女川原子力発電所 2 号炉

設計基準対象施設について

（6条 外部からの衝撃による損傷の防止（火山））

平成 31 年 3 月

東北電力株式会社

目次

4 条 地震による損傷の防止
5 条 津波による損傷の防止
6 条 外部からの衝撃による損傷の防止（その他外部事象）
6 条 外部からの衝撃による損傷の防止（竜巻）
6 条 外部からの衝撃による損傷の防止（火山）
6 条 外部からの衝撃による損傷の防止（外部火災）
7 条 発電用原子炉施設への人の不法な侵入等の防止
8 条 火災による損傷の防止
9 条 溢水による損傷の防止等
10 条 誤操作の防止
11 条 安全避難通路等
12 条 安全施設
14 条 全交流動力電源喪失対策設備
16 条 燃料体等の取扱施設及び貯蔵施設
17 条 原子炉冷却材圧力バウンダリ
23 条 計測制御系統施設（第 16 条に含む）
24 条 安全保護回路
26 条 原子炉制御室等
31 条 監視設備
33 条 保安電源設備
34 条 緊急時対策所
35 条 通信連絡設備

[^0]
女川原子力発電所 2 号炬
 外部からの衝撃による損隹の防止
 （火山）

第6条：外部からの衝撃による損傷の防止 （火山）
＜目 次＞

1．基本方針
1． 1 要求事項の整理
1．2追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性の説明

2．外部からの衝撃による損傷の防止（火山）
別添資料1 火山影響評価について

3．運用，手順説明資料
別添資料2 外部からの衝撃による損傷の防止（火山）

1．において，設計基準対処設備の設置許可基準規則，技術基準規則の追加要求事項を明確化するとともに，それら要求に対する女川原子力発電所 2号炉における適合性を示す。

2．において，設計基準対処設備について，追加要求事項に適合するため に必要となる機能を達成するための設備又は運用等について説明する。

3．において，追加要求事項に適合するための運用，手順等を抽出し，必要となる運用対策等を整理する。

1．基本方針
1．1要求事項の整理
外部からの衝撃による損傷の防止について，設置許可基準規則第 6 条及び技術基準規則第 7 条において，追加要求事項を明確化する（表1．1－1）。
表 1．1－1 設置許可基準規則第 6 条及び技術基準規則第 7 条要求事項

設置許可基準規則第 6 条（外部からの衝撃による損傷の防止）	技術基準規則 第7条（外部からの衝撃による損傷の防止）	備考
安全施設は，想定される自然現象（地震及 び津波を除く。次項において同じ。）が発生した場合においても安全機能を損なわ ないものでなければならない。	設計基準対象施設が想定される自然現象（地震及 び津波を除く。）によりその安全性を損ならおそ れがある場合は，防護措置，基礎地盤の改良その他の適切な措置を講じなければならない。	【追加要求事項】
2 重要安全施設は，当該重要安全施設に大きな影響を及ぼすおそれがあると想定 される自然現象により当該重要安全施設 に作用する衝撃及び設計基準事故時に生 ずる応力を適切に考慮したものでなけれ ばならない。		【追加要求事項】
3 安全施設は，工場等内又はその周辺に おいて想定される発電用原子炉施設の安全性を損なわせる原因となるおそれ がある事象であって人為によるもの（故意によるものを除く。）に対して安全機能を損なわないものでなければならな い。	2 周辺監視区域に隣接する地域に事業所，鉄道，道路その他の外部からの衝撃が発生するおそれ がある要因がある場合には，事業所における火災又は爆発事故，危険物を搭載した車両，船舶又は航空機の事故その他の敷地及び敷地周辺の状況 から想定される事象であって人為によるもの（故意によるものを除く。）により発電用原子炉施設 の安全性が損なわれないよう，防護措置その他の適切な措置を講じなければならない。 3 航空機の墜落により発電用原子炉施設の安全性を損なうおそれがある場合は，防護措置その他 の適切な措置を講じなければならない。	【追加要求事項】

1．2追加要求事項に対する適合方針

（1）位置，構造及び設備
五 発電用原子炉及びその附属施設の位置，構造及び設備
ロ 発電用原子炉施設の一般構造
（3）その他の主要な構造
本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下 の基本的方針のもとに安全設計を行う。
a．設計基準対象施設
（a）外部からの衝撃による損傷の防止
安全施設は，発電所敷地で想定される洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地すべり，火山の影響，生物学的事象，森林火災及び高潮の自然現象（地震及び津波を除く。）又はその組合せ に遭遇した場合において，自然現象そのものがもたらす環境条件及 びその結果として施設で生じ得る環境条件においても安全機能を損 なわない設計とする。

なお，発電所敷地で想定される自然現象のらち，洪水及び地すべ りについては，立地的要因により設計上考慮する必要はない。

上記に加え，重要安全施設は，科学的技術的知見を踏まえ，当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自然現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生じる応力について，それぞれの因果関係及び時間的変化を考慮し て適切に組み合わせる。

また，安全施設は，発電所敷地又はその周辺において想定される飛来物（航空機落下），ダムの崩壊，爆発，近隣工場等の火災，有毒 ガス，船舶の衝突，電磁的障害の発電用原子炉施設の安全性を損な わせる原因となるおそれがある事象であって人為によるもの（故意 によるものを除く。）に対して安全機能を損なわない設計とする。

なお，発電所敷地又はその周辺において想定される人為事象のう ち，飛来物（航空機落下）については，確率的要因により設計上考慮する必要はない。また，ダムの崩壊については立地的要因により考慮する必要はない。

自然現象及び発電所敷地又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であ って人為によるもの（故意によるものを除く。）の組み合わせについ ては，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災等を考慮する。事象が単独で発

生した場合の影響と比較して，複数の事象が重畳することで影響が増長される組み合わせを特定し，その組み合わせの影響に対しても安全機能を損なわない設計とする。

ここで，想定される自然現象及び発電所敷地又はその周辺におい て想定される発電用原子炉施設の安全性を損なわせる原因となるお それがある事象であって人為によるもの（故意によるものを除く。） に対して，安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等（重大事故等対処設備を含む。）への措置を含 める。
（a－7）火山
安全施設は，発電所の運用期間中において発電所の安全機能に影響を及ぼし得る火山事象として設定した層厚 15 cm ，粒径 2.0 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）の降下火砕物に対し，以下のような設計とすることにより降下火砕物による直接的影響に対して機能維持すること，若しくは，降下火砕物による損傷 を考慮して，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと，又は，それらを適切に組み合わせることで，その安全機能を損なわない設計とする。

- 構造物への静的負荷に対して安全裕度を有する設計とすること
- 水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること
- 換気系，電気系及び計測制御系に対する機械的影響（閉塞）に対して降下火砕物が侵入しにくい設計とすること
－水循環系の内部における摩耗並びに換気系，電気系及び計測制御系に対する機械的影響（摩耗）に対して摩耗しにくい設計と すること
－構造物の化学的影響（腐食），水循環系の化学的影響（腐食）並 びに換気系，電気系及び計測制御系に対する化学的影響（腐食） に対して短期での腐食が発生しない設計とすること
－発電所周辺の大気汚染に対して中央制御室換気空調系は降下火砕物が侵入しにくく，さらに外気を遮断できる設計とすること
－電気系及び計測制御系の盤の絶縁低下に対して空気を取り込む機構を有する計測制御設備（安全保護系）及び非常用電源設備 （所内低圧系）の設置場所の非常用換気空調系は降下火砕物が侵入しにくい設計とすること
－降下火砕物による静的負荷や腐食等の影響に対して，降下火砕物の除去や非常用換気空調系外気取入口のバグフィルタの取替

え若しくは清掃，又は，換気空調系の停止若しくは閉回路循環運転の実施により安全機能を損なわない設計とすること

さらに，降下火砕物による間接的影響である 7 日間の外部電源喪失及び発電所外での交通の途絶によるアクセス制限事象に対し，発電所の安全性を維持するために必要となる電源の供給 が継続でき，安全機能を損なわない設計とする。
（2）安全設計方針

1．8．7 火山防護に関する基本方針

1．8．7．1 設計方針

（1）火山事象に対する設計の基本方針
安全施設は，火山事象に対して，発電用原子炉施設の安全性を確保 するために必要な機能を損なわない設計とする。このため，「添付書類六の 7.7 火山」で評価し抽出された発電所に影響を及ぼし得る火山事象である降下火砕物に対して，対策を行い，建屋による防護，構造健全性の維持，代替設備の確保等によって，安全機能を損なわない設計 とする。

降下火砕物によってその安全機能が損なわれないことを確認する必要がある施設を，安全重要度分類のクラス 1 ，クラス 2 及びクラス 3 に属する構築物，系統及び機器とする。

降下火砕物によってその安全機能が損なわれないことを確認する必要がある施設のらち，外部事象防護対象施設は，建屋による防護又は構造健全性の維持等により安全機能を損なわない設計とする。
（2）降下火砕物の設計条件
a．設計条件の検討•設定
発電所の敷地において考慮する火山事象は，「添付書類六 7．7火山」に示すとおり降下火砕物のみである。

降下火砕物の層厚は，降下火砕物の分布状況，シミュレーション及び分布事例による検討結果から総合的に判断し，保守的に 15 cm と設定する。なお，鉛直荷重については，湿潤状態の降下火砕物に，過去の観測記録に基づく石巻地域における平均的な積雪量を踏まえ て設定する。

粒径及び密度については，文献調査，地質調査及び降下火砕物シ ミュレーションの結果を踏まえ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）と設定する。
（3）評価対象施設等の抽出
外部事象防護対象施設等のらち，屋内設備は外殻となる建屋により防護する設計とし，評価対象施設を，建屋，屋外に設置されている施設，降下火砕物を含む海水の流路となる施設，降下火砕物を含む空気 の流路となる施設，外気から取り入れた屋内の空気を機器内に取り込 む機構を有する施設に分類し抽出する。また，評価対象施設及び外部

事象防護対象施設等に波及的影響を及ぼし得る施設を評価対象施設等 という。

上記に含まれない構築物，系統及び機器は，降下火砕物により損傷 した場合であっても，代替手段があること等により安全機能は損なわ れない。

a．建屋

- 原子炉建屋
- タービン建屋
- 制御建屋
b ．屋外に設置されている施設
－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）
- 海水ストレーナ（高圧炉心スプレイ補機冷却海水ストレーナ）
- 排気筒
- 非常用ガス処理系（屋外配管）
- 復水貯蔵タンク
- 地下軽油タンクピット
c．降下火砕物を含む海水の流路となる施設
－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）
－海水ストレーナ（原子炉補機泠却海水ストレーナ，高圧炉心スプ レイ補機冷却海水ストレーナ）及び下流設備
d．降下火砕物を含む空気の流路となる施設
－非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機（以下「非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）」という）
- 非常用換気空調設備（外気取入口）のらち中央制御室換気空調系
- 非常用換気空調設備（外気取入口）のらち計測制御電源室換気空調系
- 非常用換気空調設備（外気取入口）のらち原子炉補機室換気空調系
- 排気筒
- 非常用ガス処理系（屋外配管）
e。外気から取り入れた屋内の空気を機器内に取り込む機構を有する施設
- 計測制御設備（安全保護系）
- 非常用電源設備（所内低圧系）
f．降下火砕物の影響受ける施設であって，その停止等により，外部事象防護対象施設等に波及的影響を及ぼし得る施設
－非常用ディーゼル発電機排気消音器及び排気管，高圧炉心スプレ イ系ディーゼル発電機排気消音器及び排気管（以下「非常用ディ ーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）排気消音器及び排気管」という。）
－海水取水設備（除塵装置）
上記により抽出した評価対象施設等を表1．8．7－1に示す。
（4）降下火砕物による影響の選定
降下火砕物の特徴及び評価対象施設等の構造や設置状況等を考慮し て，降下火砕物が直接及ぼす影響（以下「直接的影響」という。）とそ れ以外の影響（以下，「間接的影響」という。）を選定する。
a．降下火砕物の特徴
各種文献の調査結果より，降下火砕物は以下の特徴を有する。
（a）火山ガラス片，鉱物結晶片から成る ${ }^{(1)}$ 。ただし，火山ガラス片 は砂よりもろく硬度は低く ${ }^{(2)}$ ，主要な鉱物結晶片の硬度は砂同等またはそれ以下である ${ }^{(3)(4)}$ 。
（b）硫酸等を含む腐食性のガス（以下「腐食性ガス」という。）が付着している ${ }^{(1)}$ 。ただし，金属腐食研究の結果より，直ちに金属腐食を生じさせることはない ${ }^{(5)}$ 。
（c）水に濡れると導電性を生じる ${ }^{(1)}$ 。
（d）湿った降下火砕物は乾燥すると固結する ${ }^{(1)}$ 。
（e）降下火砕物粒子の融点は約 $1,000^{\circ} \mathrm{C}$ であり，一般的な砂に比べ低い ${ }^{(1)}$ 。
b．直接的影響
降下火砕物の特徴から直接的影響の要因となる荷重，閉塞，摩耗，腐食，大気汚染，水質汚染及び絶縁低下を抽出し，評価対象施設等 の構造や設置状況等を考慮して直接的な影響因子を以下のとおり選定する。
（a）荷重
「荷重」について考慮すべき影響因子は，建屋及び屋外設備の上に堆積し静的な負荷を与える「構造物への静的負荷」及び建屋及び屋外設備に対し降灰時に衝撃を与える「粒子の衝突」である。

評価に当たっては以下の荷重の組合せを考慮する。
（a－1）評価対象施設等に常時作用する荷重，運転時荷重

評価対象施設等に作用する荷重として，自重等の常時作用す る荷重，内圧等の運転時荷重を適切に組み合わせる。
（a－2）設計基準事故時荷重
外部事象防護対象施設は，降下火砕物によって安全機能を損 なわない設計とするため，設計基準事故とは独立事象である。

また，評価対象施設等のらち設計基準事故時荷重が生じる屋外設備としては，原子炉補機冷却海水ポンプ及び高圧炉心スプ レイ補機冷却海水ポンプが考えられるが，設計基準事故時にお いても，通常運転時の系統内圧力及び温度と変わらず，機械的荷重が変化することはないため，設計基準事故時荷重と降下火砕物との組合せは考慮しない。
（a－3）その他の自然現象の影響を考慮した荷重の組合せ
降下火砕物と組み合わせを考慮すべき火山以外の自然現象は，荷重の影響において風（台風）及び積雪であり，降下火砕物の荷重と適切に組み合わせる。
（b）閉塞
「閉塞」について考慮すべき影響因子は，降下火砕物を含む海水が流路の狭隘部等を閉塞させる「水循環系の閉塞」及び降下火砕物を含む空気が機器の狭隘部や換気系の流路を閉塞させる「換気系，電気系及び計測制御系の機械的影響（閉塞）」である。
（c）摩耗
「摩耗」について考慮すべき影響因子は，降下火砕物を含む海水が流路に接触することにより配管等を摩耗させる「水循環系の内部における摩耗」及び降下火砕物を含む空気が動的機器の摺動部に侵入し摩耗させる「換気系，電気系及び計測制御系の機械的影響（摩耗）」である。
（d）腐食
「腐食」について考慮すべき影響因子は，降下火砕物に付着し た腐食性ガスにより建屋及び屋外設備の外面を腐食させる「構造物への化学的影響（腐食）」，換気系，電気系及び計測制御系にお いて降下火砕物を含む空気の流路を腐食させる「換気系，電気系及び計測制御系に対する化学的影響（腐食）」，及び海水に溶出し た腐食性成分により海水管等を腐食させる「水循環系の化学的影響（腐食）」である。
（e）大気汚染
「大気汚染」について考慮すべき影響因子は，降下火砕物によ

り汚染された発電所周辺の大気が運転員の常駐する中央制御室内 に侵入することによる居住性の劣化及び降下火砕物の除去，屋外設備の点検等，屋外における作業環境を劣化させる「発電所周辺 の大気汚染」である。
（f）水質汚染
「水質汚染」については，給水源である河川水に降下火砕物が混入することによる汚染が考えられるが，発電所では給水処理設備により水処理した給水を使用しており，また水質管理を行って いることから，安全施設の安全機能には影響しない。
（g）絶縁低下
「絶縁低下」について考慮すべき影響因子は，湿った降下火砕物が，電気系及び計測制御系絶縁部に導電性を生じさせることに よる「盤の絶縁低下」である。
c．間接的影響
（a）外部電源喪失及びアクセス制限
降下火砕物によって発電所に間接的な影響を及ぼす因子は，湿 つた降下火砕物が送電線の碍子，開閉所の充電露出部等に付着し絶縁低下を生じさせることによる広範囲にわたる送電網の損傷に伴う「外部電源喪失」及び降下火砕物が道路に堆積することによ る交通の途絶に伴う「アクセス制限」である。
（5）降下火砕物の直接的影響に対する設計
直接的影響については，評価対象施設等の構造や設置状況等（形状，機能，外気吸入や海水通水の有無）を考慮し，想定される各影響因子 に対して，影響を受ける各評価対象施設等が安全機能を損なわない以下の設計とする。
a．降下火砕物による荷重に対する設計
（a）構造物への静的負荷
評価対象施設等のうち，構造物への静的負荷を考慮す心゙き施設は，降下火砕物が堆積する以下の施設である。

－建屋

原子炉建屋，タービン建屋，制御建屋
－屋外に設置されている施設
海水ポンプ（原子炉補機泠却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ），海水ストレーナ（高圧炉心スプレイ補機冷却海水 ストレーナ），復水貯蔵タンク，地下軽油タンクピット
－降下火砕物の影響を受ける施設であって，その停止等により，外部事象防護対象施設等に波及的影響を及ぼし得る施設

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）排気消音器及び排気管

当該施設の許容荷重が，降下火砕物による荷重に対して安全裕度 を有することにより，構造健全性を失わず安全機能を損なわない設計とする。若しくは，降下火砕物が堆積しにくい又は直接堆積しな い構造とすることで，外部事象防護対象施設の安全機能を損なわな い設計とする。

評価対象施設等の建屋においては，建築基準法における一般地域 の積雪の荷重の考え方に準拠し，降下火砕物の除去を適切に行うこ とから，降下火砕物による荷重を短期に生じる荷重として扱う。ま た，降下火砕物による荷重と他の荷重を組合せた状態に対する許容限界は次のとおりとする。
－原子炉建屋，タービン建屋，制御建屋
原子炉建屋，タービン建屋および制御建屋は，各建屋の屋根スラ ブにおける建築基準法の短期許容応力度を許容限界とする。
－建屋を除く評価対象施設等
許容応力を「原子力発電所耐震設計技術指針 JEAG4601－1987（日本電気協会）」等に準拠する。
（b）粒子の衝突
評価対象施設等のらち，建屋及び屋外設備は，「粒子の衝突」に対 して，「1．8．2竜巻防護に関する基本方針」に基づく設計によって，外部事象防護対象施設の安全機能を損なわない設計とする。
b．降下火砕物による荷重以外に対する設計
降下火砕物による荷重以外の影響は，構造物への化学的影響（腐食），水循環系の閉塞，内部における摩耗及び化学的影響（腐食），換気系，電気系及び計測制御系に対する機械的影響（閉塞）及び化学的影響（腐食）等により安全機能を損なわない設計とする。

外気取入口からの降下火砕物の侵入に対する設計については，「c．外気取入口からの降下火砕物の侵入に対する設計」に示す。
（a）構造物への化学的影響（腐食）
評価対象施設等のらち，構造物への化学的影響（腐食）を考慮すべ き施設は，降下火砕物の直接的な付着による影響が考えられる以下 の施設である。
－建屋

原子炬建屋，タービン建屋，制御建屋
－屋外に設置されている施設
海水ポンプ（原子炬補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ），海水ストレーナ（高圧炬心スプレイ補機冷却海水 ストレーナ），非常用ガス処理系（屋外配管），排気筒，復水貯蔵夕 ンク，地下軽油タンクピット
－降下火砕物の影響を受ける施設であって，その停止等により，外部事象防護対象施設等に波及的影響を及ぼし得る施設

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）排気消音器及び排気管

金属腐食研究の結果より，降下火砕物に含まれる腐食性がスによ って直ちに金属腐食を生じないが，外装の塗装等によって短期での腐食により外部事象防護対象施設の安全機能を損なわない設計とす る。なお，降灰後の長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。
（b）水循環系の閉塞，内部における摩耗及び化学的影響（腐食）
評価対象施設等のらち，水循環系の閉塞，内部における摩耗及び化学的影響（腐食）を考慮すべき施設は，以下の施設である。
－降下火砕物を含む海水の流路となる施設
海水ポンプ（原子炬補機冷却海水ポンプ，高圧炉心スプレイ補機泠却海水ポンプ），海水ストレーナ（原子炉補機冷却海水ストレーナ，高圧炬心スプレイ補機冷却海水ストレーナ）及び下流設備
－降下火砕物の影響を受ける施設であって，その停止等により，外部事象防護対象施設等に波及的影響を及ぼし得る施設

海水取水設備（除塵装置）
降下火砕物は粘土質ではないことから水中で固まり閉塞すること はないが，当該施設については，降下火砕物の粒径に対し十分な流路幅を設けることにより，海水の流路となる施設が閉塞しない設計 とする。
内部における摩耗については，主要な降下火研物は砂と同等又は砂より硬度が低くもろいことから，摩耗による影響は小さい。また当該施設については，定期的な内部点検及び日常保守管理により，状沉に応じて補修が可能であり，摩耗により外部事象防護対象施設 の安全機能を損なわない設計とする。

化学的影響（腐食）については，金属腐食研究の結果より，降下火碑物によって直ちに金属腐食を生じないが，耐食性のある材料の

使用や塗装の実施等によって，腐食により外部事象防護対象施設の安全機能を損なわない設計とする。なお，長期的な腐食の影響につ いては，日常保守管理等により，状況に応じて補修が可能な設計と する。
（c）換気系，電気系及び計測制御系に対する機械的影響（閉塞）及び化学的影響（腐食）
評価対象施設等のらち，換気系，電気系及び計測制御系に対する機械的影響（閉塞）及び化学的影響（腐食）を考慮すべき施設は，以下の施設である。
－屋外に設置されている施設
海水ポンプ（原子炉補機泠却海水ポンプ，高圧炉心スプレイ補機泠却海水ポンプ）

機械的影響（閉塞）については，海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）の電動機本体は外気と遮断された全閉構造であり，また，原子炉補機冷却海水ポン プ電動機の空気冷却器の冷却管内径及び高圧炉心スプレイ補機冷却海水ポンプの冷却流路は降下火砕物粒径以上の幅を設ける構造とす ることにより，機械的影響（閉塞）により外部事象防護対象施設の安全機能を損なわない設計とする。

化学的影響（腐食）については，金属腐食研究の結果より，降下火砕物によって直ちに金属腐食を生じないが，耐食性のある材料の使用や塗装の実施等によって，腐食により外部事象防護対象施設の安全機能を損なうことのない設計とする。なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。
（d）絶縁低下及び化学的影響（腐食）
評価対象施設等のらち，絶縁低下及び化学的影響（腐食）を考慮 すべき施設は，以下の施設である。
－外気から取り入れた屋内の空気を機器内に取り込む機構を有する施設

計測制御設備（安全保護系），非常用電源設備（所内低圧系）
当該施設の設置場所は原子炉補機室換気空調系及び計測制御電源室換気空調系にて空調管理されており，本換気空調系の外気取入口 にはバグフィルタを設置していることから，仮に室内に侵入した場合でも降下火砕物は微量であり，粒径は極めて細かな粒子である。

また，中央制御室換気空調系については，外気取入ダンパを閉止

し閉回路循環運転を行うことにより侵入を阻止することも可能であ る。

バグフィルタの設置により降下火砕物の侵入に対する高い防護性能を有することにより，降下火砕物の付着に伴う絶縁低下及び化学的影響（腐食）による影響を防止し，計測制御設備（安全保護系），非常用電源設備（所内低圧系）の安全機能を損なわない設計とする。 c．外気取入口からの降下火砕物の侵入に対する設計

外気取入口からの降下火砕物の侵入に対して，以下のとおり安全機能を損なわない設計とする。
（a）機械的影響（閉塞）
評価対象施設等のらち，外気取入口からの降下火砕物の侵入によ る機械的影響（閉塞）を考慮すべき施設は，降下火砕物を含む空気 の流路となる以下の施設である。
－降下火砕物を含む空気の流路となる施設
非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機，非常用ディーゼル発電機含む。），非常用換気空調設備（外気取入口），非常用ガス処理系（屋外配管），排気筒

排気筒及び非常用ガス処理系（屋外配管）は，降下火砕物が侵入 した場合でも，排気筒の構造から排気流路が閉塞しない設計とする ことにより，降下火砕物の影響に対して機能を損なわない設計とす る。

また，外気を取り入れる非常用換気空調設備（外気取入口）の空気の流路にそれぞれフィルタを設置することにより，フィルタメッ シュより大きな降下火砕物が内部に侵入しにくい設計とし，さらに降下火砕物がフィルタに付着した場合でも取替又は清掃が可能な構造とすることで，降下火砕物により閉塞しない設計とする。

ディーゼル発電機機関は，フィルタを通過した小さな粒径の降下火砕物が侵入した場合でも，降下火砕物により閉塞しない設計とす る。
（b）機械的影響（摩耗）
評価対象施設等のうち，外気取入口からの降下火砕物の侵入によ る機械的影響（摩耗）を考慮すべき施設は，以下の施設である。
－降下火砕物を含む空気の流路となる施設のらち摺動部を有する施設

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）

主要な降下火砕物は砂と同等又は砂より硬度が低くもろいことか ら，摩耗の影響は小さい。

また，仮にディーゼル発電機機関の内部に降下火砕物が侵入した場合でも耐摩耗性のある材料を使用することで，摩耗により非常用 ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） の安全機能を損なわない設計とする。

外気を取り入れる非常用換気空調設備（外気取入口）にバグフィ ルタを設置することにより，フィルタメッシュより大きな降下火砕物が内部に侵入しにくい設計とし，摩耗により非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）の安全機能を損なわない設計とする。
（c）化学的影響（腐食）
評価対象施設等のらち，外気取入口からの降下火砕物の侵入によ る化学的影響（腐食）を考慮すべき施設は，以下の施設である。
－降下火砕物を含む空気の流路となる施設
非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。），非常用換気空調設備（外気取入口），非常用ガス処理系（屋外配管），排気筒

金属腐食研究の結果より，降下火砕物によって直ちに金属腐食を生じないが，塗装の実施等によって，腐食により外部事象防護対象施設の安全機能を損なわない設計とする。なお，降灰後の長期的な腐食の影響については，日常保守管理等により，状況に応じて補修 が可能な設計とする。
（d）大気汚染（発電所周辺の大気汚染）
大気汚染を考慮すべき中央制御室は，降下火砕物により汚染され た発電所周辺の大気が，中央制御室換気空調系の外気取入口を通じ て中央制御室に侵入しないようバグフィルタを設置することにより，降下火砕物が外気取入口に到達した場合であってもフィルタメッシ ュより大きな降下火砕物が内部に侵入しにくい設計とする。

また，中央制御室換気空調系については，外気取入ダンパの閉止及び閉回路循環運転を可能とすることにより，中央制御室内への降下火砕物の侵入を防止する。さらに外気取入遮断時において，酸素濃度及び二酸化炭素濃度の影響評価を実施し，室内の居住性を確保 する設計とする。
（6）降下火砕物の間接的影響に対する設計方針
降下火砕物による間接的影響として考慮する，広範囲にわたる送電

網の損傷による 7 日間の外部電源喪失及び発電所外での交通の途絶 によるアクセス制限事象が生じた場合については，降下火砕物に対し て非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含 む。）の安全機能を維持することで，発電用原子炉の停止及び停止後の発電用原子炉の冷却，並びに使用済燃料プールの泠却に係る機能を担 らために必要となる電源の供給が非常用ディーゼル発電機（高圧炉心 スプレイ系ディーゼル発電機含む。）により継続できる設計とすること により，安全機能を損なわない設計とする。電源の供給に関する設計方針は，「10．非常用電源設備」に記載する。

1．8．7．2 手順等

降下火砕物の降灰時における手順について，降下火砕物の除去（資機材含む。）等の対応を適切に実施するため，以下について手順を定める。
（1）降灰が確認された場合には，建屋や屋外の設備に長期間降下火砕物 の荷重をかけ続けないこと，また降下火砕物の付着による腐食等が生じる状況を緩和するために，評価対象施設等に堆積した降下火砕物の除灰を適切に実施する手順を定める。
（2）降灰が確認された場合には，状況に応じて外気取入ダンパの閉止，換気空調設備の停止又は閉回路循環運転により，建屋内への降下火砕物の侵入を防止する手順を定める。
（3）降灰が確認された場合には，非常用換気空調設備の外気取入口のバ グフィルタについて，バグフィルタの差圧を確認するとともに，状況に応じて取替え又は清掃を実施する。

