるよう素の形態	粒子状よう素：5 \％ 無機よう素：91 \％ 有機よう素：4 \％
	原子炉格納容器内 pH 制御の効果	未考慮
	原子炉格納容器の漏えい孔における捕集効果	希ガス： 1 粒子状放射性物質： 10 無機よう素：1 有機よう素：1
	原子炉格納容器内での有機よう素の除去効果	未考慮
	原子炉格納容器内での粒子状放射性物質の除去効果	- 格納容器スプレイによる除去効果 - 自然沈着による除去効果 - サプレッションチェンバのプール水でのスク ラビングによる除去効果 上記をMAAP 解析で評価
	原子炉格納容器等への無機よう素の沈着効果	$9.0 \times 10^{-4}[1 / \mathrm{s}]$（上限 $\mathrm{DF}=200$ ）
	サプレッションチェンバのプール水で のスクラビングによる無機よう素の除去係数	無機よう素： 5
	原子炉格納容器から ベントラインへの流入割合	停止時炉内内蔵量に対して， 希ガス類：約 9.5×10^{-1} よう素類：約 3.0×10^{-2} Cs 類：約 1.2×10^{-6} Te 類：約 2.4×10^{-7} Ba 類：約 9.4×10^{-8} Ru 類：約 1.2×10^{-8} La 類：約 9.4×10^{-10} Ce 類：約 2.4×10^{-9}

表 3 中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価の主要条件（3／4）

| 項目 | 評価条件 |
| :--- | :--- | :--- |

表3 中央制御室の居住性（炉心の著しい損傷）に係る被ばく評価の主要条件（4／4）

	項目	主要条件
運転貝の被はく評価	中央制御室換気空調系再循環送風機及び再循環フィルタ装置 （風量，フィルタ除去効率及び起動遅れ時間）	【風量】 事故発生から $0 \sim 0.5$ 時間後：$\quad 0 \mathrm{~m}^{3} / \mathrm{h}$ 事故発生から $0.5 \sim 168$ 時間後： $8,000 \mathrm{~m}^{3} / \mathrm{h}$ （外気取込 $500 \mathrm{~m}^{3} / \mathrm{h}$ を含む） 【チャコールフィルタ除去効率】 希ガス，粒子状放射性物質：0\％ 無機よう素，有機よう素：90\％ 【高性能エアフィルタ除去効率】 希ガス，無機よう素，有機よう素：0\％ 粒子状放射性物質：99． 9% 【起動遅れ時間】 0.5 時間
	中央制御室バウンダリ への外気の直接流入率	1．0回／h
	中央制御室待避所加圧設備の空気供給量	事故発生から $0 \sim 45$ 時間後： $0 \mathrm{~m}^{3} / \mathrm{h}$ 事故発生から $45 \sim 55$ 時間後： $30 \mathrm{~m}^{3} / \mathrm{h}^{* 1}$ 事故発生から 55～168時間後： $0 \mathrm{~m}^{3} / \mathrm{h}$
	マスク防護係数	入退域時：50（1日目のみ 1,000$)$ 中央制御室滞在時 ：50（1 日目のみ 1,000$)$
	ヨウ素剤の服用	未考慮
	交代要員体制の考慮	考慮する
	直接ガンマ線及びスカ イシャインガンマ線の評価コード	【原子炉建屋内の放射性物質からの寄与】 - 直接ガンマ線：QAD－CGGP2R コード - スカイシャインガンマ線：ANISN コード，G33－GP2R コード 【原子炉格納容器フィルタベント系排気管内の放射性物質から の寄与】 －直接ガンマ線：QAD－CGGP2R コード
	地表面への沈着速度	エアロゾル粒子： $1.2 \mathrm{~cm} / \mathrm{s}$ 無機よう素： $1.2 \mathrm{~cm} / \mathrm{s}$ 有機よう素： $4.0 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$ 希ガス：沈着なし
	評価期間	7 日間