1．8．7．3 参考文献

（1）（内閣府）広域的な火山防災対策に係る検討会（第3回）（資料3）
（2）「シラスコンクリートの特徴とその実用化の現状」武若耕司，コン クリート工学，Vol．42， 2004
（3）「新編火山灰アトラス［日本列島とその周辺］．第2刷」町田洋ほか，東京大学出版会， 2011
（4）「理科年表（2017）」国立天文台編
（5）「火山環境における金属材料の腐食」出雲茂人，末吉秀一ほか，防食技術 Vol．39， 1990

表1．8．7－1 評価対象施設等の抽出結果

	設備区分	評価対象施設等
外 部 事 象 防 護 対 象 施 設 等	建屋	- 原子炉建屋 - タービン建屋 - 制御建屋
	屋外に設置されてい る施設	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ） - 海水ストレーナ（高圧炉心スプレイ補機泠却海水ストレーナ） - 非常用ガス処理系（屋外配管） - 排気筒 - 復水貯蔵タンク - 地下軽油タンクピット
	降下火砕物を含む海水の流路となる施設	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ） －海水ストレーナ（原子炉補機冷却海水ストレーナ，高圧炉心 スプレイ補機冷却海水ストレーナ）及び下流設備
	降下火砕物を含む空気の流路となる施設	－非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含む。） －非常用換気空調設備（中央制御室換気空調系，原子炉補機室換気空調系，計測制御電源室換気空調系） - 非常用ガス処理系（屋外配管） - 排気筒
	外気から取り入れた屋内の空気を機器内 に取り込む機構を有 する施設	- 安全保護系電源盤 - 非常用所内電源系電源盤
外部事象防護対象施設等 に波及的影響を及ぼし得 る施設		－非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含む。）排気消音器及び排気管 －海水取水設備（除塵装置）

（3）適合性説明
第六条 外部からの衝撃による損傷の防止
1 安全施設は，想定される自然現象（地震及び津波を除く。次項において同じ。）が発生した場合においても安全機能を損なわないものでなければ ならない。
2 重要安全施設は，当該重要安全施設に大きな影響を及ぼすおそれがある と想定される自然現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生ずる応力を適切に考慮したものでなければならない。
3 安全施設は，工場等内又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によ るもの（故意によるものを除く。）に対して安全機能を損なわないもので なければならない。

適合のための設計方針
第1項について
発電所敷地で想定される自然現象（地震及び津波を除く。）については，敷地及び敷地周辺の自然環境を基に洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地すべり，火山の影響，生物学的事象，森林火災及び高潮を選定し，設計基準を設定するに当たっては，発電所の立地地域である女川町に対する規格•基準類による設定値及び発電所の最寄りの気象官署であ る石巻特別地域気象観測所で観測された過去の記録並びに大船渡特別地域気象観測所で観測された過去の記録をもとに設定する。また，これらの自然現象ごとに関連して発生する可能性がある自然現象も含める。

安全施設は，発電所敷地で想定される自然現象が発生した場合において も安全機能を損なわない設計とする。ここで，発電所敷地で想定される自然現象に対して，安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等（重大事故等対処設備を含む。）への措置を含める。

また，発電所敷地で想定される自然現象又はその組み合わせに遭遇した場合において，自然現象そのものがもたらす環境条件及びその結果として安全施設で生じ得る環境条件を考慮する。

発電用原子炉施設のらち安全施設は，以下のとおり条件を設定し，自然現象によって発電用原子炉施設の安全性が損なわれないようにする。
（9）火山の影響
外部事象防護対象施設は，降下火砕物による直接的影響及び間接的影響が発生した場合においても，安全機能を損なわないよう以下の設計と する。
a．直接的影響に対する設計
外部事象防護対象施設は，降下火砕物の直接的影響に対して，以下 により安全機能を損なわない設計とする。

- 構造物への静的負荷に対して安全裕度を有する設計とすること
- 水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること
- 換気系，電気系及び計測制御系に対する機械的影響（閉塞）に対し て降下火砕物が侵入しにくい設計とすること
－水循環系の内部における摩耗並びに換気系，電気系及び計測制御系 に対する機械的影響（摩耗）に対して摩耗しにくい設計とすること
－構造物の化学的影響（腐食），水循環系の化学的影響（腐食）並びに換気系，電気系及び計測制御系に対する化学的影響（腐食）に対し て短期での腐食が発生しない設計とすること
－発電所周辺の大気汚染に対して中央制御室換気空調系は降下火砕物 が侵入しにくく，さらに外気を遮断できる設計とすること
－電気系及び計測制御系の盤の絶縁低下に対して空気を取り込む機構 を有する計測制御設備（安全保護系）及び非常用電源設備（所内低圧系）の設置場所の非常用換気空調系は降下火砕物が侵入しにくい設計とすること
－降下火砕物による静的負荷や腐食等の影響に対して，降下火砕物の除去や非常用換気空調設備の外気取入口のバグフィルタの取替え若 しくは清掃，又は，換気空調系の停止若しくは閉回路循環運転の実施により安全機能を損なわない設計とすること

また，上記以外の安全施設については，降下火砕物に対して機能を維持すること，若しくは，降下火砕物による損傷を考慮して，代替設備により必要な機能を確保すること，安全上支障のない期間での除灰，修復等の対応を行らこと，又は，それらを適切に組み合わせることで， その安全機能を損なわない設計とする。
b．間接的影響に対する設計
降下火砕物による間接的影響として考慮する，広範囲にわたる送電網の損傷による7日間の外部電源喪失及び発電所外での交通の途絶 によるアクセス制限事象が生じた場合については，降下火砕物に対し て非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含

む。）の安全機能を維持することで，発電用原子炉の停止及び停止後の発電用原子炉の冷却，並びに使用済燃料プールの冷却に係る機能を担 らために必要となる電源の供給が非常用ディーゼル発電機（高圧炉心 スプレイ系ディーゼル発電機含む。）により継続できる設計とすること により，安全機能を損なわない設計とする。

女川原子力発電所 2 号炬

火山影響評価について

$$
<\text { 目 次 }>
$$

1．基本方針

1.1 概要

1．2 火山影響評価の流れ
2．立地評価
2.1 原子力発電所に影響を及ぼし得る火山の抽出
2.2 運用期間における火山活動に関する個別評価

3．影響評価
3．1 火山事象の影響評価
3.2 火山事象（降下火砕物）に対する設計の基本方針
3.3 火山事象（降下火砕物）から防護する施設
3.4 降下火砕物による影響の選定
3.5 設計荷重の設定
3.6 降下火砕物に対する設計
3.7 降下火砕物の除去等の対策

4．まとめ

補足資料
1．評価ガイドとの整合性について
2．降下火砕物の特徴及び影響モードと，影響モードから選定された影響因子に対し影響を受ける評価対象施設等の組合せについて
3．降下火砕物による摩耗について
4．降下火砕物の化学的影響（腐食）について
5．降下火砕物による非常用ディーゼル発電機の吸気に係るバグフィルタ の影響評価について
6．降下火砕物の侵入による非常用ディーゼル機関空気冷却器への影響に ついて

7 。降下火砕物の侵入による潤滑油への影響について
8．降下火砕物の金属腐食研究について
9．計測制御設備及び非常用電源設備への降下火砕物の影響について
10．建屋等の降灰除去について
11．降下火砕物降灰時のバグフィルタ取替手順について
12．観測された諸噴火の最盛期における噴出率と継続時間について

13．重大事故等対処設備への考慮について
14．水質汚染に対する補給水等への影響について
15．気中降下火砕物の対策に係る検討状況について
16．女川原子力発電所における気中降下火砕物濃度の算出について
17．降下火砕物と積雪荷重との組合せについて
18．降灰時の外部支援及び開閉所の除灰の成立性検討について
19．降下火砕物による摩耗や融解の影響について
20．外部事象に対する津波防護施設，浸水防止設備及び津波監視設備の防護方針について
21．火山影響評価における監視カメラ及びモニタリングポストの扱いについて

1．基本方針

1.1 概要

原子力規制委員会の定める「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則（平成 25 年 6 月 28 日原子力規制委員会規則第五号）」第六条に おいて，外部からの衝撃による損傷防止として，安全施設は，想定される自然現象（地震及び津波を除く。）が発生した場合においても安全機能を損なわないものでなければな らないとしており，敷地周辺の自然環境を基に想定される自然現象の一つとして，火山 の影響を挙げている。

火山の影響により発電用原子炉施設の安全性を損なわない設計であることを評価する ため，火山影響評価を行い，発電用原子炬施設へ影響を与えないことを評価する。

1．2 火山影響評価の流れ

火山影響評価は，「原子力発電所の火山影響評価ガイド」を参照し，図1．2－1 のフロ ーに従い立地評価と影響評価の 2 段階で行う。

立地評価では，原子力発電所に影響を及ぼし得る火山の抽出を行い，抽出された火山 の火山活動に関する個別評価を行う。具体的には設計対応不可能な火山事象が女川原子力発電所の運用期間中に影響を及ぼす可能性の評価を行う。

設計対応不可能な火山事象が影響を及ぼす可能性が十分低いと評価された場合は，原子力発電所に影響を与える可能性のある火山事象の抽出とその影響評価を行う。

影響評価では，個々の火山事象への設計対応及び運転対応の妥当性について「3．1 火山事象の影響評価」にて評価を行う。（図 1．2－2）

なお，立地評価及び原子力発電所に影響を与える可能性のある火山事象の抽出とその影響評価については，「添付書類六 7．火山」にて示す。

図 1．2－1 火山影響評価の基本フロー「原子力発電所の火山影響評価ガイド」から抜粋

図 1．2－2 影響評価の詳細フロー

2．立地評価

2.1 原子力発電所に影響を及ぼし得る火山の抽出

地理的領域内に分布する第四紀火山（31 火山）について，完新世における活動の有無及び噴火履歴より将来の火山活動の可能性を検討し，原子力発電所に影響を及ぼし得る火山を抽出した。

その結果，焼石岳，鳥海山，栗駒山，鳴子カルデラ，肘折カルデラ，月山，蔵王山，笹森山，吾妻山，安達太良山及び磐梯山の 11 火山を将来の活動可能性のある火山又は将来の活動可能性を否定できない火山として抽出した。

2.2 運用期間における火山活動に関する個別評価

将来の活動可能性のある火山又は将来の活動可能性を否定できない火山として抽出し た 11 火山を対象として，文献調査に基づき，女川原子力発電所 2 号炉の運用期間中にお ける火山活動に関する設計対応不可能事象（火砕物密度流，溶岩流，岩屃なだれ，地滑 り及び斜面崩壊，新しい火口の開口，地殻変動）の個別評価を行った。

火砕物密度流による堆積物が敷地及び敷地周辺では確認されておらず，敷地まで十分 な離隔距離があることから，発電所に影響を及ぼす可能性は十分に低いと評価した。

溶岩流，岩屑なだれ，地滑り及び斜面崩壊については，それぞれの火山と敷地との位置関係より，敷地まで十分な離隔距離があることから，発電所に影響を及ぼす可能性は十分に低いと評価した。

新しい火口の開口及び地殻変動については，敷地が火山フロントより前弧側に 50 km以上離れていること，敷地周辺では火成活動が確認されていないことから，発電所に影響を及ぼす可能性は十分に低いと評価した。

以上の検討結果より，発電所の運用期間中に設計対応不可能な火山事象が，発電所に影響を及ぼす可能性は十分に低いと評価した。また，これらの火山事象は，既往最大規模の噴火を考慮しても，発電所に影響を及ぼさないと評価し，火山モニタリングは不要 と判断した。

3．影響評価

3.1 火山事象の影響評価

将来の活動可能性が否定できない火山について，女川原子力発電所 2 号炉の運用期間中の噴火規模を考慮し，それが噴火した場合，原子力発電所の安全機能に影響を及ぼし得る火山事象を抽出した結果，降下火砕物（火山灰）（以下「降下火砕物」という。）の みが女川原子力発電所に影響を及ぼし得る火山事象であるという結果となった。

原子力発電所敷地内の地質調査において確認した降下火砕物の最大層厚は 10 cm であ り，肘折カルデラを給源とする降下火砕物（肘折尾花沢テフラ）であることを確認して いる。なお，原子力発電所敷地内では沖積層がジュラ系の地層を不整合に覆っており，更新世の地層が確認されないことを確認している。

一方，女川原子力発電所 2 号炉の運用期間中に，このような規模の降下火砕物が敷地周辺に生じる蓋然性を確認するため，文献調査結果，敷地周辺で実施した露頭調查の結果及び降下火砕物シミュレーション結果を用い評価した。降下火砕物シミュレーション の対象火山は，網羅的に抽出するため，原子力発電所敷地周辺で確認されている降下火砕物の給源火山，過去の噴出物のタイプを考慮して鳴子カルデラ，蔵王山，肘折カルデ ラ及び十和田とし，風速や風向の不確かさを考慮して，約 12.5 cm （鳴子カルデラ）とい ら層厚を導いた。想定する降下火砕物堆積量は，この評価結果（約 12.5 cm ）を基に設定 するが，原子力発電所敷地内では更新世の地層が確認されないことも踏まえ，さらに，堆積量評価結果に保守性を考慮することとし，基準降下火砕物堆積量を 15 cm と設定した。 そのほか得られた降下火砕物の特性を表 3．1－1，及び表3．1－2に示す。なお，鉛直荷重 については，湿潤状態の降下火砕物に，過去の観測記録に基づく石巻地域における平均的な積雪量を考慮し設定する。また粒径及び密度については，文献調査，地質調査及び降下火砕物シミュレーションの結果を踏まえ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）と設定した。

表3．1－1 降下火砕物特性の設定結果

項 目	設 定	備 考
層 度	15 cm	「構造物への静的負荷」の評価に使用
密 度	$\begin{aligned} & 0.7 \mathrm{~g} / \mathrm{cm}^{3} \sim 1.5 \mathrm{~g} / \mathrm{cm}^{3} \\ & (\text { 乾燥状態 })(\text { 湿潤状態) } \end{aligned}$	
堆積荷重 ${ }^{1}$	2547N／m ${ }^{2}$	
粒 径	2 mm 以下	「水循環系の閉塞」及び「換気，電気系及び計測制御系に対する機械的影響」の評価に使用
化学的特性	火山ガス成分が付着	火山ガス成分には，化学的腐食や給水 の汚染を引き起こす成分（塩素イオン， フッ素イオン，硫化物イオン等）が含 まれる。

表3．1－2 火山影響評価ガイド添付 1 の手法により算出した気中降下火砕物の特性

ϕ	$-1 \sim 0$	$0 \sim 1$	$1 \sim 2$	$2 \sim 3$	$3 \sim 4$	$4 \sim 5$	$5 \sim 6$	$6 \sim 7$
粒径 $\mathrm{i}(\mathrm{mm}) * 4$	1.4	7.1×10^{-1}	3.5×10^{-1}	1.8×10^{-1}	8.8×10^{-2}	4.4×10^{-2}	2.2×10^{-2}	1.1×10^{-2}
粒径 i の割合 $\mathrm{p}_{\mathrm{i}}(\mathrm{wt} \%)$	2.9×10^{-5}	14.0	59.0	17.0	7.9	2.2	0.26	0.032
堆積速度 $\mathrm{v}_{\mathrm{i}}\left(\mathrm{g} / \mathrm{s} \cdot \mathrm{m}^{2}\right)$	5.1×10^{-7}	0.24	1.0	0.30	0.14	3.8×10^{-2}	4.5×10^{-3}	5.6×10^{-4}
堆積期間 $\mathrm{t}(\mathrm{h})$	24							

$※ 1:$ 湿潤状態の降下火砕物の荷重 $\left(0.15 \mathrm{~m} \times 1500 \mathrm{~kg} / \mathrm{m}^{3} \times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
＋降下火砕物による荷重と組み合わせる積雪荷重 $\left(17 \mathrm{~cm} * 2 \times 20 \mathrm{~N} /\left(\mathrm{m}^{2} \cdot \mathrm{~cm}\right) * 3\right)=2,547 \mathrm{~N} / \mathrm{m}^{2}$
※2：降下火砕物による荷重と組み合わせる積雪荷重は石巻地域における年最大積雪深さ の平均値とする。
※3：建築基準法施行令に基づく積雪の単位荷重（積雪 1 cm 当たり $20 \mathrm{~N} / \mathrm{m}^{2}$ ）
※ 4：ϕ スケール $\left(\mathrm{i}=2^{-\phi}(\mathrm{mm})\right)$ による中央粒径を示す

3.2 火山事象（降下火砕物）に対する設計の基本方針

将来の活動可能性が否定できない火山について，女川原子力発電所 2 号炉の運用期間中の噴火規模を考慮し，発電所の安全機能に影響を及ぼし得る火山事象を抽出した結果，
「3．1 火山事象の影響評価」に示すとおり該当する火山事象は降下火砕物のみであり，地理的領域（160km）の広範囲に影響を及ぼす降下火砕物に対し，安全施設の安全機能を損なわない設計とする。以下に火山事象（降下火砕物）に対する設計の基本方針を示す。
（1）降下火砕物による直接的な影響（荷重，閉塞，摩耗，腐食等）に対して，安全機能 を損なわない設計とする。
（2）原子力発電所内の構築物，系統及び機器における降下火砕物の除去等の対応が可能 な設計とする。
（3）降下火砕物による間接的な影響である 7 日間の外部電源の喪失，発電所外での交通 の途絶によるアクセス制限事象に対し，発電所の安全性を維持するために必要とな る電源の供給が継続でき，安全機能を損なわない設計とする。

3.3 火山事象（降下火砕物）から防護する施設

「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則（平成 25 年 6 月 28 日原子炉規制委員会規則第五号）」第六条において，「安全施設は，想定される自然現象が発生した場合においても安全機能を損なわないものでなければなら ない。」とされていることから，降下火砕物の影響から防護する施設は，発電用原子炉施設の安全性を確保するため，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されている安全重要度分類クラス 1 ，クラス 2 及びクラス 3 に該当す る構築物，系統及び機器とする。

また，以下の点を踏まえ，外部事象防護対象施設は，発電用原子炉を停止するため又 は停止状態にある場合は引き続きその状態を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物，系統及び機器，並びに使用済燃料プール の冷却機能及び給水機能を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物，系統及び機器として安全重要度分類のクラス 1 ，クラス 2及び安全評価上その機能に期待するクラス 3 に属する構築物，系統及び機器とする。ま た，外部事象防護対象施設及び外部事象防護対象施設を内包する建屋を併せて外部事象防護対象施設等という。

- 降下火砕物襲来時の状況を踏まえ，必要に応じプラント停止の措置をとること
- プラント停止後は，その状態を維持することが重要であること

その上で，外部事象防護対象施設等のうち，屋内設備は内包する建屋により防護する設計とし，評価対象施設を，建屋，屋外に設置されている施設，降下火砕物を含む海水 の流路となる施設，降下火砕物を含む空気の流路となる施設，外気から取り入れた屋内 の空気を機器内に取り込む機構を有する施設に分類し抽出する。また，評価対象施設及 び外部事象防護対象施設等に波及的影響を及ぼし得る施設を評価対象施設等という。

上記以外の安全施設については，降下火砕物に対して機能を維持すること若しくは降下火砕物による損傷を考慮して，代替設備により必要な機能を確保すること，安全上支障のない期間での除灰，修復等の対応又はそれらを適切に組み合わせることで，その安全機能を損なわない設計とする。
以上を踏まえた抽出フローを図3．3－1 に示す。抽出フローに基づき抽出した評価対象施設等表 3．3－1，表 3．3－2 に示すとともに，評価対象施設等の設置場所を図 3．3－ 3 に示す。

なお，津波防護施設は重要度分類指針におけるクラス 1 ，クラス 2 及びクラス 3 に属 する構築物，系統及び機器に該当しないが，基準津波の高さや防護範囲の広さ等の重要性を鑑み，自主的に機能維持のための配慮を行う。
（補足資料－20）

6 条（火山）一別添 1－7

※1 運転時の異常な過渡変化及び設計基準事故解析
※2 降下火砕物に対して機能を維持すること若しくは降下火砕物による損傷を考慮して，代替設備により必要な機能を確保すること，安全上支障のない期間での除灰，修復等の対応が可能であることを確認する。

図 3．3－1 外部事象防護対象施設等の抽出フロー

6 条（火山）一別添 1－8

表 3．3－1 評価対象施設等の抽出結果

	設備区分	評価対象施設等
外 部 事 象 防 護 対 象 施 設 等	建屋	- 原子炉建屋 - タービン建屋 - 制御建屋
	屋外に設置されている施設	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ） - 海水ストレーナ（高圧炉心スプレイ補機冷却海水ストレーナ） - 非常用ガス処理系（屋外配管） - 排気筒 - 復水貯蔵タンク - 地下軽油タンクピット
	降下火砕物を含む海水の流路となる施設	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ） －海水ストレーナ（原子炉補機冷却海水ストレーナ，高圧炉心ス プレイ補機冷却海水ストレーナ）及び下流設備
	降下火砕物を含む空気の流路となる施設	－非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機含む。） －非常用換気空調設備（中央制御室換気空調系，原子炉補機室換気空調系，計測制御電源室換気空調系） - 非常用ガス処理系（屋外配管） - 排気筒
	外気から取り入れた屋内 の空気を機器内に取り込 む機構を有する施設	- 計測制御設備（安全保護系） - 非常用電源設備（所内低圧系）
外部事象防護対象施設に波及的影響を及ぼし得る施設		－非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含む。）排気消音器及び排気管 －海水取水設備（除塵装置）

表 3．3－2 評価対象施設等の抽出結果（ $1 / 7$ ）												O：Yes \times ：No－：該当せず					
重要度分類指針				女川原子力発電所 2 号炉		STEP1	抽出の観点＊${ }^{*}$						$\begin{aligned} & \text { 設置 } \\ & \text { 場所 } \\ & \cline { 2 - 2 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 施設等 } \end{aligned}$	備考		
				STEP2	STEP3												
分類	定義	機能	構築物，系統又は機器					構築物，系続又は機器		（1）	（2）	（3）				（4）	（5）
PS－1	その損傷又は故障 により発生する事象によって，（a）炉心の著しい損傷，又 は（b）燃料の大量の破損を引き起こす おそれのある構築物，系統及び機器			原子炬圧力容器		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
			原子炉冷却材圧刀バウ	原子炬再循環ポンプ		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		1）原子炉冷却材圧力バウン	ンタリを構成する機器•配管系（計装等の	配管，弁		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		ダリ機能	器•配管系（撞表等の	原子炉圧力容器バウン	離弃	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒駆動機構ハウジ		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				中性子束計装ハウジン		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		2）過剰反応度の印加防止機	制御棒カップリング	制御棒カップリング		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		能	制唌俸カップリング	制御棒駆動機構カップ		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		3）炉心形状の維持機能	炉心支持構造物（炉心 シュラウド，シュラウ ドサポート，上部格子板，炉心支持板，制御棒案内管），燃料集合体（ただし，燃料を除 く。）	炬心シュラウド		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				シュラウドサポート		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				上部格子板		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				炬心支持板		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				燃料支持金具		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒案内管		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒駆動機構ハウジン		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				燃料集合体（上部タイ	－	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				燃料集合体（下部タイ	ト）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				燃料集合体（スペーサ）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				直接関連系 （燃料集合体）	チャンネルボックス	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
MS－1	1）異常状態発生時 に原子炉を緊急 に停止し，残留熱 を除去し，原子炉冷却材圧力バウ ンダリの過圧を防止し，敷地周辺公衆への過度の放射線の影響を防止する構築物，系統及び機器	1）原子炉の緊急停止機能	原子炬停止系の制御棒 による系（制御棒及び制御棒駆動系（スクラ ム機能））	制御棒		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒案内管		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒駆動機構		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒駆動機構カップリング		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				直接関連系 （制御棒駆動水圧系）	水圧制御ユニット（スクラ ムパイロット弁，スクラム弁，アキュムレータ，窒素容器，配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		2）末臨界維持機能	原子炬停止系（制御棒 による系，ほう酸水注入系）	制御棒		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				制御棒カップリング		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				直接関連系 （制御棒駆動水圧系）	制御棒駆動機構	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
					制御棒駆動機構ハウジング	\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
				ほう酸水注入系（ポンプ，注入弁，タンク出口弁，貯蔵 タンク，ポンプ吸达配管及び弁，注入配管及び弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			
		3）原子炬冷却材圧力バウン ダリの過圧防止機能	逃がし安全弁（安全弁 としての開機能）	主蒸気逃がし安全弁（安全弁としての開機能）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－			

○：Yes $\times:$ No $-:$ 該当せず

分類	重要度分類指針			女川原子力発電所 2 号炉		抽出の観点＊							$\begin{aligned} & \text { 設置 } \\ & \text { 場所 } \end{aligned}$	$\begin{aligned} & \hline \begin{array}{c} \text { 評価 } \\ \text { 対象 } \\ \text { 施設等 } \end{array} . \end{aligned}$	備考	
	定義	機能	$\begin{gathered} \hline \text { 構築物, 系統又は } \\ \text { 機器 } \end{gathered}$	構築物，系統又は機器		STEP1	STEP2					STEP3				
						（1）	（2）	（3）	（4）	（5）						
MS－1	1）異常状態発生時 に原子炉を緊急 に停止し，残留熱 を除去し，原子炉泠却材圧力バウ ンダリの過圧を防止し，敷地周辺公衆への過度の放射線の影響を防止する構築物，系統及び機器	4）原子炉停止後の除熱機能	残留熱を除去す る系統（残留熱除去系（原子炉停止時冷却モード）原子炉隔離時冷却系，高圧灲心ス プレイ系，逃がし安全弁（手動逃が し機能），自動減圧系（手動逃がし機能））	残留熱除去系（ポンプ，熱交換器，原子灲停止時冷却モードのルート となる配管及び弁）			\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （残留熱除去系）	熱交換器バイパス配管及び弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				原子炉隔離時冷却系（ポンプ，サプレッションチェンバ，タービン， サプレッションチェンバから注水先までの配管，弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				直接関連系 （原子炉隔離時冷却系）	タービンへの蒸気供給配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					ポンプミニマムフローラインの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					$\begin{aligned} & \text { サプレッションチェンバ内のストレ } \\ & \text { ーナ } \end{aligned}$	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					復水貯蔵タンク	\bigcirc	\times	\bigcirc	\times	\times	\times	\times	屋外	\bigcirc		
					ポンプの復水貯蔵タンクからの吸込弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					ポンプの復水貯蔵タンクからの吸込配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					潤滑油冷却器及びその泠却器までの泠却水供給配管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				$\begin{aligned} & \text { 高圧炉心スプレイ系 (ポンプ, } \\ & \text { ヨンチェバからスプレイ先 } \end{aligned}$	サプレッションチェンバ，サプレッシ での配管，弁，スプレイスパージャ）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					ポンプミニマムフローラインの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					$\begin{aligned} & \text { サプレッションチェンバ内のストレ } \\ & \text { ーナ } \end{aligned}$	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				直接関連系 （高圧炬ふスプレイ系）	復水貯蔵タンク	\bigcirc	\times	\bigcirc	\times	\times	\times	\times	屋外	\bigcirc		
					ポンプの復水貯蔵タンクからの吸込弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
					ポンプの復水貯蔵タンクからの吸込配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				主蒸気逃がし安全弁（手動逃が	し 機能）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				直接関連系	原子炉圧力容器から主蒸気逃がし安全弁までの主蒸気配管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				（主蒸気逃がし安全弁（手動逃がし機能））	駆動用窒素源（アキュムレータ，ア キュムレータから主蒸気逃がし安全弁までの配管，并）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				自動減圧系（手動逃がし機能）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				直接関連系	原子炉圧力容器から主蒸気逃がし安全弁までの主蒸気配管	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		
				（自動減圧系（手動逃がし機能））	駆動用窒素源（アキュムレータ，ア キュムレータから主蒸気逃がし安全弁までの配管，弁）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－		

$\begin{aligned} & \text { 强 } \\ & \text { 閣 } \end{aligned}$																							
	1	।	，	।	।	，	।	1		O 1	1	1	।	1	।	＇				1	1	1	1
	\simeq		\approx	$\stackrel{*}{6}$	\approx	\approx	\approx	\simeq	\approx	\simeq	\simeq	\approx		\simeq	\approx	\simeq	\simeq						
朇	\times	$\times \times$	$\times \times$	\times	$\times \times$		\times	\times	\times														

进路
H鲻 \qquad

궁
屋原子炉格納容

原子炉格納容器，	直接関連系
原子炉格納容器	（原子炉格納

直接子㤱格納容器）
原子炉建屋
（原子炉建屋（原子炉建 原子炉棟給排気隔離弁
直接関連系 主蒸気隔離弁駆動用空気又
及び格納容器バウンダリ キュムレータ，アキュムレ主蒸気流量制限器

構築物，系統又は
機哭

○：Yes $\times:$ No $-:$ 該当せず

$\begin{aligned} & \text { 竍 } \\ & \text { 島 } \end{aligned}$																			
	1	।	।	।	\bigcirc	1	1	।	।	\bigcirc	1	\bigcirc	\times	।	\bigcirc	।	\times	\times	\times
	\propto	\simeq	\simeq	\simeq	$\left\lvert\, \frac{1}{\text { 免 }}\right.$	\simeq	\simeq	๕	\sim	0	0	\simeq		\simeq	$\underset{\substack{\text { 遍 } \\ \approx}}{\substack{2}}$	\simeq	$\underset{\substack{\text { 离 } \\ \sim}}{\substack{2}}$		
$\begin{aligned} & \stackrel{\omega}{c \mid} \\ & \stackrel{y}{c \mid} \end{aligned}$	\times	\bigcirc	\times	\times	\times	\times													

 $※ 2: ~ \mathrm{R}=$ 原子炉建屋， $\mathrm{C}=$ 制御建屋， $\mathrm{T}=$ タービン建屋， $\mathrm{L} O=$ 地下軽油タンクピット， $\mathrm{D}=$ 固体廃棄物貯蔵所， $\mathrm{HB}=$ 補助ボイラー建屋， $\mathrm{TSC}=$ 緊急時対策所

重要度分類指針				女川原子力発電所 2 号炉		抽出の観点＊${ }^{*}$							$\begin{aligned} & \hline \text { 設置 } \\ & \text { 場所 } \end{aligned}$	$\begin{array}{\|c} \hline \text { 評価 } \\ \text { 対 } \\ \text { 匏像等 } \end{array}$	備考
分類	定義	機能	構築物，系統	構築物，系統又は機器		STEP1						STEP3			
分䝷	定我	機能					（1）	（2）	（3）	（4）	（5）				
MS－1	2）安全上必須なその他の構築物，系統及び機器	2）安全上特に重要な関連機能	非常用所内電源系，制御室及びその遮へ い，非常用換気空調系，非常用補機冷却水系，直流電源系（いずれ も，MS－1 関連 のもの）	中央制御室及び中央制御室还	へい	\bigcirc	\times	\times	\times	\times	\times	\times	C	－	
				中央制御室換気空調系（放防護機能）（再循環送風機気調和装置，送風機，排風	寸線防護機能及び有毒ガス再循環フィルタ装置，空 ダクト及びダンパ）	\bigcirc	\times	\times	\times	\bigcirc	\times	\times	c	\bigcirc	非常用換気空調設備 （外気取入口）
				原子炉補機冷却水系（ポン荷冷却ライン配管，弁（MS	プ，熱交換器，非常用系負関連）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （原子炉補機冷却水系）	サージタンク	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				高圧炬心スプレイ補機冷却配管，弁）	系（ポンプ，熱交換器，	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （高圧炝心スプレイ補機冷却水系）	サージタンク	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				原子炉補機冷却海水系（ポ十（MS－1 関連））	プ，配管，弁，ストレー	\bigcirc	\times	\bigcirc	\bigcirc	\times	\times	\times	R，屋外	\bigcirc	原子炉補機冷却海水 ポンプ
					ストレーナ（異物除去機能をつかさどる部分）	\bigcirc	\times	\times	\bigcirc	\times	\times	\times	R	－	原子炬補機冷却海水 ストレーナ
				直接関連系 （原子炉補機冷却海水系）	取水路（屋外トレンチ含 む）	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	屋外	\bigcirc	海水取水設備（除塵装置）（補修の実施によ り対応）
				高圧炉心スプレイ補機椧却海 ストレーナ）	水系（ポンプ，配管，弁，	\bigcirc	\times	\bigcirc	\bigcirc	\times	\times	\times	R，屋外	\bigcirc	高圧炉心スプレイ補機椧却海水ポンプ
				直接関連系	ストレーナ（異物除去機能をつかさどる部分）	\bigcirc	\times	\bigcirc	\bigcirc	\times	\times	\times	R，屋外	\bigcirc	$\begin{aligned} & \text { 高圧炬心スプレイ補 } \\ & \text { 機洽却海水ストレレー } \\ & + \end{aligned}$
				却海水系）	取水路（屋外トレン于含 む）	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	屋外	\bigcirc	海水取水設備（除塵装置）（補修の実施によ り対応））
				直流電源設備（蓄電池，蓄配電設備及び電路（MS－1 関	池から非常用負荷までの ）	\bigcirc	\times	\times	\times	\times	\times	\times	R，C	－	
				計測制御用電源設備（蓄電 までの配電設備及び電路（	也加非常用計測制御装置 －1 関連））	\bigcirc	\times	\times	\times	\bigcirc	\times	\times	R，C	\bigcirc	関連設備として非常用換気空調設備（計測制御電源室換気空調系）を抽出
PS－2	1）その損傷又は故障により発生する事象によって，炉心の著しい損傷又は燃料の大量 の破損を直ちに引き起こす おそれはないが，敷地外への過度の放射性物質の放出の おそれのある構築物，系統及 び機器	1）原子炬冷却材を内蔵 する機能（ただし，原子炬冷却材圧力バウ ンダリから除外され ている計装等の小口径のもの及びバウン ダリに直接接続され ていないものは除 く。）	主蒸気系，原子炬冷却材浄化系（いずれ も，格納容器隔離升の外側 のみ）	原子炉冷却材浄化系（原子外の部分）	冷却材圧力バウンダリ以	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				主蒸気系（原子炉冷却材圧力バウンダリ以外の部分）		\bigcirc	\times	\times	\times	\times	\times	\times	R，T	－	
				原子炉隔離時冷却系（原子炉冷却材圧力バウンダリ以外の部分でタービン止め弁まで）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	

○：Yes $\times:$ No $-:$ 該当せず※3

重要度分類指針				女川原子力発電所 2 号炉		抽出の観点＊1							$\begin{aligned} & \text { 設置 } \\ & \text { 場所 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 評価 } \\ \text { 对対象 } \\ \text { 施設等 } \end{array}$	備考
分類	定義	機能	構築物，系統又は機器	構築物，	統又は機器	STEP1			TEP2			STEP3			
PS－2	1）その損傷又は故障に より発生する事象に よって，炉心の著し い損傷又は燃料の大量の破損を直ちに引 き起こすおそれはな いが，敷地外への過度の放射性物質の放出のおそれのある構築物，系統及び機器	2）原子炉冷却材圧力バ ウンダリに直接接続 されていないもので あって，放射性物質 を貯蔵する機能	放射性廃棄物処理施設 （放射能インベントリ の大きいもの），使用済燃料プール（使用済燃料貯蔵ラックを含 む。）	気体廃棄物処理系（活性炭式希ガスホールドアップ装置）		\bigcirc	（1）	（2） \times	（3）	（4）	（5） \times	\times	－	施詎寺	
				使用斎燃料プール（使用済燃料貯蔵ラックを含む）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				新燃料貯蔵庫（臨界を防止する機能）（新燃料貯蔵ラ ック）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		3）燃料を安全に取り扱 ら機能	燃料取扱設備	燃料交換機		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				原子炉建屋クレーン		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （燃料取扱設備）	原子炉ウェル	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
	2）通常運転時及び運転時の異常な過渡変化時に作動を要求され るものであって，そ の故障により，炉心泠却が損なわれる可能性の高い構築物，系統及び機器	1）安全弁及び逃がし弁 の吹き止まり機能	逃がし安全弁（吹き止 まり機能に関連する部分）	主蒸気逃がし安全弁（吹	止まり機能）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
MS－2	1）PS－2 の構築物，系統及び機器の損傷又は故障により敷地周辺公衆に与える放射線 の影響を十分小さく するようにする構築物，系統及び機器	1）燃料プール水の補給機能	非常用補給水系	残留熱除去系（ポンプ，サプレッションチェンバ，サ プレッションチェンバ内のストレーナから燃料プール までの配管，弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				直接関連系 （残留熱除去系）	ポンプミニマムフローライ ンの配管，弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
					$\begin{aligned} & \text { サプレッションチェンバ内 } \\ & \text { のストレーナ } \end{aligned}$	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
		2）放射性物質放出の防止機能	放射性気体廃棄物処理系の隔離弁，排気筒（非常用ガス処理系排気管 の支持機能以外）	気体廃棄物処理系の隔離弁		\bigcirc	\times	\times	\times	\times	\times	\times	T	－	
				排気筒		\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\times	屋外	\bigcirc	
				燃料プール泠却浄化系の燃料プール注入逆止弁		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
			燃料集合体落下事故時放射能放出を低減する系	原子炉建屋（原子炉建屋原子炉棟（ブローアウトパネル付き））		\bigcirc	\times	\times	\times	\times	\times	\times		\bigcirc	外殻施設
				直接関連系 （原子炉建屋原子炉棟）	原子炬楝給排気隔離弁	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
				非常用ガス処理系（乾燥装置，排風機，フィルタ装置，原子炉建屋原子炉棟吸込口から排気筒までの配管，弁）		\bigcirc	\times	\times	\times	\times	\times	\times	R	－	
						\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\times	屋外	\bigcirc	一部の屋外配管
				直接関連系 （非常用ガス処理系）	乾燥装置（乾燥機能部分）	\bigcirc	\times	\times	\times	\times	\times	\times	R	－	

 $※ 2: \mathrm{R}=$ 原子炉建屋， $\mathrm{C}=$ 制御建屋， $\mathrm{T}=$ タービン建屋， $\mathrm{L} 0=$ 地下軽油タンクピット， $\mathrm{D}=$ 固体廃重物貯蔵所， $\mathrm{HB}=$ 補助ボイラー建屋， $\mathrm{TSC}=$ 緊急時対策所
○：Yes $\times:$ No - ：該当せず※3
 $※ 2: \mathrm{R}=$ 原子炉建屋， $\mathrm{C}=$ 制御建屋， $\mathrm{T}=$ タービン建屋， $\mathrm{L} O=$ 地下軽油タンクピット， $\mathrm{D}=$ 固体廃棄物貯蔵所， $\mathrm{HB}=$ 補助ボイラー建屋， $\mathrm{TSC}=$ 緊急時対策所

6 条（火山）一別添 $1-17$
計測制御設備及び非常用電源設備

6 条（火山）—別添 $1-19$
43

3.4 降下火砕物による影響の選定

降下火砕物の特徴及び評価対象施設等の構造や設置状況等を考慮して，降下火砕物が直接及ぼす影響（以下「直接的影響」という。）とそれ以外の影響（以下「間接的影響」という。）を選定する。

3．4．1 降下火砕物の特徴

各種文献の調査結果より，降下火砕物は以下の特徴を有する。
（1）火山ガラス片，鉱物結晶片から成る。ただし，火山ガラス片は砂よりもろく硬度は低く，主要な鉱物結晶片の硬度は砂と同等，又はそれ以下である。
（2）硫酸等を含む腐食性のガス（以下「腐食性ガス」という。）が付着している。 ただし，金属腐食研究の結果より，直ちに金属腐食を生じさせることはない。
（3）水に濡れると導電性を生じる。
（4）湿った降下火砕物は乾燥すると固結する。
（5）降下火砕物粒子の融点は約 $1,000^{\circ} \mathrm{C}$ であり，一般的な砂に比べ低い。 （補足資料－2，3，8，19）

3． 4.2 直接的影響

降下火砕物の特徴から直接的影響の要因となる荷重，閉塞，摩耗，腐食，大気汚染，水質汚染及び絶縁影響を抽出し，評価対象施設等の構造や設置状況等を考慮して直接的な影響因子を以下のとおり選定する。なお，女川原子力発電所2号炉で想定される降下火砕物の条件を考慮し，表3．4．2－1に示す項目について評価 を実施する。
（1）直接的影響の要因の選定と評価手法
（a）荷重
「荷重」について考慮すべき影響因子は，建屋及び屋外設備の上に堆積し静的な負荷を与える「構造物への静的負荷」，並びに建屋及び屋外設備に対し降灰時に衝撃を与える「粒子の衝突」である。

粒子の衝突による影響については，「竜巻影響評価について」に包絡される。

（b）閉塞

「閉塞」について考慮すべき影響因子は，降下火砕物を含む海水が流路の狭隘部等を閉塞させる「水循環系の閉塞」，及び降下火砕物を含む空気が機器の狭隘部や換気系の流路を閉塞させる「換気系，電気系及び計測制御系の機械的影響（閉塞）」である。

（c）摩耗

「摩耗」について考慮すべき影響因子は，降下火砕物を含む海水が流路に接触することにより配管等を摩耗させる「水循環系の内部における摩耗」，並びに降下火砕物を含む空気が動的機器の摺動部に侵入し摩耗させる「換気系，電気系及び計測制御系の機械的影響（摩耗）」である。
（d）腐食
「腐食」について考慮すべき影響因子は，降下火砕物に付着した腐食性ガス により建屋及び屋外施設の外面を腐食させる「構築物への化学的影響（腐食）」，換気系，電気系及び計測制御系において降下火砕物を含む空気の流路等を腐食 させる「換気系，電気系及び計測制御系に対する化学的影響（腐食）」，及びに海水に溶出した腐食性成分により海水管等を腐食させる「水循環系の化学的影響（腐食）」である。

（e）大気汚染

「大気汚染」について考慮すべき影響因子は，降下火砕物により汚染された発電所周辺の大気が運転員の常駐する中央制御室内に侵入することによる居住性の劣化，並びに降下火砕物の除去，屋外設備の点検等，屋外における作業環境を劣化させる「発電所周辺の大気汚染」である。

（f）水質汚染

「水質汚染」については，外部から供給される水源である，河川水に降下火砕物が混入することによる「給水の汚染」が考えられるが，発電所では給水処理設備により水処理した給水を使用しており，また給水は水質管理を行っていること から，安全施設の安全機能に影響しない。
（補足資料－14）
（g）絶縁影響
「絶縁影響」について考慮すべき影響因子は，湿つた降下火砕物が電気系及 び計測制御系絶縁部に導電性を生じさせることによる盤の「絶縁低下」である。
表 3．4．2－1 降下火砕物が設備に影響を与える可能性のある因子

影響を与える可能性のある因子	評 価 方 法	$\begin{gathered} \text { 詳細検討 } \\ \text { すべきもの } \end{gathered}$
構造物への静的負荷	屋外の構築物において降下火砕物堆積荷重による影響を評価する。なお，荷重条件は水を含んだ場合の負荷が大きくなるため，降雨条件及び積雪との重畳を考慮する。	\bigcirc
構造物への化学的影響（腐食）	屋外設備は外装の塗装等や金属材料の使用によって，短期での腐食のよる影響が小さ いことを評価する。	\bigcirc
粒子の衝突	降下火砕物は微小な粒子であり，「竜巻影響評価について」で設定している設計飛来物 の衝突に包絡されることを確認していることから，詳細評価は不要。	－
水循環系の閉塞	海水中に漂ら降下火砕物の狭隘部等における閉塞の影響を評価する。また，必要に応 じて，海水を供給している下流の設備への影響についても考慮する。	\bigcirc
水循環系の内部における摩耗	海水中に漂う降下火砕物による設備内部の摩耗の影響を評価する。また，必要に応じ て，海水を供給している下流の設備への影響についても考慮する。	\bigcirc
水循環系の化学的影響（腐食）	耐食性のある材料の使用や塗装の実施等によって，腐食による影響がないことを評価 する。	\bigcirc
換気系，電気系及び計測制御系 に対する機械的影響（摩耗•閉塞）	屋外設備等において影響を考慮すべき要因である。なお，必要に応じて，換気系の給気を供給している範囲への影響についても考慮する。	\bigcirc
換気系，電気系及び計測制御系 に対する化学的影響（腐食）	屋外設備等において影響を考慮すべき要因である。なお，必要に応じて，換気系の給気を供給している範囲への影響についても考慮する。	\bigcirc
発電所周辺の大気汚染	運転員が常時滞在する中央制御室における居住性を評価する。	\bigcirc
水質污染	発電所では給水処理設備により水処理した給水を使用しており，降下火砕物の影響を受ける可能性のある淡水を直接給水として使用していない，また，給水は水質管理を行っており，給水の汚染が設備に影響を与える可能性はない（補足資料－14）	－
絶縁低下	屋内の施設であっても，屋内の空気を取り込む機構を有する電源盤については，影響 がないことを評価する。	\bigcirc

3．4．3 間接的影響

降下火砕物によって原子力発電所に間接的な影響を及ぼす因子は，湿った降下火砕物が送電線の碍子，開閉所の充電露出部等に付着し絶縁低下を生じさせるこ とによる広範囲にわたる送電網の損傷に伴う「外部電源喪失」，並びに降下火砕物 が道路に堆積することによる交通の途絶に伴う「アクセス制限」である。

3．4．4 評価対象施設等に対する影響因子の想定

評価すべき直接的影響の要因については，その内容によりすべての評価対象施設等に対して評価する必要がない項目もあることから，各評価対象施設等と評価 すべき直接的影響の要因について整理し，評価対象施設等の特性を踏まえて必要 な評価項目を表3．4．4－1 のとおり選定した。

3.5 設計荷重の設定

設計荷重は，以下のとおり設定する。
（1）評価対象施設等に常時作用する荷重，運転時荷重
評価対象施設等に作用する荷重として，自重等の常時作用する荷重，内圧等 の運転時荷重であり，降下火砕物との荷重とを適切に組み合わせる。
（2）設計基準事故時荷重
評価対象施設等は，降下火砕物によって安全機能を損なわない設計とするた め，設計基準事故とは独立事象である。

また，評価対象施設等のうち設計基準事故時荷重が生じる屋外施設としては，屋外設備の動的機器である原子炉補機冷却海水ポンプ，及び高圧炉心スプレイ補機冷却海水ポンプが考えられるが，設計基準事故時においても，原子炬補機冷却海水ポンプ，及び高圧炉心スプレイ補機冷却海水ポンプに有意な機械的荷重は発生しないことから，設計基準事故時に生じる荷重の組合せは考慮しない。
（3）その他の自然現象の影響を考慮した荷重の組合せ
降下火砕物と組合せを考慮すべき火山以外の自然現象は，荷重の影響におい て風（台風）及び積雪であり，降下火砕物との荷重と適切に組み合わせる。
（補足資料－19）
3.6 降下火砕物に対する設計

直接的影響については，評価対象施設等の構造や設置状況等（形状，機能，外気吸入や海水通水の有無等）を考慮し，想定される各影響因子に対して，影響を受ける各評価対象施設等が安全機能を損なわない以下の設計とする。評価が必要 となる設備については，表3．4．4－1 の影響因子を踏まえて評価を実施した。評価結果を表3．6．1－1に示す。（個別評価－1～9参照）

3．6．1 降下火砕物による荷重に対する設計

（1）構造物への静的負荷
評価対象施設等のらち，降下火砕物が堆積する建屋及び屋外施設は，以下の施設である。
a．建屋
原子炉建屋，タービン建屋，制御建屋
b．屋外に設置されている施設
海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポ

ンプ），海水ストレーナ（高圧炉心スプレイ補機冷却海水ストレーナ），復水貯蔵タンク，地下軽油タンクピット
c．降下火砕物の影響を受ける施設であって，その停止等により，上位の安全重要度の施設の運転に影響を及ぼす可能性のある屋外の施設
非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）排気消音器及び排気管

当該施設の許容荷重が，降下火砕物による荷重に対して安全裕度を有するこ とにより，構造健全性を失わず安全機能を損なわない設計とする。若しくは，降下火砕物が堆積しにくい又は直接堆積しない構造とすることで，外部事象防護対象施設の安全機能を損なわない設計とする。

評価対象施設等の建屋においては，建築基準法における一般地域の積雪の荷重の考え方に準拠し，降下火砕物の除去を適切に行うことから，降下火砕物に よる荷重を短期に生じる荷重として扱う。また，降下火砕物による荷重と他の荷重を組み合わせた状態に対する許容限界は次のとおりとする。
－原子炉建屋，タービン建屋，制御建屋
原子炉建屋，タービン建屋及び制御建屋は，各建屋の屋根スラブにおける建築基準法の短期許容応力度を許容限界とする。
－建屋を除く評価対象施設等
許容応力を「原子力発電所耐震設計技術指針 JEAG4601－1987（日本電気協会）」等に準拠する。
（2）粒子の衝突
評価対象施設等のうち，建屋及び屋外設備は，「粒子の衝突」に対して，「1．8．2竜巻防護に関する基本方針」に基づく設計によって，外部事象防護対象施設の安全機能を損なわない設計とする。

3．6．2 降下火砕物による荷重以外に対する設計方針

降下火砕物による荷重以外の影響は，構造物への化学的影響（腐食），水循環系の閉塞，内部における摩耗及び化学的影響（腐食），換気系，電気系及び計測制御系に対する機械的影響（閉塞）及び化学的影響（腐食）等により外部事象防護対象施設の安全機能を損なわない設計とする。
外気取入口からの降下火砕物の侵入に対する設計については，「3．6．3 外気取入口からの降下火砕物の侵入に対する設計方針」に示す。
（1）構造物への化学的影響（腐食）
評価対象施設等のらち，構造物への化学的影響（腐食）を考慮すべき施設は，降下火砕物の直接的な付着による影響が考えられる以下の施設である。
a．建屋
原子炉建屋，タービン建屋，制御建屋
b ．屋外に設置されている施設
海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポ ンプ），海水ストレーナ（高圧炬心スプレイ補機冷却海水ストレーナ），非常用 ガス処理系（屋外配管），排気筒，復水貯蔵タンク，地下軽油タンクピット
c．降下火砕物の影響を受ける施設であって，その停止等により，上位の安全重要度の施設の運転に影響を及ぼす可能性のある屋外の施設

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）排気消音器及び排気管
金属腐食研究の結果より，降下火砕物に含まれる腐食性ガスによって直ちに金属腐食を生じないが，外装の塗装等によって短期での腐食により外部事象防護対象施設の安全機能を損なわない設計とする。なお，降灰後の長期的な腐食 の影響については，日常保守管理等により，状況に応じて補修が可能な設計と する。
（2）水循環系の閉塞，内部における摩耗及び化学的影響（腐食）
評価対象施設等のうち，水循環系の閉塞，内部における摩耗及び化学的影響 （腐食）を考慮すべき施設は，降下火砕物を含む海水の流路となる以下の施設 である。
a．降下火砕物を含む海水の流路となる施設
海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水 ポンプ），海水ストレーナ（原子炉補機冷却海水ストレーナ，高圧炉心スプレ イ補機冷却海水ストレーナ）及び下流設備
b．降下火砕物の影響を受ける施設であって，その停止等により，上位の安全重要度の施設の運転に影響を及ぼす可能性のある屋外の施設海水取水設備（除塵装置）
降下火砕物は粘土質ではないことから水中で固まり閉塞することはないが，当該施設については，降下火砕物の粒径に対し十分な流路幅を設けることに より，海水の流路となる施設が閉塞しない設計とする。

内部における摩耗については，主要な降下火砕物は砂と同等又は砂より硬度が低くもろいことから，摩耗による影響は小さい。また当該施設について は，定期的な内部点検及び日常保守管理により，状況に応じて補修が可能で あり，摩耗により外部事象防護対象施設の安全機能を損なわない設計とする。

化学的影響（腐食）については，金属腐食研究の結果より，降下火砕物に よって直ちに金属腐食を生じないが，耐食性のある材料の使用や塗装の実施等によって，腐食により外部事象防護対象施設の安全機能を損なわない設計 とする。なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。
（3）換気系，電気系及び計測制御系に対する機械的影響（閉塞）及び化学的影響 （腐食）
評価対象施設等のうち，換気系，電気系及び計測制御系に対する機械的影響
（閉塞）及び化学的影響（腐食）を考慮すべき施設は，以下の施設である。
a．屋外に設置されている施設
海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水 ポンプ）

機械的影響（閉塞）については，海水ポンプ（原子炉補機泠却海水ポンプ，高圧炬心スプレイ補機冷却海水ポンプ）の電動機本体は外気と遮断された全閉構造であり，また，原子炉補機冷却海水ポンプ電動機の空気冷却器の冷却管内径及び高圧炉心スプレイ補機冷却海水ポンプの泠却流路は降下火砕物粒

径以上の幅を設ける構造とすることにより，機械的影響（閉塞）により外部事象防護対象施設の安全機能を損なわない設計とする。

化学的影響（腐食）については，金属腐食研究の結果より，降下火砕物に よって直ちに金属腐食を生じないが，耐食性のある材料の使用や塗装の実施等によって，腐食により外部事象防護対象施設の安全機能を損なうことのな い設計とする。なお，長期的な腐食の影響については，日常保守管理等によ り，状況に応じて補修が可能な設計とする。
（4）絶縁低下及び化学的影響（腐食）
評価対象施設等のうち，絶縁低下及び化学的影響（腐食）を考慮すべき施設 は，電気系及び計測制御系のらち外気から取り入れた屋内の空気を機器内に取 り込む機構を有する以下の施設である。
a．外気から取り入れた屋内の空気を機器内に取り込む機構を有する施設計測制御設備（安全保護系），非常用電源設備（所内低圧系）
当該施設の設置場所は原子炬補機室換気空調系及び計測制御電源室換気空調系にて空調管理されており，本換気空調系の外気取入口にはバグフィルタ を設置していることから，仮に室内に侵入した場合でも降下火砕物は微量で あり，粒径は極めて細かな粒子である。

また，中央制御室換気空調系については，外気取入ダンパを閉止し閉回路循環運転を行うことにより侵入を阻止することも可能である。

バグフィルタの設置により降下火砕物の侵入に対する高い防護性能を有す ることにより，降下火砕物の付着に伴う絶縁低下及び化学的影響（腐食）に よる影響を防止し，計測制御設備（安全保護系），非常用電源設備（所内低圧系）の安全機能を損なわない設計とする。

3．6．3 外気取入口からの降下火砕物の侵入に対する設計

外気取入口からの降下火砕物の侵入に対して，以下のとおり安全機能を損な わない設計とする。
（1）機械的影響（閉塞）
評価対象施設等のうち，外気取入口からの降下火砕物の侵入による機械的影響（閉塞）を考慮すべき施設は，降下火砕物を含む空気の流路となる以下の施設である。
a．降下火砕物を含む空気の流路となる施設
非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機，非常用 ディーゼル発電機含む。），非常用換気空調設備（外気取入口），非常用ガス処理系（屋外配管），排気筒

排気筒及び非常用ガス処理系（屋外配管）は，降下火砕物が侵入した場合 でも，排気筒の構造から排気流路が閉塞しない設計とすることにより，降下火砕物の影響に対して機能を損なわない設計とする。

また，外気を取り入れる非常用換気空調設備（外気取入口）の空気の流路 にそれぞれフィルタを設置することにより，フィルタメッシュより大きな降下火砕物が内部に侵入しにくい設計とし，さらに降下火砕物がフィルタに付着した場合でも取替又は清掃が可能な構造とすることで，降下火砕物により閉塞しない設計とする。

ディーゼル発電機機関は，フィルタを通過した小さな粒径の降下火砕物が

侵入した場合でも，降下火砕物により閉塞しない設計とする。
（2）機械的影響（摩耗）
評価対象施設等のらち，外気取入口からの降下火砕物の侵入による機械的影響（摩耗）を考慮すべき施設は，外気から取り入れた屋内の空気を機器内に取 り込む機構及び摺動部を有する以下の施設である。
a．降下火砕物を含む空気の流路となる施設のうち摺動部を有する施設非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）降下火砕物は砂と同等又は砂より硬度が低くもろいことから，摩耗の影響 は小さい。

また，仮にディーゼル発電機機関の内部に降下火砕物が侵入した場合でも耐摩耗性のある材料を使用することで，摩耗により非常用ディーゼル発電機
（高圧炉心スプレイ系ディーゼル発電機を含む。）の安全機能を損なわない設計とする。

外気を取り入れる非常用換気空調設備（外気取入口）にバグフィルタを設置することにより，フィルタメッシュより大きな降下火砕物が内部に侵入し にくい設計とし，摩耗により非常用ディーゼル発電機（高圧炉心スプレイ系 ディーゼル発電機を含む。）の安全機能を損なわない設計とする。
（3）化学的影響（腐食）
評価対象施設等のらち，外気取入口からの降下火砕物の侵入による化学的影響（腐食）を考慮すべき施設は，降下火砕物を含む空気の流路となる以下 の施設である。
a．降下火砕物を含む空気の流路となる施設
非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。），非常用換気空調設備（外気取入口），非常用ガス処理系（屋外配管），排気筒