図 3 中央制御室換気空調系（事故時運転モード（少量外気取入））の概要図

1．評価事象
女川原子力発電所 2 号炉においては，「想定する格納容器破損モードのうち，原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス」である「大破断 LOCA＋HPCS 失敗＋低圧 ECCS 失敗＋全交流動力電源喪失したシーケンス」においても，格納容器ベントを実施することな く事象を収束することのできる代替循環冷却系を整備している。しかしながら，被ばく評価においては，中央制御室の居住性評価を厳しくする観点から，代替循環冷却系を使用した場合のみならず，前述の「大破断 LOCA＋HPCS 失敗＋低圧 ECCS失敗＋全交流動力電源喪失したシーケンス」において，原子炉格納容器フィルタ ベント系を経由した格納容器ベントを実施した場合も想定する。

2．評価結果
代替循環冷却系を用いて事象収束に成功した場合の評価結果を表4－1－1及び表 4－1－2に示す。また，格納容器ベントを実施した場合の評価結果を表 4－2－1 及び表 4－2－2に示す。さらに，各ケースについて被ばく線量の合計が最も大きい班の評価結果の内訳を表 5－1－1 から表5－2－2 に，被ばく線量の合計が最も大きい滞在日における評価結果の内訳を表 6－1－1 から表 6－2－2 に示す。

評価の結果，7日間での実効線量は代替循環冷却系を用いて事象収束に成功し た場合で最大約 51 mSv ，格納容器ベントを実施した場合で最大約 51 mSv となった。 この評価結果は遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄 くした場合の評価としている。

このことから，判断基準である「運転員の実効線量が 7 日間で 100 mSv を超え ないこと」を満足することを確認した。

表 4－1－1 各勤務サイクルでの被ばく線量 （代替循環冷却系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮した場合）（単位：mSv）※ 1 \％2 \％3

	1 日	2 日	3 日	4 日	5 日	6 日	7 日	合計
A 班	$\begin{array}{l\|} \hline \text { 2直 } \\ \text { 約 } 6.2 \end{array}$	23直 約 2.7	3直 約 1.4	－	$\begin{aligned} & \text { 1直\| } \\ & \text { 約 } 1.3 \end{aligned}$	約 1.2	－	約 13
B 班	約 $5.3^{* 4}$	－	$\begin{array}{\|l\|} \hline \text { 1直 } \\ \hline \text { 約 } 1.9 \end{array}$	約 1.5	－	－	$\begin{aligned} & \text { 2直 } \\ & \text { 約 } 0.87 \end{aligned}$	約 9.5
C 班	－	－	－	－	－	－	－	0
D 班	$\text { 約 } 46^{* 4}$	$\begin{array}{l\|} \hline \text { 1直 } \\ \hline \text { 約 } 2.9 \end{array}$	－	－	$\begin{aligned} & \hline \text { 2直 } \\ & \text { 約 } 1.1 \end{aligned}$	$\text { 約 } 1.2$	$\begin{aligned} & \text { 3直 } \\ & \text { 約 } 0.47 \% 5 \end{aligned}$	約 51
E 班	－	－	$\begin{array}{\|l\|} \hline \text { 2直 } \\ \hline \text { 約 } 1.6 \end{array}$		$\text { 約 } 0.92$	－	$\begin{aligned} & \text { 1直 } \\ & \text { 約 } 1.3^{* 5} \end{aligned}$	約 5.3

$※ 1$ 入退域時においてマスク $(\mathrm{PF}=50)$ の着用を考慮
$※ 2$ 中央制御室内でマスク（ $\mathrm{PF}=50$ ）の着用を考慮。 6 時間当たり 1 時間外すものとして評価
$※ 3$ 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量
$※ 4$ 中央制御室内及び入退域時において事故後 1 日目のみマスク（ $\mathrm{PF}=1,000$ ）の着用を考慮。中央制御室内は 6 時間当たり 18 分間外すものとして評価
$※ 5$ 本評価において想定した直交替スケジュールでは，7日目3直の班が中央制御室滞在中に，交替のた めに入域する 1 直勤務の班（本評価では 7 日目 1 直の班と同じ班を想定）が入域を終了した時点で評価期間終了（事象発生から168時間後）となる。本表では，評価期間終了直前の入域に伴う被ばく線量は，7日目1直の被ばく線量に加えて整理している。また，本表における 7 日目 3 直の被ばく線量 は，7日目 3 直の班が中央制御室滞在中に評価期間終了となることから，入域及び中央制御室滞在（評価期間終了まで）に伴う被ばく線量を示している。

表 4－1－2 各勤務サイクルでの被ばく線量 （代替循環冷却系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮しない場合）（単位：mSv）※ 1 ※ 2

	1 日	2 日	3 日	4 日	5 日	6 日	7 日	合計
A 班	$\begin{aligned} & \text { 2直 } \\ & \text { 約 } 7.1^{* 3} \end{aligned}$	$\begin{aligned} & \text { 23直 } \\ & \hline \text { 約 } 4.8 \end{aligned}$	$\begin{aligned} & \text { 3直 } \\ & \hline \text { 約 } 2.3 \end{aligned}$	－	$\begin{aligned} & \text { 1直 } \\ & \text { 約 } 3.2 \end{aligned}$	$\begin{aligned} & \text { 1直 } \\ & \text { 約 } 2.9 \end{aligned}$	－	約 21
B 班	約 $6.0^{* 3}$	－	約 3.8	約 3.5	－	－	約 2.0	約 16
C 班	－	－	－	－	－	－	－	0
D 班	1直 約 520	$\begin{aligned} & \hline \text { 1直 } \\ & \hline \text { 約 } 4.6 \end{aligned}$	－	－	$\begin{aligned} & \text { 2直 } \\ & \text { 約 } 2.4 \end{aligned}$	$\begin{aligned} & \text { 23直 } \\ & \text { 約 } 3.1 \end{aligned}$	$\begin{aligned} & \text { 3直 } \\ & \text { 約 } 1.2^{* 4} \end{aligned}$	約 530
E 班	－	－	$\begin{array}{\|l\|} \hline \text { 2直\| } \\ \hline \text { 約 } 3.0 \end{array}$	$\begin{array}{\|l\|} \hline \text { 23直 } \\ \hline \text { 約 } 3.8 \\ \hline \end{array}$	$\begin{aligned} & \text { 3直 } \\ & \hline \text { 約 } 1.8 \end{aligned}$	－	$\begin{aligned} & \text { 1直 } \\ & \text { 約 } 2.99^{* 4} \end{aligned}$	約 12

※1 入退域時においてマスク（ $\mathrm{PF}=50$ ）の着用を考慮
$※ 2$ 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量
※3 入退域時において事故後1日目のみマスク（ $\mathrm{PF}=1,000$ ）の着用を考慮
$※ 4$ 評価期間終了直前の入域に伴う被ばく線量は，7日目1直の被ばく線量に加えて整理。7日目3直の被ばく線量は，入域及び中央制御室滞在（評価期間終了まで）に伴う被ばく線量（表 4－1－1 の ※5 を参照）

表 4－2－1 各勤務サイクルでの被ばく線量
（原子炉格納容器フィルタベント系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮した場合）（単位：mSv）※ 1 ※ 2 ※ 3