金属腐食研究の結果より，降下火砕物によって直ちに金属腐食を生じない が，塗装の実施等によって，腐食により外部事象防護対象施設の安全機能を損なわない設計とする。なお，降灰後の長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。
（4）大気汚染（発電所周辺の大気汚染）
大気汚染を考慮すべき中央制御室は，降下火砕物により汚染された発電所周辺の大気が，中央制御室換気空調系の外気取入口を通じて中央制御室に侵入しないようバグフィルタを設置することにより，降下火砕物が外気取入口 に到達した場合であってもフィルタメッシュより大きな降下火砕物が内部に侵入しにくい設計とする。

また，中央制御室換気空調系については，外気取入ダンパの閉止及び閉回路循環運転を可能とすることにより，中央制御室内への降下火砕物の侵入を防止する。さらに外気取入遮断時において，酸素濃度及び二酸化炭素濃度の影響評価を実施し，室内の居住性を確保する設計とする。

3． 6.4 間接的影響に対する設計方針

女川原子力発電所 2 号炉の非常用所内交流電源設備は，非常用ディーゼル発電機（非常用ディーゼル発電機 2 台／号炉，高圧炉心スプレイ系ディーゼル発電機 1台／号炉）とそれぞれに必要な耐震Sクラスの燃料ディタンク（非常用ディーゼル

発電機用： $20 \mathrm{~m}^{3} \times 2$ 基，高圧炉心スプレイ系ディーゼル発電機用： $14 \mathrm{~m}^{3} \times 1$ 基） を有している。さらに，軽油タンク（ $110 \mathrm{~m}^{3} \times 3$ 基 $\times 2$ 系列）を有している。

これらにより，7日間の外部電源喪失に対して，また，原子力発電所外での影響（長期間の外部電源の喪失及び交通の途絶）を考慮した場合においても，原子炉の停止並びに停止後の原子炉及び使用済燃料プールの泠却に係る機能を担うた めに必要となる電源の供給が継続できる設計とする。
表 3．4．4－1 降下火砕物が影響を与える評価と影響因子の組合せ

	構造物への静的負荷	構造物への化学的影響 （腐食）	水循環系の閉塞•摩耗	水循環系の化学的影響 （腐食）	換気系，電気系及び計測制御系に対する 機械的影響 （閉塞•摩耗）	換気系，電気系及び計測制御系に対する化学的影響 （腐食）	発電所周辺 の大気汚染	絶縁低下
原子炉建屋，制御建屋，タービン建屋及 び地下軽油タンクピット	\bigcirc	\bigcirc	－（3）	－（3）	－（3）	－（3）	－（3）	－（3）
海水ポンプ（原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポ ンプ）	\bigcirc	\bigcirc	(ポンプ)	(ポンプ)	(モータ)	(モータ)	－（3）	－（3）
海水ストレーナ（原子炬補機冷却海水ス トレーナ）及び下流設備	－（1）	－（1）	\bigcirc	\bigcirc	－（3）	－（3）	－（3）	－（3）
海水ストレーナ（高圧炉心スプレイ補機泠却海水ストレーナ）及び下流設備	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－（3）	－（3）	－（3）	－（3）
海水取水設備（除塵装置）	－（3）	－（2）	\bigcirc	\bigcirc	－（3）	－（3）	－（3）	－（3）
非常用換気空調設備	－（1）	－（2）	－（3）	－（3）	\bigcirc	\bigcirc	\bigcirc	－（3）
非常用ディーゼル発電機 屋内設備※1	－（1）	－（1）	－（3）	－（3）	\bigcirc	\bigcirc	－（3）	－（3）
イーゼル発電機含む）屋外設備※2	\bigcirc	\bigcirc	－（3）	－（3）	－（3）	－（3）	－（3）	－（3）
計測制御設備（安全保護系）及び非常用電源設備（所内低圧系）	－（1）	－（1）	－（3）	－（3）	－（3）	\bigcirc	－（3）	\bigcirc
復水貯蔵タンク	\bigcirc	\bigcirc	－（3）	－（3）	－（3）	－（3）	－（3）	－（3）
排気筒及び非常用ガス処理系（屋外配管）	－（1）	\bigcirc	－（3）	－（3）	\bigcirc	\bigcirc	－（3）	－（3）

[^1]表 3．6．1－1 降下火砕物による直接的影響の評価結果（1／2）

評価対象施設等	確認結果	個別評価
原子炉建屋，制御建屋，タービン建屋及び地下軽油 タンクピット	－考慮する堆積荷重は $2,547 \mathrm{~N} / \mathrm{m}^{2}$ であり，各施設の許容堆積荷重はそれを十分に上回っていることから，安全性への影響はない。 －外壁塗装が施されていること，又はコンクリート構造であることから，降下火砕物による短期での腐食により，機能 に影響を及ぼすことはない。	1
海水ポンプ（原子炉補機冷却海水 ポンプ及び高圧炉心スプレイ補機冷却海水ポン プ）	- 海水ポンプに発生する応力は許容値に対して十分な裕度を有しており，機器の機能に影響を及ぼすことはない。 - 海水ポンプ及びモータは外面塗装が施されており，降下火砕物による短期の腐食により，機器の機能に影響を及ぼす ことはない。 －海水ポンプ流水部の狭隘部は降下火砕物の粒径より大きく，閉塞には至らない。軸受部は異物逃がし溝を設けている ため，降下火砕物による閉塞には至らない。また，降下火砕物は破砕し易く，摩耗による影響は小さいことから，降下火砕物による閉塞•摩耗により，機器の機能に影響を及ぼすことはない。 - 海水ポンプ内面は塗装が施されており，降下火砕物による短期の腐食により，機器の機能に影響を及ぼすことはない。 - 海水ポンプモータは外気を直接内部に取込まない泠却方式であり，モータ内部に降下火砕物の侵入はない。また，原子炉補機冷却海水ポンプモータは空気冷却器冷却管があるが，外気取込口は下向きに設置され，吸込部には金網が設置されており降下火砕物が侵入し難い構造である。仮に侵入した場合にも，冷却管内径に対して降下火砕物の粒径は十分小さく閉塞の可能性は低い。したがって，モータ軸受部の摩耗及び空気冷却器冷却管 への侵入による摩耗•閉塞により機器の機能に影響を及ぼすことはない。	2
海水ストレーナ （原子炉補機冷却海水ストレー ナ，高圧炉心スプ レイ補機冷却海水ストレーナ）及 び下流設備	－降下火砕物の粒径は，海水ストレーナのフィルタの穴径及び下流設備である熱交換器の伝熱管内径に対して十分小さ いこと，また海水ストレーナは差圧管理により切替•洗浄が可能であることから，降下火砕物による閉塞により，機器の機能に影響を及ぼすことはない。 －降下火砕物は破砕し易く摩耗による影響は小さいことから，降下火砕物による摩耗により機器の機能に影響を及ぼす ことはない。 －海水ストレーナ内面はライニングを使用している。また，下流設備である熱交換器の伝熱管は耐食性の高い材料の使用，及び管内内面の保護被膜により腐食対策を実施しているため，降下火砕物による短期での腐食により，機器 の機能に影響を及ぼすことはない。	3

表 3．6．1－1 降下火砕物による直接的影響の評価結果（2／2）

評価対象施設等	確認結果	個別評価
非常用ディーゼ ル発電機（高圧炉心スプレイ系デ イーゼル発電機含む）	－外気取入口は，降下火砕物が侵入し難い構造であり，また，バグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕獲す る性能）により降下火砕物が捕集されること，また，バグフィルタは必要に応じて，取替え又は清掃することにより除灰が可能であることから，降下火砕物による閉塞により機器の機能に影響を及ぼすことはない。 －機関吸気に降下火砕物が侵入した場合でも，シリンダライナー及びピストンリング間隙が非常に狭く，降下火砕物が侵入しても閉塞する可能性は小さい。また，降下火砕物は砂と比較して破砕しやすく，硬度は砂と同等又は低いこと から，降下火砕物による摩耗の影響は小さい。 －金属材料の使用，又は外装塗装が施されていることから，降下火砕物による短期の腐食により，機器の機能に影響を及ぼすことはない。	4
非常用換気空調設備	－外気取入口には，ルーバ及びバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕獲する性能）が設置されていること から，給気を供給する設備に対して，降下火砕物が与える影響は小さい。また，金属腐食研究の結果から，降下火砕物による短期の腐食により，機器の機能に影響を及ぼすことはない。 中央制御室換気空調系については，外気取入ダンパを閉止し，再循環運転を行った場合でも，中央制御室の居住性が維持されることを確認した。	5
海水取水設備 （除塵装置）	－降下火砕物の粒径は取水設備に設置されているメッシュスクリーン幅に対して十分小さく，取水口を閉塞することは ない。また，降下火砕物は破砕し易く，摩耗による影響は小さいことから，降下火砕物による閉塞•摩耗により，機器の機能に影響を及ぼすことはない。 －取水設備（除塵装置）は塗装等の対応を実施しており，降下火砕物による短期での腐食により，機器の機能に影響を及ぼすことはない。	6
計測制御設備（安全保護系）及び非常用電源設備（所内低圧系）	－計測制御設備（安全保護系）及び非常用電源設備（所内低圧系）が設置されている部屋は，原子炉補機室換気空調系及び計測制御電源室換気空調系にて空調管理されており，外気取入口にはバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対し 80% 以上 を捕獲する性能）が設置されていることから，降下火砕物が大量に盤内に侵入すること可能性は小さい。また，侵入 する降下火砕物は微細なものに限られ，その付着により短絡等を発生させる可能性はない。	7
復水貯蔵タンク	- 復水貯蔵タンクに発生する応力は許容値に対して十分な裕度を有しており，健全性に影響を及ぼすことはない。 - 復水貯蔵タンクは外面塗装が施されているため，降下火砕物による短期の腐食により，機器の機能に影響を及ぼすこ とはない。	8
排気筒及び非常用ガス処理系 （屋外配管）	－排気筒は常時排気があり，その排気速度は，降下火砕物の自由降下速度を上回っていることから，降下火砕物が排気筒内に侵入することはなく，閉塞により機器の機能に影響を及ぼすことはない。 －排気筒及び非常用ガス処理系（屋外配管）は金属材料の使用，又は外装塗装が施されており，降下火砕物による短期 の腐食により，機器の機能に影響を及ぼすことはない。	9

3．7降下火砕物の除去等の対策

3．7．1降下火砕物に対応するための運用管理
降下火砕物に備え，手順を整備し，図3．7．1－1 のフローのとおり段階的に対応す ることとしている。その体制については地震，津波，火山噴火等の自然災害に対し，保安規定に基づく保安管理体制として整備し，その中で体制の移行基準，活動内容 についても明確にする。なお，多くの火山では，噴火前に，震源の浅い火山性地震 の頻度が急増し，火山性微動の活動が始まるため，事前に対策準備が可能である。

- 対策本部設置（必要な要員招集）
- 資器材の配備状況の確認
- プラントの機器，建屋等の状況確認
- 降下火砕物の除去
- 非常用換気空調設備のフィルタの差圧確認，取替又は清掃等

図 3．7．1－1 降下火砕物に対応するための運用管理フロー
（1）通常時の対応
火山の噴火事象発生に備え，担当箇所は降下火砕物の除去等に使用する資機材等（シャベル，ゴーグル及び防護マスク等）については，定期的に配備状況を確認する。
（2）火山の大規模な噴火兆候がある場合
担当箇所は，火山情報（火山の位置，噴火規模，風向，降灰予測等）を把握し，連絡体制を強化する。
（3）火山の大規模な噴火が発生した場合又は，降下火砕物が降り積もる状況となっ た場合
担当箇所は，火山の大規模な噴火が確認された場合，又は，原子力発電所敷地 で降灰が確認された場合に，関係個所と協議の上，対策本部を設置する。

非常用換気空調設備の取替用フィルタの配備状況を確認するとともに，アクセ スルート・屋外廻りの機器•屋外タンク・建屋等の降下火砕物の除去のため，発電所内に保管しているブルドーザ・スコップ・マスク等の資機材の配備状況の確認を行う。

プラントの機器，建屋等の現在の状態（屋外への開口部が開放されていないか） を確認する。

敷地内に降下火砕物が到達した場合には，降灰状況を把握する。
プラント及び屋外廻りの監視を強化し，アクセスルート・屋外廻りの機器•屋外タンク・建屋等の降下火砕物の除去を行うとともに，非常用換気空調設備のフ イルタ差圧を確認し，フィルタの取替，清掃等を行う。
降下火砕物により安全機能を有する設備が損傷等により機能が確保できなくな った場合，必要に応じプラントを停止する。
（補足資料 $-10,18$ ）

3．7．2 手順

火山に対する防護については，降下火砕物に対する影響評価を行い，安全施設 が安全機能を損なわないよう手順を定める。
（1）発電所内に降灰が確認された場合には，建屋や屋外の設備等に長期間降下火砕物の荷重をかけ続けないこと，また降下火砕物の付着による腐食等が生じる状況を緩和するために，評価対象施設等に堆積した降下火砕物の除灰を適切に実施する。
（2）降灰が確認された場合には，状況に応じて外気取入ダンパの閉止，換気空調設備の停止又は閉回路循環運転により，建屋内への降下火砕物の侵入を防止す る手順を定める。
（3）降灰が確認された場合には，非常用換気空調設備の外気取入口のバグフィル夕について，バグフィルタ差圧を確認するとともに，状況に応じて取替え又は清掃等を実施する。

4．まとめ
降下火砕物による直接的影響及び間接的影響のすべての項目について評価した結果，降下火砕物による直接的影響及び間接的影響はなく，発電用原子炉施設の安全機能を損ならことはないことを確認した。

降下火砕物の飛来のおそれがある場合は，火山噴火対策を行うための体制を構築 し，発電所及び屋外廻りの監視の強化，降下火砕物の除去等を実施する。

建屋等に係る影響評価

降下火砕物による原子炉建屋等への影響について以下のとおり評価した。

1．評価項目
（1）構造物への静的負荷
降下火砕物の堆積荷重（降雨の影響含む）により原子炉建屋，制御建屋，ター ビン建屋及び地下軽油タンクピットの健全性に影響がないことを評価する。なお，堆積荷重は，積雪及び風（台風）の荷重を考慮し，適切に組み合わせる。
（2）構造物への化学的影響（腐食）
降下火砕物の構造物への付着や堆積による化学的影響（腐食）により，構造物 への影響がないことを評価する。

2．評価条件
（1）降下火砕物条件

- 堆積量： 15 cm
- 密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤密度）
（2）積雪条件
- 積雪量： 17 cm （石巻地域における年最大積雪深さの平均値）
- 単位荷重：積雪量 1 cm 当たり $20 \mathrm{~N} / \mathrm{m}^{2}$（建築基準法施行令に基づく積雪の単位荷重）

3．評価結果
（1）構造物への静的負荷
設計堆積荷重は以下のとおり。
湿潤状態の降下火砕物の荷重（2，207 N／m²）

+ 降下火砕物と組み合わせる積雪荷重 $\left(340 \mathrm{~N} / \mathrm{m}^{2}\right)=2,547 \mathrm{~N} / \mathrm{m}^{2}$
表1に建屋ごとに裕度が最も小さい部位の評価結果を示す。評価の結果，各建屋において，許容堆積荷重は堆積荷重を十分に上回っている。また，地下軽油タンクピットについては，上載荷重として，4，900N $/ \mathrm{m}^{2}$ を考慮した設計を行っ ており，上載荷重は設計堆積荷重を十分に上回っていることから，安全性への影響はない。

表1 建屋の堆積荷重概略評価結果

評価対象建屋	対象施設エリア	許容堆積荷重※1 $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	降下火砕物 堆積荷重 $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	結果
原子炉建屋	屋根スラブ	4,117	2,547	
制御建屋	屋根スラブ	4,559		
タービン建屋	屋根スラブ	4,117		\bigcirc

※ 1：降下火砕物堆積荷重は短期荷重として評価した。評価においては，許容応力度の比（短期 ／長期 $=1.5$ 以上）から，短期では少なくとも長期の 1.5 倍の荷重が負担できるため，短期荷重として負担できる荷重と長期荷重の差分を許容堆積荷重とした。（許容堆積荷重の算定フローを図1に示す。）

図1 許容堆積荷重算定フロー
（2）構造物への化学的影響（腐食）
原子炉建屋，制御建屋及びタービン建屋への化学的影響（腐食）については，外壁塗装を施していることから，降下火砕物による短期での腐食により機能に影響を及ぼすことはない。地下軽油タンクピットへの化学的影響（腐食）について は，ピット頂版はコンクリート構造物であること，また，ハッチ部については金属材料（ステンレス鋼）を用いていることから，降下火砕物に含まれる腐食性ガ スによる金属腐食の影響を考慮し，外装塗装※を実施することで降下火砕物による短期での腐食により機能に影響を及ぼすことはない。
（補足資料一 4，8）
※：ハッチ（ステンレス鋼）部は酸，アルカリなどに水分の加わつた強度腐食環境での塗装とし てエポキシ樹脂系の塗装を実施

降下火砕物による原子炉補機泠却海水ポンプ及び高圧炉心スプレイ補機泠却海水 ポンプ（以下「海水ポンプ」という。）に係る影響評価について以下のとおり評価し た。

1．評価項目
（1）構造物への静的負荷
降下火砕物の堆積荷重により原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの機能に影響がないことを評価する。なお，堆積荷重は，積雪及び風（台風）の荷重を考慮し，適切に組み合わせる。
a．原子炉補機冷却海水ポンプ
評価部位は，モータの外扇カバーに降下火砕物が堆積した場合に直接荷重の影響を受ける外扇カバー及び機器の自重及び運転時荷重（ポンプスラスト荷重）を考慮した場合，最も荷重負荷が大きいモータフレームとする。外扇カバー及びモ ータフレームに生じる応力は，保守的に電動機上面の投影面積の最も大きい外扇 カバー全面に均等に降下火砕物が堆積した場合を想定し，その上でモータフレー ムについては，モータ自重＋運転時荷重（ポンプスラスト荷重）が加わる状態で荷重評価を行う。図1に原子炉補機冷却海水ポンプモータの概要及び降下火砕物 の堆積範囲を示す。
b．高圧灯心スプレイ補機冷却海水ポンプ
評価部位は，雨よけカバーに降下火砕物が堆積した場合に直接荷重の影響を受 ける雨よけカバー及び機器の自重及び運転時荷重（ポンプスラスト荷重）を考慮 した場合，最も荷重負荷が大きいモータフレームとする。雨よけカバー及びモー タフレームに生じる応力は，保守的に電動機上面の投影面積の最も大きい雨よけ カバー全面に均等に降下火砕物が堆積した場合を想定し，その上でモータフレー ムについては，モータ自重＋運転時荷重（ポンプスラスト荷重）が加わる状態で荷重評価を行う。図2に高圧炉心スプレイ補機冷却海水ポンプモータの概要及び降下火砕物の堆積範囲を示す。
（2）構造物への化学的影響（腐食）
降下火砕物のポンプ及びモータへの付着や堆積による化学的影響（腐食）によ り，機器の機能に影響がないことを評価する。
（3）水循環系の閉塞•摩耗
降下火砕物が混入した海水を海水ポンプにより取水した場合でも，流水部，軸受部等が閉塞し，又は，内部構造物との摩耗により機器の機能に影響がないこと を評価する。
（4）水循環系の化学的影響（腐食）
降下火砕物が混入した海水を海水ポンプにより取水した場合に，内部構造物に対する化学的影響（腐食）により機器の機能に影響がないことを評価する。
（5）換気系，電気系及び計測制御系に対する機械的影響（閉塞•摩耗）
降下火砕物の海水ポンプモータ泠却空気への侵入による地絡•短絡，モータ軸受部の摩耗及び空気冷却器冷却管への侵入による閉塞によって，機器の機能に影響がないことを評価する。
（6）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物の海水ポンプモータ冷却空気への侵入による内部の腐食及び外装へ の接触による腐食によって，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件

- 粒径 ： 2 mm 以下
- 堆積量： 15 cm
- 密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤密度）
（2）積雪条件
- 積雪量： 17 cm （石巻地域における年最大積雪深さの平均値）
- 単位荷重：積雪量 1 cm 当たり $20 \mathrm{~N} / \mathrm{m}^{2}$（建築基準法施行令に基づく積雪の単位荷重）
（3）堆積荷重
湿潤状態の降下火砕物の荷重（ $2,207 \mathrm{~N} / \mathrm{m}^{2}$ ）
+ 降下火砕物と組み合わせる積雪荷重（ $340 \mathrm{~N} / \mathrm{m}^{2}$ ）$=2,547 \mathrm{~N} / \mathrm{m}^{2}$
3．評価結果
（1）構造物への静的負荷
表1に評価結果を示す。荷重が直接加わる原子炬補機冷却海水ポンプの外扇力 バーや高圧炉心スプレイ補機冷却海水ポンプの雨よけカバーが損傷した場合には， モータの冷却器に外気を送り込む機能に影響を及ぼす可能性があるが，評価結果 のとおり，原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ に発生する応力は許容値に対して十分な裕度を有しており，機器の機能に影響を及ぼすことはない。

表1 海水ポンプモータに対する降下火砕物の堆積荷重による発生応力の評価

評価部位		応力	計算値 $[\mathrm{MPa}]$	許容値 ${ }^{*}$ ［MPa］	結果
原子炉補機冷却海水ポンプ	モータフレーム	曲げ応力	6	282	\bigcirc
		圧縮応力	4	244	\bigcirc
	外扇カバー	曲げ応力	147	282	\bigcirc
高圧炉心スプレイ補機冷却海水ポンプ	モータフレーム	曲げ応力	3	130	\bigcirc
		圧縮応力	2	130	\bigcirc
	雨よけカバー （取付溶接部）	せん断応力	14	141	\bigcirc

※：各部位の許容応力は，JEAG4601－1987の「その他の支持構造物」における許容応力状態 I_{A} S に基づく。

図1 原子炉補機冷却海水ポンプモータ

図2 高圧灲心スプレイ補機冷却海水ポンプモータ
（2）構造物への化学的影響（腐食）
海水ポンプ及びモータは外面塗装が施されており，降下火砕物による短期での腐食により，機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（補足資料－4）
（3）水循環系の閉塞•摩耗
a 。流水部の閉塞
海水ポンプ流水部の狭隘部の寸法は，図3，4に示すように原子炉補機冷却海水ポンプが約 55 mm であり，高圧炉心スプレイ補機冷却海水ポンプが約 29 mm であ る。想定する降下火砕物の粒径は約 2 mm 以下であり，閉塞には至らない。
b 。 軸受部の閉塞
原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプの軸受 の隙間はそれぞれ， $1.2 \mathrm{~mm}, ~ 0.7 \mathrm{~mm}$ の許容値以下で管理されている。想定する粒径 は約 2 mm 以下であり，一部の降下火砕物は軸受の隙間より，軸受け内部に入り込 む可能性があるが，図 3,4 に示すように軸受溝部間隙（ $2.5 \mathrm{~mm} \sim 5.5 \mathrm{~mm}$ ）を設けて いるため，軸受部の閉塞に至らない。
c．水循環系の摩耗
降下火砕物は破砕しやすく，砂と同等又は砂より硬度が低くもろいことから，降下火砕物による摩耗が，海水ポンプに与える影響は小さい。
（補足資料－3，19）
評価の結果より，降下火砕物による海水ポンプの閉塞•摩耗により機器の機能 に影響を及ぼすことはない。

図3 原子炉補機冷却海水ポンプ構造

図4 高圧炉心スプレイ補機冷却海水ポンプ構造
（4）水循環系の化学的影響（腐食）
海水ポンプの主要部は，内面ゴムライニングや塗装等の対応を実施しているこ とから，降下火砕物による短期での腐食により機器の機能に影響を及ぼすことは ない。
（補足資料－4）
（5）換気系，電気系及び計測制御系に対する機械的影響（閉塞•摩耗）
海水ポンプモータは，図5，6に示すように外気を直接モータ内部に取り込ま ない冷却方式であり，モータ内部に降下火砕物の侵入はない。したがって，地絡，短絡及びモータ軸受部への影響はない。

また，原子炉補機冷却海水ポンプモータについては空冷式空気冷却器の冷却管 があり，降下火砕物に空気中の水分が混ざり，凝集することによる影響が考えら れる。

外気の取込口は下向きに設置され外気を取込む構造であり，吸込部には金網が設置されているため，降下火砕物が侵入し難い構造であること，また水分を含み重くなった降下火砕物はより侵入し難いこと，仮に侵入しても冷却管の内径（約 29 mm ）に対して降下火砕物の粒径が十分小さく，運転中はファンからの通風（管内風速：約 $15 \mathrm{~m} / \mathrm{s}$ ）により外部に排出されると考えられる。したがって，空気冷却器冷却管への降下火砕物の侵入による閉塞の可能性は小さく，機器へ影響を及ぼ
（6）換気系，電気系及び計測制御系に対する化学的影響（腐食）
海水ポンプモータは外気を直接モータ内部に取り込まない泠却方式であり，モ ータ内部に降下火砕物の侵入がない。また，モータが泠却流に接する部分には金属材料を用いているが，防錆塗装が施されていることから，降下火砕物による短期での腐食により機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（補足資料－4）

図5 原子炉補機冷却海水ポンプモータの冷却方式

$\longrightarrow: ~$ 外気（冷却流）

図6 高圧炉心スプレイ補機冷却海水ポンプモータの泠却方式

海水ストレーナに係る影響評価

降下火砕物による原子炉補機泠却海水ストレーナ及び高圧炉心スプレイ補機冷却海水ストレーナ（以下「海水ストレーナ」という。）に係る影響評価について以下の とおり評価した。

1．評価項目

（1）構造物への静的負荷
降下火砕物の堆積荷重により屋外に設置している高圧炉心スプレイ補機冷却海水ストレーナの機能に影響がないことを評価する。
（2）水循環系の閉塞
降下火砕物による海水ストレーナの閉塞により，機器の機能に影響がないこと を評価する。
（3）水循環系の摩耗
降下火砕物による海水ストレーナの摩耗により，機器の機能に影響がないこと を評価する。
（4）水循環系の化学的影響（腐食）
降下火砕物による海水ストレーナの内部構造物の化学的影響（腐食）により，機器の機能に影響がないことを評価する。また，海水を供給している下流の設備へ の影響についても同様に評価する。
（5）構造物への化学的影響（腐食）
降下火砕物の高圧炉心スプレイ補機冷却海水ストレーナへの付着や堆積による化学的影響（腐食）により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
粒 径： 2 mm 以下
3．評価結果
（1）構造物への静的負荷
高圧炉心スプレイ補機冷却海水ストレーナは降下火砕物が堆積しにくい形状を しているため，荷重の影響を受けることはない。
（2）水循環系の閉塞
想定する降下火砕物の粒径は 2 mm 以下であり，海水ストレーナのフィルタ穴径 は 8 mm であることから，フィルタ穴径に対して十分小さい。また，降下火砕物に は粘性を生じさせる粘土鉱物等は含まれていないことから，海水ストレーナが閉塞することはない。なお，原子炉補機冷却海水ストレーナはフィルタが閉塞する ことがないよう差圧管理されており，一定の差圧（ 15.2 kPa ）で自動洗浄される。高圧炬心スプレイ補機冷却海水ストレーナはフィルタが閉塞することがないよう， ストレーナ差圧が上昇した場合には切替•洗浄が可能である。

また，海水ストレーナのフィルタを通過した降下火砕物の粒子は，表1に示す下流設備である原子炉補機冷却水系熱交換器及び高圧炉心スプレイ補機冷却水系熱交換器（以下「熱交換器」という。）の伝熱管内径に対して，降下火砕物の粒径

が十分小さく，伝熱管等の閉塞により，下流設備に影響を及ぼすことはない。よ つて，降下火砕物による閉塞により，機器の機能に影響を及ぼすことはない。

表1 海水ストレーナ下流設備の熱交換器

機器 名	伝熱管内径	材 質
原子炉補機冷却水系熱交換器	23 mm	アルミニウム黄銅管
高圧炉心スプレイ補機冷却水系熱交換器	23 mm	アルミニウム黄銅管

（3）水循環系の内部における摩耗
降下火砕物は破砕し易く，砂と同等又は砂より硬度が低くもろいことから降下火砕物による摩耗が設備に与える影響は小さく，機器の機能に影響を及ぼすこと はない。
（補足資料 -3 ，19）
（4）水循環系の化学的影響（腐食）
海水ストレーナの内面は，ライニングが施工されていることから，短期での腐食により海水ストレーナの機能に影響を及ぼすことはない。