	1 日	2 日	3 日	4 日	5 日	6 日	7 日	合計
A 班	$\begin{array}{l\|} \hline \text { 2直 } \\ \text { 約 } 6.2 \text { 苂 } \end{array}$	$\begin{aligned} & \text { 23直 } \\ & \text { 約 } 21 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 3直 } \\ \hline \text { 約 } 1.4 \end{array}$	－	$\begin{array}{\|l\|} \hline \text { 1直\| } \\ \hline \text { 約 } 1.1 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 1直\| } \\ \hline \text { 約 } 0.84 \end{array}$	－	約 31
B 班	約 $5.3{ }^{* 4}$	－	約 1.8	約 1.4	－	－	$\text { 約 } 0.65$	約 9.0
C 班	－	－	－	－	－	－	－	0
D 班	1直 約 46 ＊	$\begin{gathered} \hline \text { 1直 } \\ \hline \text { 約 } 2.9 \end{gathered}$	－	－	$\begin{array}{\|l\|} \hline \text { 2直 } \\ \hline \text { 約 } 0.88 \end{array}$	$\begin{array}{\|l\|} \hline 23 \text { 直 } \\ \hline \text { 約 } 0.84 \\ \hline \end{array}$	$\begin{aligned} & \text { 3直 } \\ & \text { 約 } 0.34 * 5 \end{aligned}$	約 51
E班	－	－	$\begin{aligned} & \hline \text { 2直 } \\ & \hline \text { 約 } 1.6 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 3直 } \\ \hline \text { 約 } 0.79 \end{array}$	－	$\begin{aligned} & \text { 1直 } \\ & \text { 約 } 0.98 * 5 \end{aligned}$	約 4.6

※1 入退域時においてマスク（ $\mathrm{PF}=50)$ の着用を考慮
$※ 2$ 中央制御室内でマスク（ $\mathrm{PF}=50$ ）の着用を考慮。 6 時間当たり 1 時間外すものとして評価
$※ 3$ 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量
$※ 4$ 中央制御室内及び入退域時において事故後 1 日目のみマスク（ $\mathrm{PF}=1,000$ ）の着用を考慮。中央制御室内は 6 時間当たり 18 分間外すものとして評価
$※ 5$ 評価期間終了直前の入域に伴う被ばく線量は，7日目1直の被ばく線量に加えて整理。7日目3直の被ばく線量は，入域及び中央制御室滞在（評価期間終了まで）に伴う被ばく線量（表 4－1－1 の※5 を参照）

表 4－2－2 各勤務サイクルでの被ばく線量
（原子炉格納容器フィルタベント系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮しない場合）（単位：mSv）※ ${ }^{(}$※ 2

	1 日	2 日	3 日	4 日	5 日	6 日	7 日	合計
A 班	$\begin{aligned} & \text { 2直 } \\ & \text { 約 } 7.1^{* 3} \end{aligned}$	$\begin{array}{\|l\|} \hline 23 \text { 直 } \\ \hline \text { 約 } 25 \end{array}$	$\begin{array}{l\|l} \hline \text { 3直 } \\ \hline \text { 約 } 2.0 \end{array}$	－	約 1.6	$\begin{array}{\|l\|} \hline \text { 1直 } \\ \hline \text { 約 } 1.2 \end{array}$	－	約 37
B 班	約 $6.0 \% 3$	－		約 2.4	－	－	$\begin{aligned} & 2 \text { 直 } \\ & \text { 約 } 0.75 \end{aligned}$	約 13
C 班	－	－	－	－	－	－	－	0
D 班	約 520 ＊	約 4.7	－	－	約 1.2	$\begin{array}{\|l\|} \hline \text { 23直 } \\ \hline \text { 約 } 1.1 \end{array}$	3直 約 $0.39{ }^{* 4}$	約 520
E 班	－	－	$\begin{array}{\|l\|} \hline \text { 2直\| } \\ \hline \text { 約 } 2.7 \end{array}$	$\text { 約 } 2.2$	$\begin{aligned} & \text { 3直 } \\ & \text { 約 } 0.97 \end{aligned}$	－	1直 約 $1.2^{* 4}$	約 7.0

※1 入退域時においてマスク（ $\mathrm{PF}=50$ ）の着用を考慮
$※ 2$ 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量
※3 入退域時において事故後 1 日目のみマスク（ $\mathrm{PF}=1,000$ ）の着用を考慮
$※ 4$ 評価期間終了直前の入域に伴う被ばく線量は，7日目1直の被ばく線量に加えて整理。7日目3直の被ばく線量は，入域及び中央制御室滞在（評価期間終了まで）に伴う被ばく線量（表 4－1－1 の ※5 を参照）

表 5－1－1 評価結果の内訳（被ばく線量が最大となる班（D 班）の合計） （代替循環冷却系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮する場合）（単位：mSv）

被ばく経路		7日間の実効線量＊1
中央製御潢䒴時	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 4.1×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	（3）地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 3.2×10^{1}
	（内訳）内部被ばく外部被ばく	（約 2.7×10^{1} ） （約 5.6×10^{0} ）
	小計（1）＋（2）＋（3）＋（4）	約 4.6×10^{1}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 1.4×10^{-1}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 2.5×10^{-2}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 5.1×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 1.2×10^{-2}
	小計（5）＋（6）＋（7）＋8 ）	約 5.3×10^{0}
合計 $($（1）+ （2）+ （3）+ （4）+ （5）+ （6）+ （7）＋8 $)$		約 5.1×10^{1}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 5－1－2 評価結果の内訳（被ばく線量が最大となる班（D 班）の合計） （代替循環冷却系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮しない場合）（単位：mSv）

被ばく経路		7日間の実効線量＊1
中央製御潢䒴時	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 4.1×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	（3）地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 5.1×10^{2}
	（内訳）内部被ばく外部被ばく	（約 5.0×10^{2} ） （約 $5.6 \times 10^{\circ}$ ）
	小計（1）＋（2）＋（3）＋（4）	約 5.2×10^{2}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 1.4×10^{-1}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 2.5×10^{-2}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 5.1×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 1.2×10^{-2}
	小計（5）＋（6）＋（7）＋8 ）	約 5.3×10^{0}
合計 $($（1）+ （2）+ （3）+ （4）+ （5）+ （6）+ （7）＋8 $)$		約 5.3×10^{2}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 5－2－1 評価結果の内訳（被ばく線量が最大となる班（D 班）の合計）
（原子炉格納容器フィルタベント系を用いて事象を収束する場合） （中央制御室内でマスクの着用を考慮する場合）（単位：mSv）

被ばく経路		7日間の実効線量＊1
中央製御潢䒴時	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 4.1×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	（3）地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 3.2×10^{1}
	（内訳）内部被ばく外部被ばく	（約 2.6×10^{1} ） （約 5.6×10^{0} ）
	小計（1）＋（2）＋（3）＋（4）	約 4.5×10^{1}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 1.2×10^{-1}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 1.6×10^{-2}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 5.2×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.7×10^{-3}
	小計（5）＋（6）＋（7）＋8 ）	約 5.4×10^{0}
合計 $($（1）+ （2）+ （3）+ （4）+ （5）+ （6）+ （7）＋8 $)$		約 5.1×10^{1}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 5－2－2 評価結果の内訳（被ばく線量が最大となる班（D 班）の合計）
（原子炉格納容器フィルタベント系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮しない場合）（単位：mSv）

被ばく経路		7日間の実効線量＊1
中英制御謈源時	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 4.1×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	（3）地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 5.0×10^{2}
	（内訳）内部被ばく外部被ばく	（約 5.0×10^{2} ） （約 $5.6 \times 10^{\circ}$ ）
	小計（ 1 ）＋（2）＋（3）＋（4）	約 5.2×10^{2}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 1.2×10^{-1}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 1.6×10^{-2}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 5.2×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.7×10^{-3}
	小計（5）+ （6）＋（7）＋8 ）	約 $5.4 \times 10^{\circ}$
合計（1）＋（2）＋（3）＋（4）＋5＋＋6＋（7）＋（8）		約 5.2×10^{2}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 6－1－1 評価結果の内訳（D 班の1日目）
（代替循環冷却系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮する場合）（単位：mSv）