また，海水ストレーナの下流設備の熱交換器（伝熱管）には，耐食性の高い材料（アルミニウム黄銅管）を使用していること，さらに鉄イオン注入による管内内面の保護被膜により腐食対策を実施していることから短期での腐食により下流設備の機能に影響を及ぼすことはない。
（補足資料－4）
（5）構造物への化学的腐食
高圧炉心スプレイ補機冷却海水ストレーナは外装塗装が施されており，降下火砕物による短期での腐食により，機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（補足資料－4）

非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機，非常用ディーゼル発電機吸気系含む）に係る影響評価

降下火砕物による非常用ディーゼル発電機に係る影響評価について以下のとお り評価する。

1．評価項目
（1）構造物への静的負荷
降下火砕物の堆積荷重により屋外に設置されている排気消音器及び排気管の機能に影響がないことを評価する。
（2）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
降下火砕物の非常用ディーゼル発電機（機関）への侵入等による閉塞•摩耗に より，機器の機能に影響がないことを評価する。
（3）構造物への化学的影響（腐食）
降下火砕物の排気消音器及び排気管への付着による化学的影響（腐食）につい て，機器の機能に影響がないことを評価する。
（4）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物の非常用ディーゼル発電機（機関）への侵入等による化学的影響（腐食）により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
粒径： 2 mm 以下
3．評価結果
（1）構造物への静的負荷
屋外に設置されている排気消音器及び排気管は，降下火砕物が堆積しにくい形状をしているため，荷重の影響を受けることはない。
（2）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
非常用ディーゼル発電機吸気系は，原子炉補機室換気空調系の外気取入口より上流側に，バグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）が設置 されており，降下火砕物の大半は捕捉される。実際に使用しているバグフィルタ の粒径別捕集効率を図1に示す。また，バグフィルタは取替え又は清掃が可能で ある。

粒径が $2 \mu \mathrm{~m}$ 程度の微細な粒子については，図 2 に示すように過給器，空気冷却器（空気側）に侵入する可能性はあるが，機器の間隙は十分大きく閉塞に至らな い。

また，機関シリンダ内に降下火砕物が混入した場合，シリンダライナー／ピス トリング間隔と同程度のものが当該間隙内に侵入し，摩耗が発生することが懸念 されるが，主要な降下火砕物は，砂と比較しても破砕し易く ${ }^{1}$ ，硬度は同等又は低い 2 2 ${ }^{3}$ こと，加えて，現在までの保守点検において有意な摩耗は確認されてい ないことから，降下火砕物の摩耗による影響は小さいと考えられる。

降下火砕物の溶融による影響については，降下火砕物の融点が約 $850^{\circ} \mathrm{C}$ 以上であ ることに対して，シリンダから排出される排気ガスの温度が，約 $500^{\circ} \mathrm{C}$ であり，シ

リンダ内の金属表面近傍はシリンダ冷却水及びピストン泠却用潤滑油の効果によ り泠却されていることを踏まえると，火山灰は溶融には至らないと考えられる。 よって，短期的な非常用ディーゼル発電機（機関）の閉塞•摩耗により，機器の機能に影響を及ぼすことはない。

長期的な影響についても，シリンダライナー及びピストンの間隙内に侵入した降下火砕物は，シリンダとピストン双方の往復運動が繰り返されるごとに，さら に細かい粒子に破砕され，破砕された粒子はシリンダライナーとピストンリング間隙に付着している潤滑油により機関外へ除去されると考える。潤滑油系には機関付フィルタが設置されているが，フィルタのメッシュ寸法が $30 \mu \mathrm{~m}$ 程度である ことから，潤滑油に含まれる降下火砕物によって閉塞する可能性は小さい。さら に，バグフィルタを通過した降下火砕物が潤滑油へ混入した場合を想定し，降下火砕物に付着した火山性ガスによる影響を確認するため，潤滑油に降下火砕物を混入させた状態における潤滑油の成分分析を実施した結果，潤滑油の性状に影響 がないことを確認した。非常用ディーゼル機関は定期的に分解点検を実施してお り，長期的な影響については保守点検において適切に対応を行うこととする。
（補足資料－2，3，6，7，8，19）
（3）構造物への化学的影響（腐食）
非常用ディーゼル発電機排気消音器及び排気管は図3に示すように外装塗装が施されており，降下火砕物による短期での腐食により，機器の機能に影響を及ぼ すことはない。また，排気消音器及び排気管の腐食により非常用ディーゼル発電機の機能に影響を与えることはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修を実施する。
（補足資料－4）
（4）換気系，電気系及び計測制御系に対する化学的影響（腐食）
金属腐食研究の結果より，降下火砕物に含まれる腐食性ガスによる短期的な金属腐食の影響は小さいことから，金属材料を用いることで，短期での腐食により非常用ディーゼル発電機の機能に影響を及ぼすことはない。なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能 な設計とする。
（補足資料－8）
※1：武若耕司（2004）：シラスコンクリートの特徴とその実用化の現状，コンクリート工学，Vol．42，No．3，P38－47
※2：恒松修二 ほか（1976）：シラスを主原料とする結晶化ガラス，䕒業協会誌，84［6］， P32－40
※3 ：Properties of volcanic ash：volcanic ash hazards and ways to minimize them＂， USGS（米国地質調査所）

図1 バグフィルタの粒径別捕集効率

図2 非常用ディーゼル機関吸気系統構造図

図3 非常用ディーゼル発電機排気消音器及び排気管

以上

非常用換気空調設備に係る影響評価

降下火砕物による非常用換気空調設備（中央制御室換気空調系，原子炉補機室換気空調系，計測制御電源室換気空調系）への影響について以下のとおり評価した。

1．評価項目
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
降下火砕物による非常用換気空調設備に対する機械的影響（閉塞，摩耗）によ り，機器の機能に影響がないことを評価する。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物による非常用換気空調設備に対する化学的影響（腐食）により，機器の機能に影響がないことを評価する。
（3）発電所周辺の大気汚染
降下火砕物により汚染された原子力発電所周辺の大気が換気空等設備を経て運転員が駐在している中央制御室の居住性に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
粒径： 2 mm 以下

3．評価結果
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞，摩耗）
各評価対象施設等の外気取入口には，ルーバが取り付けられており，下方から吸 い込む構造となっていることから，上方より降下してくる降下火砕物に対し，取り込み難い構造となっている。また，外気取入口にはバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕獲する性能）が設置されており，想定する降下火砕物は十分除去されるため，給気を供給する系統及び機器に対して降下火砕物が及ぼす影響は少ない。

なお，バグフィルタには差圧計が設置されており，必要に応じて清掃及び取替 することが可能である。よって，非常用換気空調設備の閉塞，摩耗により機器の機能に影響を及ぼすことはない。換気空調系の外気取入ロイメージ図を図1に，原子炉補機（A）室換気空調系の外気取入口を図 2 に示す。
（補足資料－5，11，19）

図1 換気空調系の外気取入口イメージ図

図 2 原子炬補機（A）室換気空調系の外気取入口
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
非常用換気空調系の外気取入口はアクリル樹脂塗装を実施したアルミニウム合金を使用しているため，金属腐食研究の結果より，降下火砕物に含まれる腐食性 ガスによる短期的な金属腐食の影響は小さいことから，金属材料を用いることで短期での腐食により非常用換気空調設備（外気取入口）の機能に影響を及ぼすこ とはない。なお，降灰後の長期的な腐食の影響については，日常の保守管理等に より，状況に応じて補修が可能な設計とする。
（補足資料－4，8）
（3）発電所周辺の大気汚染
運転員が常駐している中央制御室は，中央制御室換気空調系によって空調管理 されており，他の空調設備と同様，外気取入口には，ルーバが取り付けられてお り，下方から吸い込む構造となっていることから，上方より降下してくる降下火砕物に対し，取り込み難い構造となっている。また，外気取入口にはバグフィルタ（粒径 $2 \mu \mathrm{~m}$ 以上に対して約 80% を捕獲する性能）が設置されており，想定する降下火砕物は十分除去されるから，降下火砕物が与える影響は少ない。中央制御室換気空調系の外気取入口の写真を図3に示す。

なお，大気汚染による人に対する居住性の観点から，運転員が常駐する中央制御室については，中央制御室排風機の停止及び外気取入ダンパの閉止を行い再循環運転することにより，中央制御室の居住環境を維持できる。以下に，外気取入 ダンパを閉止した状態の酸素濃度及び二酸化炭素濃度について評価した結果を示 す。

図 3 中央制御室換気空調系の外気取入口

○酸素濃度

「空気調和•衛生工学便覧 空調設備編」に基づき，酸素濃度について評価した。

【評価条件】

- 在室人数 7 名
- 中央制御室バウンダリ内体積 $8,800 \mathrm{~m}^{3}$
- 空気流入はないものとする。
- 初期酸素濃度 20.95%（「空気調和•衛生工学便覧」成人呼吸気の酸素量）
- 酸素消費量 $0.066 \mathrm{~m}^{3} / \mathrm{h} \cdot$ 人（「空気調和•衛生工学便覧」の歩行（中等作業相当） での酸素消費量）
－許容酸素濃度 18% 以上（酸素欠乏症等防止規則）
【評価結果】

表1 中央制御室再循環運転における酸素濃度の時間変化

時間	12 時間	24 時間	36 時間	565 時間
酸素濃度	20.8%	20.8%	20.7%	18.0%

○二酸化炭素濃度

「空気調和•衛生工学便覧 空調設備編」に基づき，二酸化炭素濃度について評価した。

【評価条件】

- 在室人数 7名
- 中央制御室バウンダリ内体積 $8,800 \mathrm{~m}^{3}$
- 空気流入はないものとする。
- 初期二酸化炭素濃度 0.03%（原子力発電所中央制御室運転員の事故時被ばく に関する規程（JEAC4622－2009））
－二酸化炭素排出量 $0.046 \mathrm{~m}^{3} / \mathrm{h} \cdot$ 人（「空気調和•衛生工学便覧」の中等作業での二酸化炭素排出量）
－許容二酸化炭素濃度 1.0% 以下（「労働安全衛生規則」の許容二酸化炭素濃度 1.5% に余裕を見た値）

【評価結果】

表2 中央制御室再循環運転における二酸化炭素濃度の時間変化

時間	12 時間	24 時間	36 時間	266 時間
炭酸濃度	0.08%	0.12%	0.17%	1.0%

表1， 2 の結果から， 266 時間外気取入れを遮断したままでも，中央制御室内に滞在する運転員の操作環境に影響を与えない，なお，噴火継続時間に関する最近 の観測記録（補足資料－12）に比較し，十分な裕度が確保できていることを確認 した。

海水取水設備（除塵装置）に係る影響評価

1．評価項目
（1）水循環系の閉塞
降下火砕物が混入した海水を取水することに伴う，海水取水設備が閉塞しない ことを評価する。
（2）水循環系の内部における摩耗
降下火砕物が混入した海水を取水することに伴う，海水取水設備の摩耗により，機器の機能に影響がないことを評価する。
（3）水循環系の化学的影響（腐食）
降下火砕物が混入した海水を取水することによる構造物内部の化学的影響（腐食）により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
粒径： 2 mm 以下
3．評価結果
（1）水循環系の閉塞
海水取水設備（トラベリングスクリーンメッシュ幅 12 mm ）への降下火砕物を想定しても，想定する降下火砕物の粒径はスクリーンメッシュ幅に対して十分小さ く，また，降下火砕物には粘性を生じさせる粘土鉱物等は含まれていないことか ら，海水取水設備が閉塞することはない。
（2）水循環系の内部における摩耗
主要な降下火砕物は破砕し易く，砂と同等又は硬度が低いことから，降下火砕物による摩耗が，設備に影響を与える影響は小さい。
（補足資料－3，19）
（3）水循環系の化学的影響（腐食）
海水系の化学的腐食については，海水取水設備は塗装等を実施しており，海水と金属が直接接することはないため，降下火砕物による短期での腐食により海水取水設備の機能に影響を及ぼすことはない。
（補足資料－4）

計測制御設備（安全保護系）及び非常用電源設備（所内低圧系） に係る影響評価

降下火砕物による電気系及び計測制御系の盤への影響について，外気から取り込ん だ屋内の空気を取込む機構を有するもの（計測制御設備（安全保護系）及び非常用電源設備（所内低圧系））への影響について，以下のとおり評価する。

1．評価項目
（1）絶縁低下
降下火砕物が盤内に侵入する可能性及び侵入における，絶縁低下の影響につい て評価する。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物による計測制御設備及び非常用電源設備に対する化学的影響（腐食） により，機器の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件
粒径： 2 mm 以下

3．評価結果
（1）絶縁低下
屋内の電気系及び計測制御系の盤については，その発熱量に応じて盤内に換気フ アンを設置している場合があるため，降下火砕物が盤内に侵入する可能性がある。

計測制御設備及び非常用電源設備が設置されているエリアは，原子炉補機室換気空調系又は計測制御電源室換気空調系にて空調管理されており，外気取入口に設置 されているバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）を介した換気空気を吸入している。したがって，降下火砕物が大量に盤内に侵入する可能性 は少なく，その付着により短絡を発生させる可能性はないため，計測制御設備及び非常用電源設備の安全機能が損なわれることはない。
（補足資料－9）
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
計測制御設備及び非常用電源設備が設置されているエリアは，原子炉補機室換気空調系又は計測制御電源室換気空調系にて空調管理されており，外気取入口に設置 されているバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕捉する性能）を介した換気空気を吸入している。したがって，降下火砕物が大量に盤内に侵入する可能性 は少ないことから，短期での腐食により，計測制御設備及び非常用電源設備の安全機能が損なわれることはない。

復水貯蔵タンクに係る影響評価

降下火砕物による復水貯蔵タンクへの影響について以下のとおり評価した。
1．評価項目及び内容
（1）構造物への静的負荷
降下火砕物の堆積荷重により復水貯蔵タンクの健全性に影響がないことを評価 する。なお，堆積荷重は積雪との重畳を考慮する。
（2）構造物への化学的影響（腐食）
降下火砕物の構造物への付着や堆積による化学的影響（腐食）により構造物の機能に影響がないことを評価する。

2．評価条件
（1）降下火砕物条件

- 堆積量： 15 cm
- 密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤密度）
（2）積雪条件
- 積雪量： 17 cm （石巻地域における年最大積雪深さの平均値）
- 単位荷重：積雪量 1 cm 当たり $20 \mathrm{~N} / \mathrm{m}^{2}$（建築基準法施行令に基づく積雪の単位荷重）

3．評価結果
（1）構造物への静的負荷
a ．堆積荷重
湿潤状態の降下火砕物の荷重（2，207 N／m²）

$$
\text { + 降下火砕物と組み合わせる積雪荷重 (} \left.340 \mathrm{~N} / \mathrm{m}^{2}\right)=2,547 \mathrm{~N} / \mathrm{m}^{2}
$$

表1に評価結果を示す。評価の結果，復水貯蔵タンクの屋根部及び側板は発生す る応力は許容値に対して十分な裕度を有しており，復水貯蔵タンクの健全性に影響 を及ぼすことはない。

表1 復水貯蔵タンクに対する降下火砕物の堆積による発生応力評価

評価部位	応力	計算値（MPa）	許容値＊（MPa）	裕度	結果
屋根部	一次一般膜応力	22	188	8	\bigcirc
	一次膜＋曲げ応力	65	282	4	\bigcirc
側板	一次一般膜応力	19	188	9	\bigcirc
	一次膜＋曲げ応力	60	282	4	\bigcirc

※：各部位の許容応力は，JEAG4601－1987の「クラス 2 容器及びクラス 2 支持構造物」における許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ に基づく。
（2）構造物への化学的影響（腐食）
復水貯蔵タンクは外面塗装が施されおり，降下火砕物による短期での腐食により復水貯蔵タンクの機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況 に応じて補修が可能な設計とする。
（補足資料－4）
以 上

排気筒及び非常用ガス処理系（屋外配管）に係る影響評価

降下火砕物による排気筒（非常用ガス処理系含む）への影響について以下のとおり評価する。

1．評価項目及び内容

（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞）

降下火砕物の排気筒への侵入により，機器の機能に影響がないことを評価する。具体的には，排気筒の吹出し速度が降下火砕物の沈下速度よりも大きく，降下火砕物は排気筒へ侵入しないことを確認する。また，降下火砕物が侵入したとして も流路が閉塞しないことを確認する。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物の付着に伴う化学的影響（腐食）により，機器の機能に影響がない ことを評価する。
（3）構造物への化学的影響（腐食）
降下火砕物の付着に伴う化学的影響（腐食）により，機器の機能に影響がない ことを評価する。

2．評価条件
（1）降下火砕物の条件

- 粒径 ：2mm以下
- 密度 ： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤密度とする）
- 降下速度： $3.5 \mathrm{~m} / \mathrm{s}$（単粒子が静止した気体中を自由落下し，粒子の流体抗力，重力及び浮力の間につり合いの状態が生じたときの速度）

3．評価結果
（1）換気系，電気系及び計測制御系に対する機械的影響（閉塞）
排気筒は常時排気があり，その排気速度（約 $22 \mathrm{~m} / \mathrm{s}$ ）は降下火砕物の自由降下速度（ $3.5 \mathrm{~m} / \mathrm{s}$ ）を上回っており，降下火砕物が排気筒内に侵入することはないこ とから，降下火砕物により流路が閉塞することはなく，機器の機能に影響を及ぼ すことはない。
（2）換気系，電気系及び計測制御系に対する化学的影響（腐食）
排気筒は常時排気があり，その排気速度（約 $22 \mathrm{~m} / \mathrm{s}$ ）は降下火砕物の自由降下速度（ $3.5 \mathrm{~m} / \mathrm{s}$ ）を上回っており，降下火砕物が排気筒内に侵入することはない。ま た，侵入した場合であっても，金属腐食研究の結果より，降下火砕物に含まれる腐食性ガスによる短期的な金属腐食の影響は小さいことから，金属材料を用いる ことで，短期での腐食により機能に影響を及ぼすことはない。なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（補足資料－8）

（3）構造物への化学的影響（腐食）

排気筒及び非常用ガス処理系（屋外配管）は外面塗装が施されおり，降下火砕物による短期での腐食により，機器の機能に影響を及ぼすことはない。

なお，降灰後の長期的な腐食の影響については，日常の保守管理等により，状況に応じて補修が可能な設計とする。
（補足資料－4）

評価ガイドとの整合性について

原子力発電所の火山影響評価ガイドと降下火砕物（火山灰）に対する設備影響の評価の整合性について，以下の表1に示す。
$(1 / 7)$

原子力発電所の火山影響評価ガイド	降下火砤物（火山灰）に対する設備影響の評価の整合性
1．総則 本評価ガイドは，原子力発電所への火山影響を適切に評価するため，原子力発電所に影響を及 ぼし得る火山の抽出，抽出された火山の火山活動に関する個別評価，原子力発電所に影響を及ぼ し得る火山事象の抽出及びその影響評価のための方法と確認事項をとりまとめたものである。 1． 1 一般 原子力規制委員会の定める「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準 に関する規則」第 6 条において，外部からの衝撃による損傷の防止として，安全施設は，想定さ れる自然現象（地震及び津波を除く。）が発生した場合においても安全機能を損なわないもので なければならないとしており，敷地周辺の自然環境を基に想定される自然現象の一つとして，火山の影響を挙げている。 火山の影響評価としては，最近では使用済燃料中間貯蔵施設の安全審査において評価実績があ り，2009年に日本電気協会が「原子力発電所火山影響評価技術指針」 （JEAG4625－2009）を制定し，2012年に IAEA が Safety Standards＂Volcanic Hazards in Site Evaluation for Nuclear Installations＂（No．SSG－21）を策定した。近年，火山学は基本的記述科学から，以前は不可能であった火山システムの観察と複雑な火山プロセスの数値モデルの使用に依存する定量的科学へと発展しており，これらの知見を基に，原子力発電所への火山影響を適切 に評価する一例を示すため，本評価ガイドを作成した。 本評価がイドは，新規制基準が求める火山の影響により原子炉施設の安全性を損なうことのな い設計であることの評価方法の一例である。また，本評価ガイドは，火山影響評価の妥当性を審查官が判断する際に，参考とするものである。 1． 2 適用範囲 本評価ガイドは，実用発電用原子炉及びその附属施設に適用する。	1．はじめに 原子力規制委員会の定める「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則（以下設置許可基準規則）という。」第六条において，外部からの衝撃による損傷防止と して，安全施設は，想定される自然現象（地震及び津波を除く。）が発生した場合においても安全機能を損なわないものでなければならないとしており，敷地周辺の自然環境を基に想定される自然現象の一つとして，火山の影響を挙げている。 火山の影響により原子炉施設の安全性を損ならことのない設計であることを評価するための「原子力発電所の火山影響評価ガイド」に沿って，以下のとおり火山影響評価を行い，安全機能が維持 されることを確認した。 - 立地評価 - 影響評価

表1 原子力発電所の火山影響評価ガイドと降下火砕物（火山灰）に対する設備影響の評価の整合性

原子力発電所の火山影響評価ガイド	降下火砕物（火山灰）に対する設備影響の評価の整合性
2．原子力発電所に影響を及ぼす火山影響評価の流れ 火山影響評価は，図1に従い，立地評価と影響評価の 2 段階で行う。 立地評価では，まず原子力発電所に影響を及ぼし得る火山の抽出を行い，影響を及ぼし得る火山が抽出された場合には，抽出された火山の火山活動に関する個別評価を行う。即ち，設計対応不可能な火山事象が原子力発電所の運用期間中に影響を及ぼす可能性の評価を行う。（解説－1） 影響を及ぼす可能性が十分小さいと評価された場合は，火山活動のモニタリングと火山活動の兆候把握時の対応を適切に行うことを条件として，個々の火山事象に対する影響評価を行う。一方，設計対応不可能な火山事象が原子力発電所運用期間中に影響を及ぼす可能性が十分小さいと評価されない場合は，原子力発電所の立地は不適と考えられる。 影響評価では，個々の火山事象への設計対応及び運転対応の妥当性について評価を行う。 解説－1．IAEASSG－21では，火砕物密度流，溶岩流，岩屃なだれ・地滑り及び斜面崩壊，新しい火道 の開通及び地殻変動を設計対応が不可能な火山事象としており，本評価ガイドでも，これを適用する。 図1 原子力発嘷所に影響を及ぼす火山影響評価の基本フロー	2．原子力発電所に影響を及ぼす火山影響評価の流れ （ガイドのとおり）

表1 原子力発電所の火山影響評価ガイドと降下火砕物（火山灰）に対する設備影響の評価の整合性（3／7）

原子力発電所の火山影響評価ガイド	降下火哗物（火山灰）に対する設備影響の評価の整合性
【立地評価】（項目名のみ記載） 3．原子力発電所に影響を及ぼし得る火山の抽出 3． 1 文献調查 3． 2 地形•地質調查及び火山学的調查 3． 3 将来の火山活動可能性 4．原子力発電所の運用期間における火山活動に関する個別評価 4． 1 設計対応不可能な火山事象を伴う火山活動の評価 4． 2 地球物理学的及び地球化学的調查 5．火山活動のモニタリング 5． 1 監視対象火山 5． 2 監視項目 5． 3 定期的評価 5． 4 火山活動の兆候を把握した場合の対処	【立地評価】 文献調查，地形•地質調查及び火山学的調查を行い，完新世の活動の有無や将来の活動可能性を検討した結果，原子力発電所の地理的領域内には 31 の第四紀火山があり，そのうち，将来の活動可能性のある火山又は将来の活動可能性を否定できない火山として，焼石岳，鳥海山，栗駒山，鳴子 カルデラ，时折カルデラ，月山，蔵王山，笹森山，吾妻山，安達太良山及び磐梯山の 11 火山を抽出 した。 将来の活動可能性のある火山又は将来の活動可能性を否定できない 11 火山を対象に，原子力発電所との距離及び地形的条件を考慮するとともに，各火山に関する文献調查の結果から，設計対応不可能な火山事象（火砕物密度流，溶岩流，岩㞕なだれほか，新しい火口の開口及び地殻変動）が発電所に影響を及ぼす可能性はないと評価した。また，将来の活動可能性のある火山又は将来の活動可能性を否定できない 11 火山の既往最大の噴火を考慮しても発電所に影響を及ぼさないと判断さ れることから，火山活動のモニタリングの必要性はないと評価した。 （第189回原子力発電所の新規制基準適合性に係る審查会合（平成 27 年 1 月 30 日），第 238 回原子力発電所の新規制基準適合性に係る審査会合（平成 27 年 6 月 12 日），第 446 回原子力発電所の新規制基準適合性に係る審査会合（平成 29 年 2 月 24 日）にてご説明済）

（4／7）

原子力発電所の火山影響評価ガイド	降下火砕物（火山灰）に対する設備影響の評価の整合性
【影響評価】 6．原子力発電所への火山事象の影響評価 原子力発電所の運用期間中において設計対応不可能な火山事象によって原子力発電所の安全性 に影響を及ぼす可能性が十分小さいと評価された火山について，それが噴火した場合，原子力発電所の安全性に影響を与える可能性のある火山事象を表1に従い抽出し，その影響評価を行う。 ただし，降下火砕物に関しては，火山抽出の結果にかかわらず，原子力発電所の敷地及びその周辺調查から求められる単位面積あたりの質量と同等の火砕物が降下するものとする。なお，敷地及び敷地周辺で確認された降下火砕物で，噴出源が同定でき，その噴出源が将来噴火する可能性が否定できる場合は考慮対象から除外する。 また，降下火砕物は浸食等で厚さが低く見積もられるケースがあるので，文献等も参考にして，第四紀火山の噴火による降下火砕物の堆積量を評価すること。（解説－14） 抽出された火山事象に対して，4章及び 5 章の調査結果等を踏まえて，原子力発電所への影響評価を行うための，各事象の特性と規模を設定する。（解説－15） 以下に，各火山事象の影響評価の方法を示す。 解説－14．文献等には日本第四紀学会の「日本第四紀地図」を含む。 解説－15．原子力発電所との位置関係について 表1に記載の距離は，原子力発電所火山影響評価技術指針（JEAG4625）から引用した。 JEAG4625 では，調査対象火山事象と原子力発電所との距離は，わが国における第四紀火山の火山噴出物の既往最大到達距離を参考に設定している。また，噴出中心又は発生源の位置が不明 な場合には，第四紀火山の火山噴出物等の既往最大到達距離と噴出物の分布を参考にしてその位置を想定する。 例えば，噴出中心と原子力発電所との距離が，表中の位置関係に記載の距離より短ければ，火山事象により原子力発電所が影響を受ける可能性があると考えられる。	【影響評価】 6．原子力発電所への火山事象の影響評価 将来の活動可能性のある火山又は将来の活動可能性を否定できない 11 火山を対象に，原子力発電所との距離及び地形的条件を考慮し，火山性土石流，飛来物（噴石），火山性ガス及びその他の火山事象のうち影響を評価すべき事象はないと評価した。 降下火砕物に関しては，文献調査，敷地内での地質調査，敷地周辺での露頭調査を実施するとと もに，これらの調査結果を踏まえたシミュレーションを行い，原子力発電所で考慮する降下火砕物 の層厚を 15 cm と評価した。 （第446回原子力発電所の新規制基準適合性に係る審査会合（平成 29 年 2 月 24 日）にてご説明済）

6 条（火山）一別添 1 － 59
原子力発電所の火山影響評価ガイドと降下火砕物（火山灰）に対する設備影響の評価の整合性

原子力発電所の火山影響評価ガイド	降下火砤物（火山灰）に対する設備影響の評価の整合性
6．1 降下火砕物 （1）降下火砕物の影響 （a）直接的影響 降下火砕物は，最も広範囲に及ぶ火山事象で，ごくわずかな火山灰の堆積でも，原子力発電所の通常運転を妨げる可能性がある。降下火砕物により，原子力発電所の構造物への静的負荷，粒子の衝突，水循環系の閉塞及びその内部における磨耗，換気系，電気系及び計装制御系に対する機械的及び化学的影響，並びに原子力発電所周辺の大気汚染等の影響が挙げら れる。 降雨•降雪などの自然現象は，火山灰等の堆積物の静的負荷を著しく増大させる可能性が ある。火山灰粒子には，化学的腐食や給水の汚染を引き起こす成分（塩素イオン，フッ素イ オン，硫化物イオン等）が含まれている。 （b）間接的影響 前述のように，降下火砕物は広範囲に及ぶことから，原子力発電所周辺の社会インフラに影響を及ぼす。この中には，広範囲な送電網の損傷による長期の外部電源喪失や原子力発電所へのアクセス制限事象が発生しうることも考慮する必要がある。 （2）降下火砕物による原子力発電所への影響評価 降下火砕物の影響評価では，降下火砕物の降灰量，堆積速度，堆積期間及び火山灰等の特性 などの設定，並びに降雨等の同時期に想定される気象条件が火山灰等特性に及ぼす影響を考慮 し，それらの原子炬施設又はその附属設備への影響を評価し，必要な場合には対策がとられ，求められている安全機能が担保されることを評価する。（解説－16，18）	6． 1 降下火砕物 （1）降下火砕物の影響 （a）直接的影響 降下火砕物は，最も広範囲に及ぶ火山事象で，ごくわずかな火山灰の堆積でも，原子力発電所 の通常運転を妨げる可能性がある。原子力発電所の構造物への静的負荷（降雨等の影響を含む），粒子の衝突，閉塞，磨耗，腐食，大気汚染，水質汚染及び絶縁影響等，降下火砕物が設備に影響 を与える可能性のある因子を網羅的に抽出•評価し，その中から詳細に検討すべき影響因子を選定した。 影響評価において，必要となる降下火砕物の粒径及び密度については，文献調査•地質調査を基に設定した。なお，降下火砕物の密度については，降雨の影響を考慮した。 （b）間接的影響 降下火砕物は広範囲に及ぶことから，広範囲にわたる送電網の損傷による長期の外部電源喪失の可能性や原子力発電所へのアクセス制限事象の可能性も考慮し，間接的影響を確認した。 （2）降下火砕物による原子力発電所への影響評価 降下火砕物の影響を考慮すべき設備としては，外部事象防護対象施設のうち，屋内設備は内包 する建屋により防護する設計とし，評価対象施設を，建屋，屋外に設置されている施設，降下火砕物を含む海水の流路となる施設，降下火砕物を含む空気の流路となる施設，外気から取 り入れた屋内の空気を機器内に取り込む機構を有する施設に分類し抽出した。また，降下火砕物の影響を受ける施設であって，その停止等により，上位の安全重要度の施設の運転に影響を及ぼす可能性のある屋外の施設も評価を行った。 抽出した評価対象施設について影響を評価し，原子炉施設の安全性を損なわないことを確認 した。

（6／7）
に対する設備影響の評価の整合性

原子力発電所の火山影響評価ガイド	降下火砤物（火山灰）に対する設備影響の評価の整合性
（3）確認事項 （a）直接的影響の確認事項 （1）降下火砕物堆積荷重に対して，安全機能を有する構築物，系統及び機器の健全性が維持さ れること。 （2）降下火砕物により，取水設備，原子炉補機冷却海水系統，格納容器ベント設備等の安全上重要な設備が閉塞等によりその機能を喪失しないこと。 （3）外気取入口からの火山灰の侵入により，換気空調系統のフィルタの目詰まり，非常用ディ ーゼル発電機の損傷等による系統•機器の機能喪失がなく，加えて中央制御室における居住環境を維持すること。（解説－17） （4）必要に応じて，原子力発電所内の構築物，系統及び機器における降下火砕物の除去等の対応が取れること。 （b）間接的影響の確認事項 原子力発電所外での影響（長期間の外部電源の喪失及び交通の途絶）を考慮し，燃料油等 の備蓄又は外部からの支援等により，原子炉及び使用済燃料プールの安全性を損なわないよ うに対応が取れること。 解説－16．原子力発電所内及びその周辺敷地において降下火砕物の堆積が観測されない場合は，次の方法 により堆積物量を設定する。 \checkmark 類似する火山の降下火砕物堆積物の情報を基に求める。 \checkmark 対象となる火山の総噴火量，噴煙柱高度，全粒径分布，及びその領域における風速分布の変動を高度及び関連パラメータの関数として，原子力発電所における降下火砕物の数値シミ ユレーションを行うことより求める。数値シミュレーションに際しては，過去の噴火履歴等の関連パラメータ，及び類似の火山降下火砕物堆積物等の情報を参考とすることがで きる。 解説－17．堆積速度，堆積期間については，類似火山の事象やシミュレーション等に基づいて評価する。 また，外気取入口から侵入する火山灰の想定に当たつては，添付 1 の「気中降下火砕物濃度の推定手法について」を参照した気中降下火砕物濃度を用いる。堆積速度，堆積期間及び気中降下火砕物濃度は，原子力発電所への間接的な影響の評価にも用いる。解説－18．火山灰の特性としては粒度分布，化学的特性等がある。	（3）降下火砕物の影響の確認結果 （a）直接的影響の確認結果 （1）降下火砕物による静的荷重影響に対して，原子炉建屋，制御建屋，タービン建屋，地下軽油 タンクピット，海水ポンプ，海水ストレーナ（高圧炬心スプレイ補機椧却海水ストレーナ），非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含む）排気消音器及び排気管，復水貯蔵タンクの健全性が維持されることを確認した。 （2）降下火砕物による化学的影響に対して，原子炉建屋，制御建屋，タービン建屋，地下軽油夕 ンクピット，海水ポンプ，海水取水設備（除塵装置），海水ストレーナ及び下流設備，非常用換気空調設備，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機含む），計測制御設備（安全保護系），非常用電源設備（所内低圧系），復水貯蔵タンク，排気筒，非常用ガ ス処理系（屋外配管）の機能が維持されることを確認した。 （3）降下火砕物が外気取入口に侵入した場合であっても，フィルタによって大部分の降下火砕物は除去されることから，給気を供給する系統及び機器の機能䨤失がなく，加えて，中央制御室換気空調系については，外気取入ダンパを閉止し閉回路循噮運転をすることにより，中央制御室の居住性に影響を及ぼさないことを確認した。 （4）必要に応じて，構築物，系統及び機器における降下火砕物の除去，換気空調系フィルタの清掃•取替が可能な設計であることを確認した。 （b）間接的影響の確認結果 原子力発電所外での影響（長期の外部電源の喪失及び交通の途絶）を考慮した場合において も，発電所内に貯蔵されている燃料油等の備蓄により，7日間は原子炬及び使用済燃料プール の安全性を損なわないように対応が取れることを確認した。

（7／7）

6 条（火山）一別添 1－ 62

降下火砕物の特徴及び影響モードと，影響モードから選定された影響因子に対し影響を受ける評価対象施設等の組合せについて

降下火砕物の特徴から抽出される影響モード，影響モードから選定される影響因子，影響因子から影響を受ける評価対象施設等の組合せについて，本資料「表 3．4．4－1 降下火砕物が影響を与える評価対象施設等と影響因子の組合せ」にて，評価すべき組合せを検討した結果，図1に示す結果となつた。なお，選定された影響因子は，「原子力発電所の火山影響評価ガイド」に示されたものと同じ項目となっ た。

図1 降下火砕物の特徴と影響因子
※1：「広域的な火山防災対策に係る検討会（第3回）（資料2）」（事務局：内閣府（防災担当），消防庁，国土交通省水管理•国土保全局砂防部，気象庁：平成24年11月）
※2：粘性を生じさせる粘土鉱物等は含まれていない。
※3：［火山灰による金属腐食の研究報告の例］
4 種類の金属材料（Zn メッキ，A1，SS41，Cu）に対して，桜島の降下火砕物を水で洗浄し，可溶性の成分を除去した後，金属試験片に堆積させ，実際の自然条件より厳しい条件である高濃度の SO_{2} ガス雰囲気（150 ～200ppm）で加熱，泠却を繰り返すことで，結露，蒸発を繰り返した金属腐食の程度は，表面厚さとして十数～数十 $\mu \mathrm{m}$ のオーダーの腐食。（補足資料－8 参照）
〈試験条件•••温度，湿度，保持時間［1）（ $\left.40^{\circ} \mathrm{C}, 95 \%, 4 \mathrm{~h}\right) ~ \sim(2)\left(20^{\circ} \mathrm{C}, 80 \%, 2 \mathrm{~h}\right) \times 18$ サイクル］〉
〔参考文献〕出雲茂人，末吉秀一ほか，火山環境における金属材料の腐食，1990，防食技術Vol．39，pp．247－253） \Rightarrow 設計時の腐食代（数 mm オーダー）を考慮すると，構造健全性に影響を与えることはないと考えられる。
※ 4 ：降下火砕物の融点は約 $1,000^{\circ} \mathrm{C}$ であり，一般的な砂に比べて低いとされているが，調査の結果，女川原子力発電所で想定する降下火砕物を構成する火山ガラス及び鉱物結晶片の融点は $850^{\circ} \mathrm{C}$ 以上であると考えられ る。（補足資料—19参照）

降水による降下火砕物の固結の影響について

降下火砕物は，湿ったのち乾燥することで固結する特徴をもつており，影響モード として閉塞が考えられるが，一般的に流水等で除去可能である。
降下火砕物が固結した場合の評価対象施設等に対する影響モードとしては，水循環系の閉塞及び換気系，電気系及び計測制御系に対する機械的影響（閉塞）が考えられ る
が，水循環系の閉塞においては，大量の海水が通水しているため，固結による影響は ない。
換気系，電気系及び計測制御系に対する機械的影響（閉塞）としては，非常用換気空調系のバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対して 80% 以上を捕獲する性能）の閉塞が考え られるが，非常用換気空調系の外気取入口にはルーバが設置されており，下向から吸 い込む構造となっていることから，平時に比べ雨が降っている場合の降下火砕物の侵入は減少すると考えられる。なお，侵入した降下火砕物は，非常用換気空調系のバグ フィルタによって除去されるが，湿った降下火砕物がバグフィルタに付着し固結した場合においても，バグフィルタの取替えが可能なことから，固結による影響はない。

一方，評価対象施設等に対して間接的な影響を与え得る事象としては，固結した降下火砕物によって，構内排水に影響を及ぼす事象が考えられる。構内に降った雨水は，最終的には，北側及び南側に設置されている各幹線排水路に集水され海域に排水され る。各幹線排水路は，評価対象施設等に有意な影響を及ぼし得る大雨時の流入量に対 して，十分な裕度を有していることから，構内の排水に対して影響を及ぼさない。
なお，原子炬建屋等については，溢水対策として建屋貫通部の止水処置等を実施し ていることから，評価対象施設等への影響はない。

降下火砕物による摩耗について

水循環系において最も摩耗の影響を受けやすい箇所はライニングが施されていな い各泠却器の伝熱管と考えられるが，発電所の運用期間中において海水取水中に含ま れる砂等の摩耗によるトラブルは発生していないこと，及び主要な降下火砕物は，砂 と同等又は砂より硬度が低くもろいことから，降下火砕物による摩耗が設備に影響を与える可能性はないと評価している。

1．降下火砕物と砂の破砕しやすさの違いについて
降下火砕物と砂の破砕しやすさの違いについては，「武若耕司（2004）：シラスコ ンクリートの特徴とその実用化の現状，コンクリート工学，vol．42，No．3，P38－47．」 による調査報告があり，図 1 に示すとおり，「シラスは川砂などに比べて極めて脆弱な材料である」とされており，シラスと同様，火山ガラスを主成分とする降下火砕物は，砂と比較して破砕しやすいと考えられる。

図 1 シラスの破砕試験結果
2．降下火砕物と砂及び設備材料の硬度の比較について
鉱物の硬度は掻傷硬度で表されており，ここではモース硬度による比較を行う。以下のとおり，主要な降下火砕物の硬度は砂と同等又は砂より低いため，設備への影響は軽微と考える。
－降下火砕物の主成分は，火山ガラスであり，「恒松修二•井上耕三•松田応作
（1976）：シラスを主原料とする結晶化ガラス，窯業協会誌84［6］，P32－40．」に よると，火山ガラスのモース硬度は5 と記載されている。
－女川原子力発電所で想定する降下火砕物の成分である鉱物結晶片は石英，（斜方•単斜）輝石，角閃石，カミントン閃石，黒雲母，磁鉄鉱であり，これらのモース硬度の最大値は 7 である（補足資料－ 19 参照）。
－砂の主成分は石英，長石類，雲母類であり，モース硬度の最大値は石英の 7 であ る。
また，発電所運用期間中において海水取水中に含まれる砂等による摩耗によるト ラブルは経験していないことから，設備材料は砂に対して耐性を有すると考える。 また，東北地方太平洋沖地震に伴ら津波による海水中の砂に対しても，海水ポンプ の運転が継続している実績があることから，摩耗による設備への影響は軽微と考え る。

降下火砕物の化学的影響（腐食）について

女川原子力発電所第2号炉の降下火砕物による化学的影響（腐食）については，「構造物への化学的影響（腐食）」，「水循環系への化学的影響（腐食）」又は「換気系•電気系及び計測制御系に対する化学的影響（腐食）」を影響因子として，評価対象施設等に対する評価を行い，評価対象施設等が耐食性のある金属材料の使用や防食塗装， ライニングの実施による短期的な腐食により安全機能への影響がないことを評価し ている。影響因子と評価対象施設等について整理した。詳細について以下に示す。

1．構造物への化学的影響

降下火砕物には腐食性ガス $\left(\mathrm{SO}_{2}\right)$ が付着しており，水に濡れると硫酸イオン $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ が流出することから，建屋及び屋外施設の外面を腐食させることで設備に影響を与 える可能性がある。
評価対象施設等について評価を行った結果，原子炉建屋，制御建屋，タービン建屋，海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポン プ），海水ストレーナ（高圧灲心スプレイ補機冷却海水ストレーナ），排気筒，非常用ガス処理系（屋外配管），復水貯蔵タンク，地下軽油タンクピット，非常用ディ ーゼル発電機（高圧炉心スプレイディーゼル発電機含む。）排気消音器及び排気管 については，強度腐食環境に対する塗料であるエポキシ樹脂系の塗装を外面に実施 していることで，直ちに金属表面等の腐食が進むことはないことを確認した。

2．水循環系の化学的影響（腐食）
海水中には元々多量の腐食性成分が含まれているが，降下火砕物が海水に接触し て腐食性成分（硫酸イオン $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ ）が溶出することにより，設備に影響を与える可能性がある。

評価対象施設等について評価を行った結果，海水ポンプ（原子炉補機冷却海水ポ ンプ，高圧炉心スプレイ補機冷却海水ポンプ），海水ストレーナ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）及びその下流設備，海水取水設備（除塵装置）についてはエポキシ樹脂系，タールエポキシ樹脂系の塗装やゴム ライニング等を実施していることで，直ちに金属表面等の腐食が進むことはないこ とを確認した。また，海水ストレーナの下流設備である熱交換器の伝熱管について は，耐食性に優れたアルミニウム黄銅を使用していること，鉄イオン注入による管内内面の保護被膜により腐食対策を実施していることから，短期での腐食により設備の健全性に影響を与えるものではないと考える。

3．換気系，電気系及び計測制御系に対する化学的影響（腐食）
降下火砕物を含む空気が流路等を腐食させることで設備に影響を与える可能性 がある。

評価対象施設等について評価を行った結果，海水ポンプ（原子炉補機冷却海水ポ ンプ，高圧炬心スプレイ補機冷却海水ポンプ）のモータ泠却器については，エポキ シ樹脂系の塗装，非常用換気空調設備（外気取入口）には耐食性のあるアルミニウ ム合金にアクリル塗装による塗装を実施しているので，直ちに金属表面等の腐食が進むことはないことを確認した。
表1 降下火砕物による化学的影響（腐食）に対する影響対策（1／2）

影響因子	評価対象施設等	評価対象部位		腐食対策	仕様 ${ }^{* 1}$
構造部への化学的影響 （腐食）	－原子炉建屋，制御建屋，タービン建屋		壁	塗装	エポキシ樹脂系塗料による防食塗装
	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心ス プレイ補機冷却海水ポンプ）	ポンプ	ケーシング	塗装	
		モータ	外面	塗装	
	－海水ストレーナ （高圧炉心スプレイ補機冷却海水ストレーナ）	ストレーナ外面		塗装	
	－非常用ガス処理系（屋外配管）	配管，支持構造物		塗装	
	－排気筒	排気筒，支持構造物		塗装	
	－復水貯蔵タンク	タンク		塗装	
	－地下軽油タンクピット	ハッチ		塗装	
	－非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機含む。）排気消音器及び排気管	排気消音器		塗装	
		排気管			

[^2]表1 降下火砕物による化学的影響（腐食）に対する影響対策（2／2）

影響因子	評価対象施設等	評価対象部位		腐食対策	仕様 ${ }^{1}$
水循環系への化学的影響（腐食）	－海水ポンプ（原子炉補機冷却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）	ポンプ	コラムパイ プ	ライニング	ゴムライニング
			インペラ, 主 軸	塗装	エポキシ樹脂系塗料による防食塗装
	－海水ストレーナ（原子灲補機泠却海水ストレーナ，高圧炉心スプレイ補機冷却海水ストレーナ）及び下流設備	ストレーナ内面			樹脂ライニング（原子炉補機冷却海水ストレーナ）
				ライニング	$\begin{aligned} & \text { ゴムライニング (高圧炉心 } \\ & \text { スプレイ補機冷却海水スト } \\ & \text { レーナ) } \end{aligned}$
		配管		ライニング	樹脂ライニング, ゴムライ ニング
		熱交換器水室		ライニング	ゴムライニング
		伝熱管		金属材料，保護被膜＊	アルミニウム黄銅
	－海水取水設備（除塵装置）	スクリーン		塗装	タールエポキシ樹脂系塗料 による防食塗装
換気系，電気系及び計測制御系 に対する化学的影響（腐食）	－海水ポンプ（原子炉補機泠却海水ポンプ，高圧炉心スプレイ補機冷却海水ポンプ）	モータ	空気冷却器	塗装	エポキシ樹脂系塗料による防食塗装
	－非常用換気空調設備（外気取入口）	外気取入口	ルーバ	金属（塗装）	アルミニウム合金にアクリ ル樹脂系塗料による塗装

※ 1 ：塗装ハンドブックによると，プラントの塗装として，酸，アルカリなどに水分の加わった強度腐食環境での塗装には耐薬品性のある塗料として，エポキシ樹脂塗料，タールエポ

〔参考文献〕：石塚末豊•中道敏彦，塗装ハンドブック，1996，朝倉書店，P312
※2：伝熱管材料は降下火砕物による腐食成分である硫酸イオン（ $\mathrm{SO}_{4}{ }^{2-}$ ）に耐食性のあるアルミニウム黄銅を使用しており，さらに鉄イオン注入による管内内面の保護被膜による腐食対策を実施している。
（注）：評価対象施設のらち，屋内設備（非常用ディーゼル発電機（屋内設備），計測制御設備（安全保護系）及び非常用電源設備（所内低圧系））は，外気取入口に設置されているバグ
 なわれることはない。

6 条（火山）一別添 1－68

降下火砕物による非常用ディーゼル発電機の吸気に係る バグフィルタの影響評価について

非常用ディーゼル発電機の吸気は換気空調系のバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対し て 80% 以上を捕捉する性能）を介した換気空気を吸入しているため，降下火砕物の侵入による非常用ディーゼル発電機への影響は小さいと考えられる。なお，バグフィル夕の手前には，外気取入口に下向き羽根のついたルーバが設置されており，降下火砕物により容易に閉塞しないと考えられるが，閉塞までの灰捕集容量について，以下の とおり評価する。

1．降下火砕物によるバグフィルタ閉塞試験
バグフィルタの閉塞試験は，実機で使用しているバグフィルタを用い，実際の火山灰を用いて実施した。
（1）試験装置の構成
試験装置は図1に示すように，下流側にブロアを設置し，フィルタ通過風量が非常用ディーゼル発電機運転時と同様となるように流量調整が可能な設計とする。上流には粉塵発生装置を設置し，規定の火山灰を供給する。

図 1 試験装置の構成

（2）試験条件及び試験方法

a．試験条件
－降下火砕物の濃度
降下火砕物の大気中濃度には，評価対象火山のうち堆積層厚の最大値を与える鳴子カルデラに対して，「原子力発電所の火山影響評価ガイド」に示される数値シ ミュレーション（Tephra2）により気中降下火砕物濃度を推定する手法に基づき，算出される値 $2.7 \mathrm{~g} / \mathrm{m}^{3}$（以下「参考濃度」という。）を用いた。
－降下火砕物の粒径
降下火砕物の粒径は，参考濃度の算出で用いる数値シミュレーション（tephra2） によって得られた粒径分布を基に表1のとおり設定した。

表1試験にて噴霧する降下火砕物の粒径
－試験風量
非常用ディーゼル発電機の吸気に係わるバグフィルタの定格風量（ $\square \mathrm{m}^{3}$ ） h）とした。
－試験方法
フィルタの差圧を連続的に測定し，差圧が設定値（系統要求値）に到達するま での火山灰の供給量を測定する。
（3）判定基準
バグフィルタ差圧（圧力損失）の判定基準は，設計値（系統要求値）の
 とした。
（4）試験結果
バグフィルタの差圧と捕集重量の関係を図 2 に示す。図 2 より，バグフィルタ の差圧が設定値である $\square \mathrm{Pa}$ に到達したときの灰捕集量は約 $\square \mathrm{g} /$ 枚であっ た。

図2 バグフィルタ閉塞試験の結果

表2に吸気バグフィルタ閉塞までの保持容量の比較を示す。吸気バグフィルタの閉塞までの灰捕集容量は設計値である粉塵保持容量 $\square \mathrm{g} /$ 枚に対して \square 倍程度と なった。

なお，本試験は現在継続中であり，今後実施予定の試験等についても適切に反映 していく。

表2 吸気バグフィルタ閉塞までの保持容量の比較

	粉塵保持容量＊1	降下火砕物による試験結果に基づく灰捕集容量
（1）バグフィルタ ダスト保持容量 （g／枚）		
（2）バグフィルタ1枚あたりの定格風量（ $\mathrm{m}^{3} / \mathrm{h}$ ）		
（3）降下火砕物の大気中濃度 $\left(\mathrm{g} / \mathrm{m}^{3}\right)$	2.7	

※ 1：定格風量で最終圧力損失に達した時点においてバグフィルタが保持している粉塵量の設計値。（試験用粉体は換気用エアフィルタコニットの性能試験方法（JIS B 9908） で用いられる，JIS Z 8901 の試験粉体 1 － 15 種を使用）

2．バグフィルタの閉塞に対する対応
非常用ディーゼル発電機の吸気バグフィルタは1系統あたり最大で 48 枚で構成されており，バグフィルタの取替え又は清掃に複雑な作業の必要はない。

ただし，参考濃度を想定した場合には取替え又は清掃時のバグフィルタの重量 が通常時よりも重くなることで，時間や要員が多く必要になると考えられるため，取替え又は清掃に要する要員及び手順については，これらの結果を踏まえて今後検討を行うこととする。非常用ディーゼル発電機のバグフィルタの写真を図3に示す。

なお，今後実施予定の試験等についても適切に対応に反映していく。

（バグフィルタ入口側）

（バグフィルタ出口側）

図3 非常用ディーゼル発電機のバグフィルタ

以 上

降下火砕物の侵入による非常用ディーゼル機関空気冷却器への影響について

非常用ディーゼル機関空気冷却器への降下火砕物による冷却機能への影響につい て以下に示す。
非常用ディーゼル機関の吸気系統の構造は以下のようになっており，給気ルーバか ら給気された大気中の降下火砕物がフィルタや過給機を経て一部空気冷却器に侵入 し，空気冷却器を通過する際に，仮に冷却器内が結露していた場合，伝熱管に降下火砕物が付着し冷却機能へ影響を及ぼす可能性があるが，空気冷却器出口温度は，吸入空気の温度（外気温度）より常に高い状態で運転されるため冷却器は結露することは なく，降下火砕物の付着による泠却機能への影響はない。図 1 に非常用ディーゼル機関吸気系の概略系統図を示す。

図1 非常用ディーゼル機関吸気系概略系統図

以上

降下火砕物の侵入による潤滑油への影響について
降下火砕物が，非常用ディーゼル発電機吸気口上流に設置されているバグフィルタ を通過し，燃焼用空気とともに機関内に取り込まれ，潤滑油へ混入する場合を想定し，潤滑油に降下火砕物を混入させた状態での潤滑油の成分分析を実施した結果を以下 に示す。

1．試験概要

非常用ディーゼル発電機に使用しているものと同様の潤滑油（マリンT103）に降下火砕物を混入•攪拌させ，間接的影響で期待される運転期間である 7 日間保管し た後，粘性等の成分分析を実施した。

2．試験条件
（1）潤滑油中の降下火砕物濃度
想定される潤滑油中の降下火砕物の濃度は，表1より $\square \mathrm{g} / \mathrm{l}$ となるが，本試験においては保守的に降下火砕物の濃度を $\square \mathrm{g} /$ ととした。

また，潤滑油中の降下火砕物の濃度依存性を確認するため，参考に $\square \mathrm{g} /$ ノの降下火砕物の濃度においても試験を実施した。

表1 想定される潤滑油中の降下火砕物濃度

	非常用ディーゼル発電機
（1）非常用ディーゼル発電機の吸気用として外気取込口から取込 まれる降下火砕物の総量（g） $=a \times b \times c$	
a．非常用ディーゼル発電機の吸気風量 $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	
b．気中降下火砕物算定時に仮定する降灰継続時間（h）	24
c．火山影響評価ガイドに定める手法で算定した気中降下火砕物濃度 $\left(\mathrm{g} / \mathrm{m}^{3}\right)^{* 1}$	2.7
（2）非常用ディーゼル発電機（機関）に取込まれる降下火砕物（g） $=(1) \times(100-\mathrm{d}) / 100 \times \mathrm{e} / 100$	
d．非常用換気空調系のバグフィルタの除去効率（\％）	80
e．非常用換気空調系のバグフィルタを通過する降下火砕物の粒径割合（\％）※2	
③非常用ディーゼル発電機潤滑油系の潤滑油量（ ℓ ）	
（4）潤滑油中の降下火砕物濃度（g／l） $=(2) \div(3)$	

※1：降下火砕物の大気中濃度は，評価対象火山の一つである鳴子カルデラに対して，「原子力発電所の火山影響評価ガイド」に示される気中降下火砕物濃度を数値シミュレーションにより推定する手法に基づき，算出される値 $2.7 \mathrm{~g} / \mathrm{m}^{3}$ を用いた。
※2： $2 \mu \mathrm{~m}$ 以下の降下火砕物の割合。
枠囲みの内容は商業機密又は防護上の観点から公開できません
（2）粒径
混入させる降下火砕物の粒径は，原子炉補機室換気空調系のバグフィルタ（粒径約 $2 \mu \mathrm{~m}$ に対し 80% 以上を捕獲する性能）を通過した際に想定される $2 \mu \mathrm{~m}$ 程度とす る。

なお， $2 \mu \mathrm{~m}$ 程度は，潤滑油に有意な影響を与える非常用ディーゼル発電機の機関付メッシュ寸法（ $30 \mu \mathrm{~m}$ ）と比べて十分小さいため本試験においても降下火砕物 の粒径分布は設定しない。

（3）潤滑油温度

潤滑油の温度は，非常用ディーゼル発電機の運転時における潤滑油の最高温度 である \square とする。

非常用ディーゼル発電機の運転時における潤滑油の状況を考慮し，降下火砕物 を潤滑油に混入させた後の保管期間（7日間）中は，潤滑油の温度を上記温度に保つとともに，定期的に攪抖を実施した。

3．試験項目及び判定基準等
降下火砕物が混入した際の潤滑油の粘性等への影響を確認する観点から，表2の試験項目について分析を実施した。

補足資料－ 2 より，降下火砕物の影響としては，その粒子による機械的影響（閉塞等）や水に濡れると酸性を呈することによる化学的影響（腐食等）が想定される。 そのため，表2の試験項目は，降下火砕物（酸性の可能性がある物質）が混入した場合における塩基価を確認することとした。

また，表2の試験項目については，非常用ディーゼル発電機の分解点検の際にも確認している項目であり，判定基準については分解点検の基準と同様とした。なお，各試験項目における分析方法については，JIS 規格等に定まるそれぞれの方法にて実施した。

枠囲みの内容は商業機密又は防護上の観点から公開できません
表2 試験項目及び判定基準等

試験項目	選定理由	判定基準	試験方法
引火点 PM	本項目は潤滑油の粘性に直接影響する項目ではな いが，石油製品全般の安全管理面で最も重要視され る項目の一つであることから選定した。		（JIS K2265）引火点試験器を用いて，試料の引火点を求める。
動粘度（ $40^{\circ} \mathrm{C}$ ）	潤滑油の油膜厚さが適正に保持できるかを示す項目であるため選定した。動粘度が高いと油温度の異常な上昇，始動不良等の原因となり，動粘度が低す ぎると油膜強度不足による異常摩耗が発生するこ とから選定した。		（JIS K2283） 粘度計を用いて，試料の動粘度を求 める。
水分（蒸留法）	水分は発錆の原因となるとともに，潤滑油の酸化を促進させ，油膜切れによる潤滑不良を起こすことか ら選定した。		（JIS K2275） 蒸留フラスコ中の試料に，水に不溶 な溶剤を加えて，加熱しながら還流 させ，検水管の捕集水量から試料中 の水分を求める。
塩基価	塩基価は潤滑油中に混入する酸性物質を中和する ために添加されている塩基成分を把握できること から選定した。		（JIS K2501） 試料を溶剤に溶かし，ガラス電極と比較電極を用いて，電位差滴定する。電位計の読みと，これに対応する液 の滴定量との関係を作図し求める。
ペンタン不溶分 （A法）	潤滑油の不溶分が増加すると粘度の上昇，潤滑油系統の清浄性の悪化，フィルタ目詰まり等を起こすこ とから選定した。		（ASTM D893） 試料に溶剤を加えて均一に溶解した後，遠心分離処理し上澄み液を除去
トルエン不溶分 （A法）			し不溶分を分離する。この操作を数回繰り返し，不溶分を乾燥させ重量 を測定する。