	被ばく経路	D 班の1日目の実効線量 ${ }^{1}$
$\begin{aligned} & \text { 中 } \\ & \text { 央 } \\ & \text { 制 } \\ & \text { 御 } \\ & \text { 到 } \\ & \text { 在 } \\ & \text { 時 } \end{aligned}$	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 3.8×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5.5×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 3.1×10^{1}
	（内訳）内部被ばく外部被ばく	$\begin{aligned} & \left(\text { 約 } 2.5 \times 10^{1}\right) \\ & \left(\text { 約 } 5.6 \times 10^{0}\right) \end{aligned}$
	小計（ 1 ）＋（2）＋（3）＋（4）	約 4.3×10^{1}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { 時 } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 5.3×10^{-2}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 3.9×10^{-3}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 2.3×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.0×10^{-5}
	小計（ 5 ）＋6 + ＋ 7 ）＋8 ）	約 2.3×10^{0}
合計 $($（1）＋（2）＋（3）＋（4）＋（5）＋（6）＋（7）＋（8）		約 4.6×10^{1}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 6－1－2 評価結果の内訳（D 班の1日目） （代替循環冷却系を用いて事象を収束する場合）
（中央制御室内でマスクの着用を考慮しない場合）（単位：mSv）

被ばく経路		D 班の 1 日目の実効線量＊1

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 6－2－1 評価結果の内訳（D 班の1日目）
（原子炉格納容器フィルタベント系を用いて事象を収束する場合） （中央制御室内でマスクの着用を考慮する場合）（単位：mSv）

	被ばく経路	D 班の1日目の実効線量 ${ }^{1}$
$\begin{aligned} & \text { 中 } \\ & \text { 央 } \\ & \text { 制 } \\ & \text { 御 } \\ & \text { 到 } \\ & \text { 在 } \\ & \text { 時 } \end{aligned}$	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 3.8×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5.5×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 3.1×10^{1}
	（内訳）内部被ばく外部被ばく	$\begin{aligned} & \left(\text { 約 } 2.5 \times 10^{1}\right) \\ & \left(\text { 約 } 5.6 \times 10^{0}\right) \end{aligned}$
	小計（ 1 ）＋（2）＋（3）＋（4）	約 4.3×10^{1}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { 時 } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 5.3×10^{-2}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 3.9×10^{-3}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 2.3×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.0×10^{-5}
	小計（ 5 ）＋6 + ＋ 7 ）＋8 ）	約 2.3×10^{0}
合計 $($（1）＋（2）＋（3）＋（4）＋（5）＋（6）＋（7）＋（8）		約 4.6×10^{1}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

表 6－2－2 評価結果の内訳（D 班の1日目）
（原子炉格納容器フィルタベント系を用いて事象を収束する場合） （中央制御室内でマスクの着用を考慮しない場合）（単位：mSv）

被ばく経路		D 班の1日目の実効線量＊${ }^{*}$
中央制御葓䒴時	（1）原子炉建屋内の放射性物質からのガンマ線 による中央制御室内での被ばく	約 3.8×10^{-2}
	（2）放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10^{0}
	（3）地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5.5×10^{0}
	（4）室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 5.0×10^{2}
	（内訳）内部被ばく外部被ばく	$\begin{aligned} & \text { (約 } 4.9 \times 10^{2} \text {) } \\ & \left(\text { (約 } 5.6 \times 10^{\circ}\right. \text {) } \\ & \hline \end{aligned}$
	小計（ 1 ）＋（2）＋（3）＋（4）	約 5.1×10^{2}
$\begin{aligned} & \text { 入 } \\ & \text { 退 } \\ & \text { 域 } \\ & \text { } \end{aligned}$	（5）原子炉建屋内等の放射性物質からのガンマ線による入退域時の被ばく	約 5.3×10^{-2}
	（6）放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 3.9×10^{-3}
	（7）地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく	約 2.3×10^{0}
	（8）大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.0×10^{-5}
	小計（5）＋（6）＋（7）＋8 ）	約 $2.3 \times 10^{\circ}$
合計（1）＋（2）＋（3）＋（4）＋5＋＋6＋＋7＋（8）		約 5.2×10^{2}