4．試験結果

以下の表3のとおり，各試験項目における判定基準を満足していることから，潤滑油の各性状に影響がないことを確認した。

なお，降下火砕物が潤滑油に混入した際の影響の度合いは，降下火砕物の給源や非常用ディーゼル発電機の運転状態（非常用ディーゼル発電機が運転している状態 においては，潤滑油に運転圧が加わる）によって異なる可能性があるが，系統内に おいて常にその運転圧が加わることがないこと，また，想定される潤滑油中の降下火砕物の濃度より保守的な条件（約 370 倍）で実施した本試験においても潤滑油の性状に有意な変化がなかったことから，想定される降下火砕物の濃度に対して，非常用ディーゼル発電機の機能に影響はないと判断した。

表3潤滑油の成分分析結果

試験結果	代表性状	判定基準※1	試験結果※3	判定	参考※4
引火点 $\left[{ }^{\circ} \mathrm{C}\right]$	258	208 以上		\bigcirc	
動粘度 $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	97.9	122 以下		\bigcirc	
水分 $[\%]$	-	0.5 以下		\bigcirc	
塩基価［mgKH0／g］	13	6 以上		\bigcirc	
ペンタン不溶 $[\%]$	-	5 以下		\bigcirc	

※ 1 引火点及び動粘度については，構内に保管してある新油を基準値とするが，今後データ採取をする計画であるため，今回の比較では代表性状（カタログ値）を参照した。
※2引火点の試験結果が代表性状に比べて低い値となっているのは，代表性状を確認するため新油に対 して実施される試験方法「C．O．C 法」に比べ，今回実施した「P．M 法（分解点検等の際に実施される）」 では，引火点が測定値より $10 \sim 20$ 度程度低く示される。なお，試験結果の比較より，降下火砕物濃度が \square g / ℓ より低い \qquad $\mathrm{g} /$ りの場合においても，引火点に大きい違いは見られなかったこと から，降下火砕物の侵入による引火点への影響はなかったものと考えられる。
※3降下火砕物濃度g / l
※4 降下火砕物濃度：g / l

降下火砕物の金属腐食研究について
火山灰を用いた火山ガス（ SO_{2} ）による金属腐食研究結果を女川原子力発電所におけ る降下火砕物（火山灰）による金属腐食の影響評価に適用する考え方について以下に示す。

1．適用の考え方

降下火砕物による金属腐食については，主として火山ガス（ SO_{2} ）が付着した降下火砕物の影響によるものである。

降下火砕物による腐食影響において引用した研究文献「火山環境における金属材料の腐食」では，桜島の降下火砕物を用いて，実際の火山環境に近い状態を模擬す るため，高濃度の亜硫酸ガス（ SO_{2} ）雰囲気を保った状態で金属腐食試験を行なった ものである。
火山ガスの成分は亜硫酸ガス，硫化水素，フッ化水素などが挙げられ，成分構成 は各火山，同一火山でも噴火ごとに異なるとされている ${ }^{1}$ が，硫酸イオンが金属腐食の原因となることを踏まえた，降下火砕物の主要な腐食成分である亜硫酸ガスを高濃度で模擬した腐食試験結果であることから，特定の火山によらず，女川原子力発電所で考慮する火山についても本研究結果が十分適用可能である。

2．研究文献「火山環境における金属材料の腐食」の概要

（1）試験概要
「火山環境における金属材料の腐食（出雲茂人，末吉秀一ほか），防食技術 Vol．39，pp．247－253，1990」によると，降下火砕物を水で洗浄し，可溶性の成分を除去した後，金属試験片（SS41，Cu，Al，Zn めつき鋼板）に堆積させ，高濃度の SO_{2} ガス雰囲気（ $150 \sim 200 \mathrm{ppm}$ ）で，加熱（温度 $40^{\circ} \mathrm{C}$ ，湿度 95% を 4 時間），冷却（温度 $20^{\circ} \mathrm{C}$ ，湿度 80% を 2 時間）を最大 18 回繰り返すことにより，結露，蒸発を繰 り返し金属試験片の腐食を観察している。

（2）試験結果

図1に例としてSS41の腐食による質量変化を示す。降下火砕物の堆積量が多い場合は，降下火砕物の堆積なし，又は堆積量が少ない場合と比較して，金属試験片の腐食が促進される。腐食量は表面厚さにして数十 $\mu \mathrm{m}$ 程度との結果が得られた。

これは火山灰が金属表面に堆積していると結露しやすいこと，並びに保水効果 が大きいことにより腐食が促進されると結論づけられている。同様に，降下火砕物の堆積の影響は，Cu，Al，Zn めつき鋼板とも降下火砕物の堆積量が多い場合の ほうが，腐食が促進される傾向である。腐食量も表面厚さにして十数～数十 $\mu \mathrm{m}$ 程度である。

（3）試験結果からの考察

降下火砕物による腐食については，主として火山ガスが付着した降下火砕物の影響によるものであり，本研究においては，金属試験片の表面に降下火砕物を置 き，実際の火山環境を模擬して高濃度の SO_{2} 雰囲気中で暴露し，腐食実験を行って いるものである。

腐食の要因となる火山ガスを高濃度の雰囲気を常に保った状態で行っている試

験であり，自然環境に存在する火山灰よりも高い腐食条件※2 で金属腐食量を求め ている。女川原子力発電所の評価対象施設等のらち，地下軽油タンクピットのハ ッチ（ステンレス鋼）については，降下火砕物に付着した火山性ガスが水に濡れ たときに生ずる硫酸イオン等により腐食が発生する可能性がある。このため，八 ッチについては，外装塗装＊3 を施すことによって，降下火砕物による短期での腐食により機能に影響を及ぼすことはない設計とする。
※1：「火山噴火等から電気設備を守るには（河内清高），電気設備学会誌 33 巻（2013）3号」 ※2：

- 三宅島火山の噴火口付近の観測記録 ：20～30ppm（「三宅火山ガスに関する検討会報告書」より）
- 桜島火山上空の噴煙中火山ガスの観測記録：17～68ppm（「京大防災研究所年報」より）
※3：ハッチ（ステンレス鋼）部は酸，アルカリなどに水分の加わった強度腐食環境での塗装と してエポキシ樹脂系の塗装を実施

Ash－0：降下火砕物のない状態
Ash－1：表面が見える程度に積もつた状態
Ash－2：表面が見えなくなる程度に積もつた状態 Ash－3：約 0.8 mm の厚さに積もつた状態

図1 SS41 の腐食による質量変化

計測制御設備及び非常用電源設備への降下火砕物の影響について
降下火砕物の建屋内侵入については，非常用換気空調設備（外気取入口）からの侵入が考えられるが，バグフィルタは，粒径 $2 \mu \mathrm{~m}$ 以上に対して 80% 以上を捕獲する性能 を有していることから，系統内へ侵入する降下火砕物の影響は小さいと考えられるも のの，ここでは降下火砕物の粒子が一部侵入した場合を想定し，その影響を確認する。

屋内の電気系及び計測制御系の盤の設置されるエリアは空調管理されており，外気取入口にバグフィルタが設置されており，降下火砕物の侵入を防止することができる。

しかしながら，屋内の電気系及び計測制御系の盤についてはその発生熱量に応じて盤内に換気ファンを設置している場合があり，強制的に盤内に室内空気を取り込むこ とから，仮に，降下火砕物が侵入することを考慮し，以下のとおり検討した。

1．侵入する降下火砕物の粒径
外気を取り込む屋内の電気系及び計測制御系の盤の設置されるエリアの換気空調系である，原子炉補機室換気空調系及び計測制御電源室換気空調系の外気取入口 にはバグフィルタ（粒径 $2 \mu \mathrm{~m}$ 以上に対して 80% 以上を捕獲する性能）が設置されて いる。

このため，仮に室内に侵入したとしても，降下火砕物の粒径は， $2 \mu \mathrm{~m}$ 以下の細か な粒子であると推定される。

2．計測制御設備及び非常用電源設備に対する降下火砕物の影響
計測制御設備及び非常用電源設備において，数 $\mu \mathrm{m}$ 程度の線間距離となるのは，集積回路（I C など）の内部であり，これら部品はモールド（樹脂）で保護されて いるため，降下火砕物が侵入することはない。また，端子台等の充電部が露出して いる箇所については，端子間の距離は数 mm 程度あることから，降下火砕物が付着 しても，短絡等を発生させることはない。したがって，万が一，細かな粒子の降下火砕物が盤内に侵入した場合においても，降下火砕物の付着等により短絡等を発生 させる可能性はない。

建屋等の降灰除去について

降下火砕物の除灰に要する概算時間について，土木工事の人力作業 ※を参考に試算した結果を表1に示す。

表1 除灰に要する概算時間

項目		評価緒元
（1）堆積面積（ m^{2} ）	原子炉建屋	6，620
	制御建屋	1，860
	タービン建屋	5，660
	復水貯蔵タンク	2， 030
	地下軽油タンクピット	650
	合計	16， 820
（2）堆積厚さ（m）		0． 15
（3）堆積量＝（1）\times（2）$\left(\mathrm{m}^{3}\right)$		2， 523
（4） $1 \mathrm{~m}^{3}$ 当たりの作業人工＊（人日）		0.39

1．作業量（上記のとおり）
0.39 人日 $\cdot \mathrm{m}^{3} \times 2,523 \mathrm{~m}^{3}=$ 約 984 人日

2．作業日数（試算例）
（1）作業人数： 60 人（ 6 人／組 $\times 10$ 組）
－ 1 組あたり 6 人体制とする。
原子炉建屋 ：3 組
制御建屋 ：2 組
タービン建屋 ：3 組
復水貯蔵タンク ：1 組
地下軽油タンクピット ：1 組
合計 ：10組
（2）所要日数：約 17 日
※「国土交通省土木工事積算基準（H24）」における人力掘削での人工を保守的に採用

降下火砕物降灰時のバグフィルタ取替手順について
換気空調系の外気取入口のフィルタの取替作業を行う際は，以下の手順を実施する こととしている。図1にバグフィルタの取替•交換イメージを示す。
－フィルタの取替作業はルーバ内にて行らため，降灰の影響を受けにくいと考え られるが，保護具（マスク，めがね）を装備する。

- 開口部に対して養生を行う。
- 設備影響を勘案し，必要に応じて対象となる系統の運転を停止し，系統を隔離 してから取り替え作業を行う。
－取り替え作業前に，空調機内への取り込み低減のため，周囲の降下火砕物を清掃する。
- 交換後，フィルタ差圧にて差圧が低下することを確認する。
- 作業終了後，降下火砕物の再浮遊の影響を低減させるため，作業エリアの降下火砕物は清掃する。

図 1 バグフィルタの清掃•取替イメージ

観測された諸噴火の最盛期における噴出率と継続時間について
図 1 に示すとおり，富士山（宝永噴火 1707 年）の噴出継続時間は，断続的に約 16 日間継続している。

図1 富士山（宝永噴火1707年）の噴出率の推移（宮地•小山（2007））
表1に示すとおり，火山観測データが存在する最近の観測記録では，噴火の継続時間は殆どが数時間程度であり，長いものでも 36 時間程度である。

表1 観測された諸噴火最盛期における噴出率と継続時間

噴火年（地域名）	噴煙柱高度 (km)	噴出率 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	継続時間 (h)
Pinatubo 1991（フィリピン）	35	250,000	9
Bezymianny 1956（カムチャッカ）	36	230,000	0.5
Santa Maria 1902（グアテマラ）	34	$17,000-38,000$	$24-36$
Hekla 1947（アイスランド）	24	17,000	0.5
Soufriere 1979（西インド諸島）	16	6,200	9
Mt．St．Helens 1980（アメリカ合衆国）	18	12,600	0.23
伊豆大島 1986（伊豆）	16	1,000	3
Soufriere 1902（西インド諸島）	$14.5-16$	$11,000-15,000$	$2.5-3.5$
Hekla 1970（アイスランド）	14	3,333	2
駒ケ岳 1929（北海道）	13.9	15,870	7
有珠山 1977－I（北海道）	12	3,375	2
Fuego 1971（グアテマラ）	10	640	10
桜島 1914（九州）	$7-8$	4,012	36
三宅島 1983A－E（伊豆）	6	570	1.5
Heimaey 1973（アイスランド）	$2-3$	50	8.45
Ngauruhoe 1974（ニュージーランド）	$1.5-3.7$	10	14

［Wilson et al．（1978），Cas \＆Wright（1987），遠藤ほか（1986），早川（1991b），Pyle（2000） から編集〕

重大事故等対処施設に対する考慮について

設置許可基準規則第 43 条（重大事故等対処設備）の要求を踏まえ，降下火砕物に よって，設計基準事故対処設備の安全機能と重大事故等対処設備の機能が同時に損な われることがないことを確認するとともに，重大事故等対処設備の機能が喪失した場合においても，外殻となる建屋による防護に期待できる代替手段等により必要な機能 を維持できることを確認する。

重大事故等対処設備の機能維持は，以下の方針に従い評価を実施する。
（1）重大事故防止設備は，降下火砕物によって設計基準事故対処設備の安全機能と同時にその機能が損なわれるおそれのないこと
（2）重大事故等対処設備であって，重大事故防止設備でない設備は，代替設備若し くは安全上支障のない期間内での復旧により機能維持可能であること
（3）降下火砕物が発生した場合においても，重大事故等対処設備によりプラント安全性に関する主要な機能（未臨界移行機能，燃料冷却機能，格納容器除熱機能，使用済燃料プール注水機能）が維持できること（降下火砕物により重大事故等対処設備と設計基準事故対処設備の機能が同時に損なわれることはないが，安全上支障のない期間内での復旧により機能維持可能であることを確認する）

降下火砕物に対する重大事故等対処施設の影響評価フロー並びに方針（1）及び （2）に対する評価結果をそれぞれ図1，表1に示す。また，方針（3）に示したプ ラント安全性に関する主要な機能は，以下に例示するとおり重大事故等対処設備によ り維持される。

- 未臨界移行機能：ATWS 緩和設備（代替制御棒插入機能）
- 燃料冷却機能：低圧代替注水系（可搬型）
- 格納容器除熱機能：原子炉補機代替冷却水系
- 使用済燃料プール注水機能：燃料プール代替注水系（可搬型）

なお，重大事故等対処施設の設計方針は，設置許可基準規則第 43 条（重大事故等対処設備）にて考慮する。

※ 1 ：屋内設備については，当該設備を内包する建屋（原子炉建屋，制御建屋，緊急時対策建屋）の影響評価を実施し，安全機能が維持されることを確認
※2：降下火砕物により重大事故等対処設備と設計基準対象施設の機能が同時に損なわれることはないが，安全上支障のない期間内での復旧により機能維持可能であることを確認

図1 降下火砕物に対する重大事故等対処設備の評価フロー

表1 降下火砕物に対する重大事故等対処設備の影響評価（1／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所 $\%$	火山		
			評価		防護方法		
第 37 条（重大事故等の拡大の防止等）		－		－	－	－	－
第 38 条（重大事故等対処施設の地盤）		－	－	－	－	－	
第 39 条（地震に よる損傷の防止）		－	－	－	－	－	
第40条（津波に よる損傷の防止）		－	－	－	－	－	
第41条（火災に よる損傷の防止）		－	－	－	－	－	
第42条（特定重大事故等対処施設）	特定重大事故等対処施設		\rightarrow 申請範囲外	－	－	－	
第 43 条（重大事故等対処設備）	ブルドーザ		防止でも緩和でもない設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
第44条（緊急停止失敗時に発電用原子炉を未臨界にするための設備）	ATWS 緩和設備（代替制御棒挿入機能），制御棒，制御棒駆動機構，制御棒駆動水圧系水圧制御ユニット，制御棒駆動水圧系配管		防止設備	R／B，C／B	\bigcirc	建屋内	
	ATWS 緩和設備（代替原子炉再循環ポンプトリップ機能）		防止設備	R／B，C／B	\bigcirc	建屋内	
	ほう酸水注入系		防止設備•緩和設備	R／B	\bigcirc	建屋内	
	ATWS 緩和設備（自動減圧系作動阻止機能）		防止設備	R／B，C／B	\bigcirc	建屋内	
第 45 条（原子炉冷却材圧力バウ ンダリ高圧時に発電用原子炉を冷却するための設備）	高圧代替注水系	高圧代替注水系ポンプ，配管等	防止設備•緩和設備 C 56 条に記載 B		\bigcirc	建屋内	
		復水貯蔵タンク			－	－	
	原子炉隔離時冷却系	原子炉隔離時冷却系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		復水貯蔵タンク	56 条に記載		－	－	
	高圧炉心スプ レイ系	高圧炉心スプレイ系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		復水貯蔵タンク	56 条に記載		－	－	
		サプレッションチェンバ	56 条に記載		－	－	
	ほう酸水注入系		44 条に記載		－	－	
第 46 条（原子炉泠却材圧力バウ ンダリを減圧す るための設備）	主蒸気逃がし安全弁，逃がし弁機能用アキュムレー タ，自動減圧機能用アキュムレータ，主蒸気系配管等		防止設備•緩和設備	R／B	\bigcirc	建屋内	
	代替自動減圧回路（代替自動減圧機能）		防止設備	R／B，C／B	\bigcirc	建屋内	
	ATWS 緩和設備（自動減圧系作動阻止機能）		44条に記載		－	－	
	可搬型代替直流電源設備		57 条に記載		－	－	
	主蒸気逃がし安全弁用可搬型蓄電池		防止設備	C／B	\bigcirc	建屋内	
	高圧窒素ガス供給系（非常用）	高圧窒素ガスボンベ，主蒸気逃がし安全弁自動減圧機能用アキュムレー夕，配管等	防止設備	R／B	\bigcirc	建屋内	
	代替高圧窒素 ガス供給系	高圧窒素ガスボンベ，ホース，配管等	防止設備	R／B	\bigcirc	建屋内	
	HPCS 注入隔離弁		（設計基準対象施設）	R／B	\bigcirc	建屋内	
	原子炉建屋ブローアウトパネル		防止設備	屋外 R／B廻 り	\bigcirc	影響なし （灰が積もりにくい配置）	

[^3]表1 降下火砕物に対する重大事故等対処設備の影響評価（2／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所 ${ }^{*}$	火山		
			評価		防護方法		
第 47 条（原子炉冷却材圧力バウ ンダリ低圧時に発電用原子炉を冷却するための設備）	低圧代替注水系（常設）（復水移送ポン プ）	復水移送ポンプ，配管等		防止設備•緩和設備	R／B	\bigcirc	建屋内
		復水貯蔵タンク	56 条に記載		－	－	
	低圧代替注水系（常設）（直流駆動低圧注水ポンプ）	直流駆動低圧注水ポンプ，配管等	防止設備	R／B	\bigcirc	建屋内	
		復水貯蔵タンク	56 条に記載		－	－	
	低圧代替注水系（可搬型）	可搬箇所：大容量送水ポンプ（タイ プ I ），ホース延長回収車，ホース等	防止設備•緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：接続口，配管等	防止設備•緩和設備	屋外 R／B 廻 り	\bigcirc	影響なし （適切に除灰）	
		常設箇所：配管等	防止設備•緩和設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽 （No．2）	56 条に記載		－	－	
	残留熱除去系 （低圧注水モ ード）	残留熱除去系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		サプレッションチェンバ	56 条に記載		－	－	
	残留熱除去系 （原子炉停止時冷却モー ド）	残留熱除去系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
	$\begin{aligned} & \text { 低圧炉心スプ } \\ & \text { レイ系 } \end{aligned}$	低圧炉心スプレイ系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		サプレッションチェンバ	56 条に記載		－	－	
	原子炉補機冷却水系（原子炉補機冷却海水系を含む）		48 条に記載		－	－	
	非常用取水設備		その他の設備に記載		－	－	
第48条（最終ヒ ートシンクへ熱 を輸送するため の設備）	原子炉補機代替冷却水系	可搬箇所：熱交換器ユニット，大容量送水ポンプ（タイプI），ホース延長回収車，ホース等	防止設備•緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：残留熱除去系熱交換器，配管等	防止設備•緩和設備	R／B	\bigcirc	建屋内	
		常設箇所：接続口，配管等	防止設備•緩和設備	屋外 R／B廻 り	\bigcirc	影響なし （適切に除灰）	
		貯留堰，取水口，取水路，海水ポン プ室	その他の設備に記載		－	－	
	耐圧強化ベン卜系	配管，弁等	防止設備	R／B	\bigcirc	建屋内	
		排気筒	防止設備	屋外	\bigcirc	影響なし （灰が積もりにくい形 状）	
	$\begin{aligned} & \hline \text { 原子炉格納容 } \\ & \text { 器フィルタベ } \\ & \text { ント系 } \end{aligned}$	フィルタ装置等	50 条に記載		－	－	
		淡水貯水槽（No．1），淡水貯水槽 （No．2）	56 条に記載		－	－	
	残留熱除去系（原子炉停止時冷却モード）		47 条に記載		－	－	
	残留熱除去系（格納容器スプレイ冷却モード）		49 条に記載		－	－	
	残留熱除去系（サプレッションプール水冷却モード）		49 条に記載		－	－	
	原子炉補機冷却水系（原子炬補機冷却海水系を含む）	原子炉補機冷却水ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		原子炉補機冷却海水ポンプ，配管等	（設計基準対象施設）	屋外	\bigcirc	影響なし （設計基準対象施設と して評価）	
	高圧炉心スプ レイ補機冷却水系（高圧炉心スプレイ補機冷却海水系 を含む）	高圧炉心スプレイ補機泠却水ポン プ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		高圧炉ふスプレイ補機冷却海水ポン プ，配管等	（設計基準対象施設）	屋外	\bigcirc	影響なし （設計基準対象施設と して評価）	
	非常用取水設備		その他の設備に記載		－	－	

[^4]表1 降下火砕物に対する重大事故等対処設備の影響評価（3／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所 ${ }^{*}$	火山		
			評価		防護方法		
第49条（原子炉格納容器内の泠却等のための設備）	原子炉格納容器代替スプレ イ冷却系（常設）	復水移送ポンプ，配管等		防止設備•緩和設備	R／B	\bigcirc	建屋内
		復水貯蔵タンク	56 条に記載		－	－	
	原子炉格納容器代替スプレ イ冷却系（可搬型）	可搬箇所：大容量送水ポンプ（タイ プ I ），ホース延長回収車，ホース等	防止設備•緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：接続口，配管等	防止設備•緩和設備	屋外 R / B 廻 り	\bigcirc	影響なし （適切に除灰）	
		常設箇所：配管等	防止設備•緩和設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽 （No．2）	56 条に記載		－	－	
	残留熱除去系	残留熱除去系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
	プレイ冷却モ ード)	サプレッションチェンバ	56 条に記載		－	－	
	残留熱除去系	残留熱除去系ポンプ，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
	$\begin{aligned} & \text { ョンプール水 } \\ & \text { 泠却モード) } \\ & \hline \end{aligned}$	サプレッションチェンバ	56 条に記載		－	－	
	原子炉補機冷却水系（原子炉補機冷却海水系を含む）		48 条に記載		－	－	
	非常用取水設備		その他の設備に記載		－	－	
第50条（原子炉格納容器の過圧破損を防止する ための設備）	代替循環冷却系	代替循環冷却ポンプ，残留熱除去系熱交換器，配管等	緩和設備	R／B	\bigcirc	建屋内	
		サプレッションチェンバ	56 条に記載		－	－	
		原子炉補機代替冷却水系（可搬箇所：熱交換器ユニット，大容量送水 ポンプ（タイプI），ホース延長回収車，ホース等）	48 条に記載		－	－	
		原子炉補機代替冷却水系（常設箇所：残留熱除去系熱交換器，配管等）	48条に記載		－	－	
		原子炉補機代替冷却水系（常設箇所：接続口，配管等）	48 条に記載		－	－	
		原子炉補機冷却水ポンプ，配管等	48 条に記載		－	－	
		原子炉補機冷却海水ポンプ，配管等	48 条に記載		－	－	
		貯留堰，取水口，取水路，海水ポン プ室	その他の設備に記載		－	－	
	原子炉格納容器フィルタベ ント系	常設箇所：フィルタ装置，圧力開放板，配管，遠隔手動弁操作設備等	防止設備•緩和設備	R／B	\bigcirc	建屋内	
		常設箇所：配管（排気管）	防止設備•緩和設備	屋外 R / B 廻 り	\bigcirc	影響なし （灰が積もりにくい形状）	
		可搬箇所：可搬型窒素ガス供給装置， ホース等	緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所 ：接続口，配管等（窒素が ス）	緩和設備	R／B 内及び屋外 R／B廻 り	\bigcirc	$\begin{aligned} & \text { 影響なし } \\ & \text { (一方は建屋内) } \end{aligned}$	
		可搬箇所：大容量送水ポンプ（タイ プ I ），ホース延長回収車，ホース等	防止設備•緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：接続口，配管等（水補給）	防止設備•緩和設備	R／B 内及び屋外 R／B 廻 り	\bigcirc	$\begin{aligned} & \text { 影響なし } \\ & \text { (一方は建屋内) } \end{aligned}$	
		淡水貯水槽（No．1），淡水貯水槽 （No．2）	56条に記載		－	－	

[^5]表1 降下火砕物に対する重大事故等対処設備の影響評価（4／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所 ${ }^{*}$	火山		
			評価		防護方法		
第51条（原子炉格納容器下部の溶融炉心を冷却 するための設備）	$\begin{aligned} & \text { 原子炉格納容器 } \\ & \text { 下部注水系 (常 } \\ & \text { 設) } \end{aligned}$	復水移送ポンプ，配管等		緩和設備	R／B	\bigcirc	建屋内
		復水貯蔵タンク	56 条に記載		－	－	
	原子炉格納容器下部注水系（可搬型）	可搬箇所：大容量送水ポンプ（タイプ I），ホース延長回収車，ホース等	緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：接続口，配管等	緩和設備	屋外 R／B 廻 り	\bigcirc	影響なし （適切に除灰）	
		常設箇所：配管等	緩和設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	$\begin{aligned} & \hline \text { 原子炉格納容器 } \\ & \text { 代替スプレイ冷 } \\ & \text { 却系 (常設) } \end{aligned}$	復水移送ポンプ，配管等	49 条に記載		－	－	
		復水貯蔵タンク	56 条に記載		－	－	
	原子炉格納容器代替スプレイ冷却系（可搬型）	可搬箇所：大容量送水ポンプ（タイプ I），ホース延長回収車，ホース等	49 条に記載		－	－	
		常設箇所：接続口，配管等	49 条に記載		－	－	
		常設箇所：配管等	49 条に記載		－	－	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	代替循環冷却系	代替循環冷却ポンプ，残留熱除去系熱交換器，配管等	50 条に記載		－	－	
		サプレッションチェンバ	56 条に記載		－	－	
		原子炉補機代替冷却水系（可搬箇所：熱交換器ユニット，大容量送水ポンプ （タイプI），ホース延長回収車，ホー ス等）	48 条に記載		－	－	
		原子炉補機代替冷却水系（常設箇所：残留熱除去系熱交換器，配管等）	48条に記載		－	－	
		原子炉補機代替冷却水系（常設箇所：接続口，配管等）	48条に記載		－	－	
		原子炉補機冷却水ポンプ，配管等	48 条に記載		－	－	
		原子炉補機冷却海水ポンプ，配管等	48 条に記載		－	－	
		貯留堰，取水口，取水路，海水ポンプ室	その他の設備に記載		－	－	
	高圧代替注水系		45 条に記載		－	－	
	ほう酸水注入系		44 条に記載		－	－	
	低圧代替注水系（常設）（復水移送ポンプ）		47 条に記載		－	－	
	低圧代替注水系（可搬型）		47 条に記載		－	－	
第52条（水素爆発による原子炉格納容器の破損 を防止するため の設備）	（原子炉格納容器調気系）		（設計基準対象施設）		－	－	
	可搬型窒素ガス供給装置	可搬箇所：可搬型窒素ガス供給装置， ホース等	緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：接続口，配管等	緩和設備	屋外 R／B 廻 り	\bigcirc	$\begin{gathered} \text { 影響なし } \\ \text { (一方は建屋内) } \end{gathered}$	
		常設箇所：配管等	緩和設備	R／B	\bigcirc	建屋内	
	原子炉格納容器 フィルタベント系	フィルタ装置等	50 条に記載		－	－	
		フィルタ装置出口放射線モニタ，フィ ルタ装置出口水素濃度	58 条に記載		－	－	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	格納容器内水素濃度（D／W），格納容器内水素濃度（S／C），格納容器内雰囲気水素濃度，格納容器内雰囲気酸素濃度		緩和設備	R／B	\bigcirc	建屋内	
第53条（水素爆発による原子炉建屋等の損傷を防止するための設備）	静的触媒式水素再結合装置，静的触媒式水素再結合装置動作監視装置		緩和設備	R／B	\bigcirc	建屋内	
	原子炉建屋原子炉棟		その他の設備に記載		－	－	
	原子炉建屋内水素濃度		緩和設備	R／B	\bigcirc	建屋内	