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の被ばく線量

交替要員の放射線防護と移動経路について

運転員等の交代要員は，発電所への入域及び退域の際に放射線防護管理による被 ばくの低減を行う。以下にその放射線防護措置と移動経路を示す。
（1）発電所に入域するにあたり原子力災害対策支援拠点（以下「支援拠点」という。） にて発電所内の情報を入手し，必要な防護具類を着用する。
（2）通行できる事が確認されたルートを通り発電所へ入域後，中央制御室入口付近に設置したチェンジングエリアで身体サーベイを実施する。
③汚染が認められなければ中央制御室に入室し，運転員等との引継ぎを実施する。
（4）引継ぎを終えた運転員等は，防護具類を着用したまま中央制御室を退室後，身体 サーベイのため警戒区域境界の指定された場所へ移動を行い，防護具類を脱衣し，警戒区域外の支援拠点にて身体サーベイを実施する。

重大事故等対策の成立性について

1．現場での原子炉建屋ブローアウトパネル部の閉止について
（1）作業概要
原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋に設置する原子炉建屋ブローアウトパネル開放時に現場において，人力により原子炉建屋 ブローアウト閉止装置による原子炉建屋ブローアウトパネル部の閉止操作を行う。
（2）作業場所
原子炉建屋原子炉棟
（3）必要要員数及び操作時間
必要要員数：2名（運転員（現場））
操作時間 ：200 分（訓練実績等）
（4）作業の成立性
作業環境：可搬型照明（SA）及び懐中電灯により，暗闇における作業性を確保している。放射性物質が放出される可能性があることから，防護具（全面マ スク，個人線量計，ゴム手袋等）を装備又は携行して作業を行う。
移動経路：可搬型照明（SA）及び懐中電灯を携行しており，暗闇においても アクセス可能である。アクセスルート上に支障となる設備はない。
操作性 ：人力操作については，通常の弁操作と同様であるため，容易に操作可能である。
連絡手段：通常の連絡手段として，電力保安通信用電話設備（PHS 端末）及 び送受話器（ページング）を配備しており，重大事故等の環境下 において，通常の連絡手段が使用不能となった場合でも，携行型通話装置により中央制御室に連絡することが可能である。
解釈一覧

手順			操作手順記載内容	解釈
1．16．2．1 居住性を確保するための手順等	（2）中央制御室待避所の運用手順	a．中央制御室待避所加圧設備による中央制御室待避所の加圧手順	中央制御室待避所圧力を中央制御室より正圧に維持	中央制御室待避所圧力を中央制御室より +20 Pa以上に維持
	（6）中央制御室待避所の酸素及び二酸化炭素の濃度測定 と濃度管理手順	－	中央制御室待避所圧力を中央制御室より正圧に維持	中央制御室待避所圧力を中央制御室より＋20Pa以上に維持
1．16．2．3 運転員等 の被ばくを低減する ための手順等	（1）非常時ガス処理系による運転員等 の被ばく防止手順	a．非常用ガス処理系起動手順	原子炉建屋外気間差圧を負圧に維持	原子炉建屋外気間差圧－70～440Pa

．弁番号及び弁名称一覧

弁番号	弁名称	
V30－D302A（B）	中央制御室再循環フィルタ装置入口ダンパ	操作場所
V30－D303，D304	中央制御室外気取入ダンパ	中央制御室
V30－D305A（B）	中央制御室排風機出口ダンパ	中央制御室
V30－D301A（B）	中央制御室少量外気取入ダンパ	中央制御室
-	加圧空気供給ライン入口弁	中央制御室
-	給気弁	中央制御室待避所
-	室圧調整弁	中央制御室待避所
T46－A0－F001A（B）	SGTS 入口弁	中央制御室待避所
T46－M0－F002A（B）	SGTS 空気乾燥装置入口弁	中央制御室
T46－M0－F003A（B）	SGTSフィルタ衣置出口弁	中央制御室