○：降下火砕物に対し安全機能を維持できる
又は降下火砕物による損傷を考慮した場合でも，対応する設計基漼事故対処設備が降下火砕物に対し安全機能を維持できる（防止設備）又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもなし設備）
—：他の項目にて整理

表1 降下火砕物に対する重大事故等対処設備の影響評価（5／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所 $\%$	火山		
			評価		防護方法		
第 54 条（使用済燃料貯蔵槽の泠却等のための設備）	燃料プール代替注水系（常設配管）	可搬箇所：大容量送水ポンプ（タイプ I），ホース延長回収車，ホース等		防止設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）
		常設箇所：接続口，配管等	防止設備	$\begin{gathered} \hline \text { 屋外 R/B 廻 } \\ \eta \end{gathered}$	\bigcirc	影響なし （適切に除灰）	
		常設箇所：配管等	防止設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	燃料プール代替注水系（可搬型）	可搬箇所：大容量送水ポンプ（タイプ I），ホース延長回収車，ホース等	防止設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		可搬箇所：ホース	防止設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	燃料プールス プレイ系（常設配管）	可搬箇所：大容量送水ポンプ（タイプ I），ホース延長回収車，ホース等	緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		可搬箇所：スプレイノズル	緩和設備	R／B	\bigcirc	建屋内	
		常設箇所：接続口，配管等	緩和設備	$\begin{gathered} \text { 屋外 R/B 廻 } \\ \eta \end{gathered}$	\bigcirc	影響なし （適切に除灰）	
		常設箇所：配管等	緩和設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	燃料プールス プレイ系（可搬型）	可搬箇所：大容量送水ポンプ（タイプ I），ホース延長回収車，ホース等	緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		可搬箇所：スプレイノズル，ホース	緩和設備	R／B	\bigcirc	建屋内	
		淡水貯水槽（No．1），淡水貯水槽（No．2）	56 条に記載		－	－	
	大気への放射性物質の拡散抑制		55 条に記載		－	－	
	使用済燃料プール水位／温度（ヒートサーモ式），使用済燃料プール水位／温度（ガイドパルス式），使用済燃料プール上部空間放射線モニタ（高線量，低線量），使用済燃料プール監視カメラ		防止設備•緩和設備	R／B	\bigcirc	建屋内	
	重大事故等時 における使用済燃料プール の除熱	燃料プール冷却浄化系（燃料プール冷却浄化系ポンプ，熱交換器，配管等）	防止設備	R／B	\bigcirc	建屋内	
		原子炉補機代替冷却水系（可搬箇所：熱交換器ユニット，大容量送水ポンプ （タイプI），ホース延長回収車，ホー ス等）	防止設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		原子炉補機代替冷却水系（常設箇所：燃料プール冷却浄化系熱交換器，配管等）	防止設備	R／B	\bigcirc	建屋内	
		原子炉補機代替冷却水系（常設箇所：接続口，配管等）	防止設備	屋外 R／B 廻 り	\bigcirc	影響なし （適切に除灰）	
		貯留堰，取水口，取水路，海水ポンプ	その他の設備に記載		－	－	
第 55 条（工場等外への放射性物質の拡散を抑制 するための設備）	大気への放射性物質の拡散抑制（大容量送水ポンプ（タ イプII），ホース延長回収車，ホース，放水砲）		緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
	航空機燃料火災への泡消火（大容量送水ポンプ（タイ プ II），ホース延長回収車，ホース，泡消火薬剤混合装置，放水砲）		緩和設備	可搬型 SA 設 備保管場所	\bigcirc	影響なし （適切に除灰）	
	海洋への放射性物質の拡散抑制（シルトフェンス）		緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
第 56 条（重大事故等の収束に必要となる水の供給設備）	復水貯蔵タンク		防止設備•緩和設備	屋外	\bigcirc	影響なし （荷重評価，腐食評価）	
	サプレッションチェンバ		緩和設備	R／B	\bigcirc	建屋内	
	淡水貯水槽（No．1），淡水貯水槽（No．2）		－（代替淡水源）	屋外（地下）	\bigcirc	影響なし	
	ほう酸水注入系貯蔵タンク		44 条に記載		－	－	
	水の供給	可搬箇所：大容量送水ポンプ（タイプ I），大容量送水ポンプ（タイプII）， ホース延長回収車，ホース等	防止設備•緩和設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：接続口，配管等	防止設備•緩和設備	屋外及び屋外（地下）	\bigcirc	$\begin{aligned} & \text { 影響なし } \\ & \text { (一方は地下) } \end{aligned}$	
		貯留堰，取水路，取水口，海水ポンプ室	その他の設備に記載		－	－	

○：降下火砕物に対し安全機能を維持できる
又は降下火砕物による損傷を考慮した場合でも，対応する設計基淮事故対処設備が降下火砕物に対し安全機能を維持できる（防止設備）又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない設備） —：他の項目にて整理

表1 降下火砕物に対する重大事故等対処設備の影響評価（6／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所 $\%$	火山		
			評価		防護方法		
第 57 条（電源設備）	常設代替交流電源設備	ガスタービン発電機		防止設備•緩和設備	屋外（緊急用電気品建屋）	\bigcirc	影響なし （防護壁内）
		ガスタービン発電設備軽油タンク	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		ガスタービン発電設備燃料移送ポン プ，配管等	防止設備•緩和設備	屋外	\bigcirc	影響なし （適切に除灰）	
	可搬型代替交流電源設備	可搬箇所：電源車	防止設備•緩和設備	可搬型 SA 設備 保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：電源車接続口	防止設備•緩和設備	R／B 内及び屋外 R／B 廻 り	\bigcirc	影響なし （一方は建屋内）	
		常設箇所：軽油タンク	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		常設箇所：ガスタービン発電設備軽油タンク	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		可搬箇所：タンクローリ	防止設備•緩和設備	可搬型 SA 設備 保管場所	\bigcirc	影響なし （適切に除灰）	
	所内常設蓄電式直流電源設備	125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$充電器盤 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$ 充電器盤 2 B	防止設備•緩和設備	C／B	\bigcirc	建屋内	
	常設代替直流電源設備	125V 代替蓄電池	防止設備•緩和設備	C／B	\bigcirc	建屋内	
		250V 蓄電池	防止設備	C／B	\bigcirc	建屋内	
	可搬型代替直流電源設備	常設箇所： 125 V 代替蓄電池， 125 V 代替充電器盤	防止設備•緩和設備	C／B	\bigcirc	建屋内	
		常設箇所 ： 250 V 蓄電池， 250 V 充電器盤	防止設備	C／B	\bigcirc	建屋内	
		可搬箇所：電源車	防止設備•緩和設備	可搬型 SA 設備 保管場所	\bigcirc	影響なし （適切に除灰）	
		常設箇所：電源車接続口	防止設備•緩和設備	R／B 内及び屋外 R／B廻 り	\bigcirc	影響なし （一方は建屋内）	
		常設箇所：軽油タンク	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		常設箇所：ガスタービン発電設備軽油タンク	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		常設箇所：タンクローリ	防止設備•緩和設備	$\underset{\text { 可搬型 SA 設備 }}{\text { 保管場所 }}$	\bigcirc	影響なし （適切に除灰）	
	代替所内電気設備	ガスタービン発電機接続盤，緊急用高圧母線 $2 F$ 系，緊急用高圧母線 $2 G$系，緊急用動力変圧器 $2 G$ 系，緊急用低圧母線 $2 G$ 系，緊急用交流電源切替盤 $2 G$ 系，緊急用交流電源切替盤 $2 C$系，緊急用交流電源切替盤 2D 系，非常用高圧母線 $2 C$ 系，非常用高圧母線 2D 系	防止設備•緩和設備	R／B，緊急用電気品建屋	\bigcirc	建屋内	
	非常用交流電源設備	非常用ディーゼル発電機，燃料デイ タンク，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		非常用ディーゼル発電設備燃料移送 ポンプ	（設計基準対象施設）	屋外（地下）	\bigcirc	影響なし	
		軽油タンク，配管等	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		高圧炉心スプレイ系ディーゼル発電機，燃料デイタンク，配管等	（設計基準対象施設）	R／B	\bigcirc	建屋内	
		高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ	（設計基準対象施設）	屋外（地下）	\bigcirc	影響なし	
	非常用直流電源設備	125 V 蓄電池 $2 \mathrm{~A}, 125 \mathrm{~V}$ 蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$充電器盤2A，125V 充電器盤 2 B	防止設備•緩和設備	C／B	\bigcirc	建屋内	
		125 V 蓄電池 $2 \mathrm{H}, ~ 125 \mathrm{~V}$ 充電器盤 2 H	（設計基準対象施設）	R／B	\bigcirc	建屋内	
	燃料補給設備	常設箇所：軽油タンク，ガスタービ ン発電設備軽油タンク	防止設備•緩和設備	屋外（地下）	\bigcirc	影響なし	
		可搬箇所：タンクローリ	防止設備•緩和設備	$\underset{\text { 可搬型 } \mathrm{SA} \text { 設備 }}{\text { 保管場所 }}$	\bigcirc	影響なし （適切に除灰）	

○：降下確物物し対し安全機能を維持できる
又は降下火础物による損傷を考慮した場合でも，対応する設計基準事故対处設備が降下火砕物に対し安全機能を維持できる（防止設備）又は降下火硨物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない設備） —：他の項目にて整理

表1 降下火砕物に対する重大事故等対処設備の影響評価（7／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所\％	火山		
			評価		防護方法		
第58条（計装設備）	重大事故等時の計装（SA 時計装一式） ［原子炉圧力容器内の温度•圧力•水位］ ［原子炉圧力容器•原子炉格納容器への注水量］ ［原子炉格納容器内の温度•圧力•水位•水素濃度•放射線量率］ ［未臨界の維持又は監視］ ［最終ヒートシンクの確保（代替循環冷却系•原子炉 格納容器フィルタベント系•耐圧強化ベント系•残留 熱除去系）］ ［格納容器バイパスの監視］ ［水源の確保］ ［原子炬建屋内の水素濃度］ ［原子炉格納容器内の酸素濃度］ ［使用済燃料プールの監視］			防止設備•緩和設備•（設計基準対象施設）	R／B，屋外 （地下）	\bigcirc	影響なし （建屋内又は地下設置）
	［発電所内の通信連絡］		防止でも緩和でもない設備	$\begin{gathered} \text { C/B, 緊急時 } \\ \text { 対策建屋 } \end{gathered}$	\bigcirc	建屋内	
	［温度，圧力，	位，注水量の計測•監視］	防止設備•緩和設備	C／B，緊急時対策建屋	\bigcirc	建屋内	
第59条（運転員 が原子炉制御室 にとどまるため の設備）	居住性の確保	中央制御室，中央制御室待避所	（重大事故等対処施設）	C／B	\bigcirc	建屋内	
		中央制御室遮蔽，中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィル タ装置，ダクト等	防止設備•緩和設備	C／B	\bigcirc	建屋内	
		中央制御室待避所遮蔽，中央制御室待避所加圧設備（空気ボンベ，配管等）	緩和設備	C／B	\bigcirc	建屋内	
		差圧計，酸素濃度計，二酸化炭素濃度計，データ表示装置（待避所）	防止でも緩和でもない設備	C／B	\bigcirc	建屋内	
		トランシーバ（固定），衛星電話（固定）	62 条に記載		－	－	
	照明の確保	可搬型照明（SA）	防止でも緩和でもない設備	C／B	\bigcirc	建屋内	
	被ばく線量の低減	非常用ガス処理系（排風機，配管等）	緩和設備	R／B	\bigcirc	建屋内	
		排気筒	緩和設備	屋外	\bigcirc	影響なし （灰が積もりにくい形状）	
		原子炉建屋ブローアウト閉止装置	緩和設備	R／B	\bigcirc	建屋内	
第 60 条（監視測定設備）	可搬型モニタリングポスト，代替気象観測設備		緩和設備•防止でも緩和で もない設備	可搬型 SA 設備保管場所 （コンテナ内），緊急時対策建屋	\bigcirc	影響なし （建屋内，適切に除圧）	
	可搬型放射線計測装置（可搬型ダスト・よう素サンプ ラ，γ 線サーベイメータ，β 線サーベイメータ，α 線 サーベイメータ，電離箱サーベイメータ）		防止でも緩和でもない設備	緊急時対策建屋	\bigcirc	建屋内	
	小型船舶		防止でも緩和でもない設備	可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
	常設代替交流電源設備		57 条に記載		－	－	

○ 降下火砕物に対し安全機能を維持できる
又は降下火砕物による損傷を考慮した場合でも，対応する設計基漼事故対処設備が降下火砕物に対し安全機能を維持できる（防止設備）又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない設備） —：他の項目にて整理

表1 降下火砕物に対する重大事故等対処設備の影響評価（8／8）

設置許可基準	重大事故等対処設備		分類	保管•設置箇所\％	火山		
			評価		防護方法		
第61条（緊急時対策所）	居住性の確保	緊急時対策所		（重大事故等対処施設）	緊急時対策建屋	\bigcirc	建屋内
		緊急時対策所遮蔽，緊急時対策建屋非常用送風機，緊急時対策建屋非常用フィルタ装置，配管等	緩和設備	緊急時対策建屋	\bigcirc	建屋内	
		緊急時対策所加圧設備（空気ボンベ，配管等）	緩和設備	緊急時対策建屋	\bigcirc	建屋内	
		差圧計，酸素濃度計，二酸化炭素濃度計	防止でも緩和でもない設備	緊急時対策建屋	\bigcirc	建屋内	
		緊急時対策所可搬型エリアモニタ	緩和設備	緊急時対策建屋	\bigcirc	建屋内	
		可搬型モニタリングポスト	60 条に記載		－	－	
	電源の確保 （緊急時対策所）	ガスタービン発電機，ガスタービン発電設備軽油タンク，ガスタービン発電設備燃料移送ポンプ，ガスター ビン発電機接続盤，緊急用高圧母線 2F系	57 条に記載		－	－	
		電源車	防止設備•緩和設備	屋外緊急時対策建屋廻 り及び可搬型 SA 設備保管場所	\bigcirc	影響なし （適切に除灰）	
		緊急時対策所軽油タンク，緊急時対策所燃料移送系配管等	防止設備•緩和設備	緊急時対策建屋	\bigcirc	建屋内	
		緊急時対策所用高圧母線 J 系	防止設備•緩和設備	緊急時対策建屋	\bigcirc	建屋内	
	必要な情報の把握	安全パラメータ表示システム（SPDS）	62 条に記載		－	－	
	通信連絡（緊急時対策所）	トランシーバ（固定），トランシー バ（携帯），衛星電話（固定），衛星電話（携帯），統合原子力防災ネ ットワークを用いた通信連絡設備	62 条に記載		－	－	
第 62 条（通信連絡を行らために必要な設備）	所内通信	携行型通話装置	防止設備•緩和設備	C／B	\bigcirc	建屋内	
		トランシーバ（固定），トランシー バ（携帯）	防止設備•緩和設備	$\begin{gathered} \text { C/B, 緊急時 } \\ \text { 対策建屋 } \\ \text { (屋外設備 } \\ \text { 含む }) \end{gathered}$	\bigcirc	影響なし （建屋内設置。屋外設備 は代替設備（有線系）に て機能維持可能）	
		安全パラメータ表示システム ${ }^{\text {a }}$（SPDS）	緩和設備	C／B，緊急時対策建屋 （屋外設備含む）	\bigcirc	影響なし （建屋内設置。屋外設備 は代替設備（有線系）に て機能維持可能）	
	所内外通信	衛星電話（固定），衛星電話（携帯）	防止設備•緩和設備	C／B，緊急時対策建屋 （屋外設備含む）	\bigcirc	影響なし （建屋内設置。屋外設備 は灰が積もりにくい形状であるとともに，除灰 により機能維持可能）	
	所外通信	統合原子力防災ネットワークを用い た通信連絡設備，データ伝送設備	防止でも緩和でもない設備	緊急時対策建屋（屋外設備含む）	\bigcirc	影響なし （建屋内設置。屋外設備 は灰が積もりにくい形状であるとともに，除灰 により機能維持可能）	
その他の設備	重大事故等時 に対処するた めの流路，注水先，注入先，排出元等	原子炉圧力容器，原子炉格納容器，使用済燃料プール	防止設備•緩和設備	R／B	\bigcirc	建屋内	
		原子炉建屋原子炉棟	緩和設備	R／B	\bigcirc	影響なし （設計基準対象施設と して評価）	
	非常用取水設備	貯留堰，取水口，取水路，海水ポン プ室	防止設備•緩和設備	屋外	\bigcirc	影響なし （設計基準対象施設と して評価）	

[^6]水質汚染に対する補給水等への影響について

1．外部から供給される水源の概略系統及び供給先
純水を補給する設備には，復水貯蔵タンク，ほう酸水貯蔵タンク，原子炉補機冷却水サージタンクがあるが，点検時の水張りや系統内でリークが生じた際に補給等 が必要になるもので，降下火砕物襲来時に補給が必要となるものではない。

しかし，降下火砕物が河川水に混入することによる，水質汚染（補給水等の汚染） が考えられることから以下のとおり確認した。

図1に示すとおり，河川水はまず原水タンクに受け入れられる。原水タンクに受 け入れられた水は，前処理装置の除濁槽とろ過器を経由してろ過水タンクー移送さ れるが，この過程で降下火砕物粒子は除去される。プラント系統に補給される用水 は純水装置を経由して純水タンクに移送されるが，この過程で降下火砕物が水に濡 れた場合に溶出すると考えられるイオン成分は脱塩処理される。

また，前処理装置のろ過器が降下火砕物粒子によって差圧が上昇した場合には逆洗により再生が可能であり，また，純水装置の脱塩装置がイオン成分処理によって イオン交換能力が低下した場合には再生剤による再生が可能である。

さらに，ろ過水タンク及び純水タンクにおいて水質管理も行っていることから，河川水が適切に処理されていることを確認した上で使用することができる。

以上から，河川水に降下火砕物が混入した場合にも，各負荷に補給される水の水質に影響を及ぼすことはない。

図1 外部から供給される水源の概略系統図

気中降下火砕物の対策に係る検討状況について

平成 29 年 12 月 14 日に実用発電用原子炉の設置，運転等に関する規則（以下「実用炉規則」という。）の一部改正で追加された，火山影響等発生時における発電用原子炉施設の保全のための活動を行う体制の整備については，保安規定認可までに対応 を図る。現在の対応状況を表1に示す。

表1 実用炉規則の一部改正に関する対応状況

条項		規則	対応状況
第 84 条の 2第 5 項	－	火山影響等発生時における発電用原子炉施設の保全のための活動を行らために必要な次に掲げる事項 を定め，これを要員に守らせるこ と。	－
	イ	火山影響等発生時における非常用交流動力電源設備の機能を維持す るための対策に関すること。	－火山灰の取り込みを抑制するた めに火山灰フィルタの設置等の対策を行う －非常用ディーゼル発電機の吸気 に係る既設のフィルタに対して，実際の火山灰による閉塞試験結果 を踏まえて，機能維持のための対策を行う
	口	イに掲げるもののほか，火山影響等発生時における代替電源設備そ の他の炬心を冷却するために必要 な設備の機能を維持するための対策に関すること。	炉心を泠却するための設備とし て，高圧代替注水系（HPAC）によ り対応する
	八	口に掲げるもののほか，火山影響等発生時に交流動力電源が喪失し た場合における炝心の著しい損傷 を防止するための対策に関するこ と。	原子炬隔離時冷却系（RCIC）を用 いた全交流電源喪失時の対応手順 により対応する

「実用炉規則第 84 条の 2 第 5 項イ」の対応としては，図 1 の手段が考えられる。
今後，気中降下火砕物濃度の環境下において，非常用ディーゼル発電機の機能を維持するため最適な対策を検討し，保安規定認可までに対応を行う。

図 1 実用炉規則第 84 条の 2 第 5 項イ（非常用D Gの 2 系統維持）対応案

女川原子力発電所における気中降下火砕物濃度の算出について
1．降下火砕物濃度の推定手法
試算に用いる大気中の降下火砕物濃度は，「原子力発電所の火山影響評価ガイド （平成 29 年 11 月 29 日改正）」（以下「ガイド」という。）の添付 1 「気中降下火砕物濃度の推定手法について」に定められた手法により推定した気中降下火砕物濃度 とする。ガイドに定められている手法は以下の 2 つである。
a．降灰継続時間を仮定して，降灰量から気中降下火砕物濃度を推定する手法
b．数値シミュレーションにより気中降下火砕物濃度を推定する手法
2．気中降下火砕物濃度の算出
女川原子力発電所では，上記手法のうち a の手法により気中降下火砕物の濃度を推定した。本手法は，原子力発電所の敷地において発電所の運用期間中に想定され る降下火砕物が降灰継続時間（24時間）に堆積したと仮定し，降下火砕物の粒径 の割合から求められる粒径毎の堆積速度と終端速度から算出される粒径毎の気中濃度の総和を気中降下火砕物濃度として求める。以下に計算方法を示す。女川原子力発電所における入力条件及び計算結果を表1，2に示す。

粒径 i の降下火砕物の降灰量 W_{i} は

$$
W_{i}=p_{i} W_{T} \quad\left(\mathrm{p}_{\mathrm{i}}: \text { 粒径 } \mathrm{i} \text { の割合 } \mathrm{W}_{\mathrm{T}}: \text { 総降灰量 }\right) \cdots(\mathrm{A})
$$

で表され，粒径 i の堆積速度 v_{i} は

$$
v_{i}=\frac{W_{i}}{t} \quad(\mathrm{t}: ~ \text { 降灰継続時間) } \quad \cdots \quad \text { (B) }
$$

粒径 i の気中濃度 C_{i} は

$$
C_{i}=\frac{v_{i}}{r_{i}} \quad\left(r_{i}: \text { 粒径 } \mathrm{i} \text { の降下火砕物の終端速度) } \cdots \quad\right. \text { (C) }
$$

で表され，気中降下火砕物濃度 C_{t} は

$$
C_{T}=\sum_{i} C_{i} \quad \cdots \quad \text { (D) }
$$

となる。
表1 気中降下火砕物濃度の入力条件及び計算結果

入力条件		数値	備考
（1）	降灰継続時間t［h］	24	ガイドより
（2）	堆積層厚［cm］	15	女川原子力発電所で想定する降下火砕物堆積量
（3）	降下火砕物密度 $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1	Tephra2 における設定値
（4）	降下火砕物の総降灰量 $W_{T}\left[\mathrm{~g} / \mathrm{m}^{2}\right]$	150， 000	（2）\times（3）$\times 10^{4}$
（5）	粒径ごとの降灰量 $W_{i} \quad\left[\mathrm{~g} / \mathrm{m}^{2}\right]$	表2参照	粒径の割合は Tephra2 による シミュレーション結果を使用
（6）	粒径ごとの堆積速度 $\mathrm{v}_{\mathrm{i}}\left[\mathrm{g} / \mathrm{s} \cdot \mathrm{m}^{2}\right]$	表2参照	（B）式
（7）	粒径ごとの終端速度 $\mathrm{r}_{\mathrm{i}}[\mathrm{m} / \mathrm{s}]$	表2参照	
（8）	粒径ごとの気中濃度 $\mathrm{C}_{\mathrm{i}}\left[\mathrm{g} / \mathrm{m}^{3}\right]$	表2参照	（C）式
（9）	気中降下火砕物濃度 $\mathrm{C}_{\mathrm{T}}\left[\mathrm{g} / \mathrm{m}^{3}\right]$	2.7	（D）式

$\begin{gathered} \text { 粒径 i } \phi \\ (\mu \mathrm{m}) \end{gathered}$	$\begin{gathered} \hline-1 \sim 0 \\ (1,414) \end{gathered}$	$\begin{aligned} & 0 \sim 1 \\ & (707) \end{aligned}$	$\begin{aligned} & 1 \sim 2 \\ & (354) \end{aligned}$	$\begin{aligned} & \hline 2 \sim 3 \\ & (177) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \sim 4 \\ & (88) \end{aligned}$	$\begin{aligned} & \hline 4 \sim 5 \\ & (44) \end{aligned}$	$\begin{aligned} & 5 \sim 6 \\ & (22) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \sim 7 \\ & (11) \\ & \hline \end{aligned}$	合計
$\begin{gathered} \text { 割合 } \\ \mathrm{p}_{\mathrm{i}}(\mathrm{wt} \%) \end{gathered}$	2.9×10^{-5}	14.0	59.0	17.0	7.9	2． 2	0.26	0． 032	
降灰量 $W_{i}\left(\mathrm{~g} / \mathrm{m}^{2}\right)$	0． 044	21， 000	88，500	25，500	11，850	3， 300	390	48	$\mathrm{W}_{\mathrm{T}}=150,000$
$\begin{gathered} \text { 堆積速度 } \\ \mathrm{v}_{\mathrm{i}}\left(\mathrm{~g} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right)\right) \end{gathered}$	5.1×10^{-7}	0.24	1.0	0． 30	0.14	3.8×10^{-2}	4.5×10^{-3}	5.6×10^{-4}	
終端速度 $r_{i}(\mathrm{~cm} / \mathrm{s})$	250	180	100	50	35	10	3	1	
気中濃度 $\mathrm{C}_{\mathrm{i}}\left(\mathrm{~g} / \mathrm{m}^{3}\right)$	2． 0×10^{-7}	0． 14	1.0	0.59	0． 39	0． 38	0.15	5.6×10^{-2}	$\mathrm{C}_{\mathrm{T}}=2.7$

降下火砕物と積雪荷重との組合せについて

火山（降下火砕物）と積雪は相関性が低い事象同士の組合せであるが，重畳した場合には堆積荷重が増加することになるため，組合せを考慮することとしている。以下 に火山（降下火砕物）と組み合わせる際の積雪荷重の設定について整理する。

1．関連する基準要求に対する適合確認
設置許可基準規則第 6 条（外部からの衝撃による損傷の防止）のうち「外部事象 の考慮」において，火山の影響（降下火砕物）と積雪を安全施設に影響を及ぼすお それがある自然現象として抽出しており，荷重の組合せの要否の検討を実施してい る。具体的な荷重の組合せの考え方は以下のとおり。
（1）荷重の組合せの考え方
降下火砕物及び積雪による堆積荷重は，同時に発生する場合を考慮し，設計上考慮すべき荷重評価における自然現象の組合せとして，降下火砕物による荷重及 び積雪による荷重の組合せを設定している。荷重の組合せは，主たる作用（主事象）の最大値と，従たる作用（副事象）の任意時点の値（平均値）の和として作用の組合せを考慮する Turkstra の法則 ${ }^{* 1}$ の考え方に基づき設定している。この考え方は，日本建築学会「建築物荷重指針•同解説」や建築基準法，土木学会「性能設計における土木構造物に対する作用の指針」，国土交通省「土木•建築にかか る設計の基本」，EN1990（ユーロコード），ASCE 7－02（米国土木学会），ANSI（米国国家規格協会），IS0 等でも採用されている。
降下火砕物による荷重は積雪荷重に対して，発生頻度が相対的に低いが荷重が大きく，安全機能への影響が大きくなると考えられることから主事象として扱い，設計基準で想定している降下火砕物による荷重（層厚 15 cm ）を設定する。積雪は発生頻度が主荷重（降下火砕物）と比べて相対的に高いものの，荷重は主荷重に比べて小さく安全機能への影響も主荷重に比べて小さいと考えられるため，主事象に対して考慮する副事象として扱うこととする。

2．従荷重として組み合わせる積雪荷重の設定方法
主荷重である降下火砕物に対して組み合わせる積雪荷重の平均値について関連 する規格•基準等を踏まえて，以下のとおり検討を行った。
（1）確率過程的に平均値な積雪量を求める
副事象として想定する積雪荷重の考え方として高橋＊2 ${ }^{*}$ が Turkstra の法則に従 つて，荷重の組合せを考える際の積雪荷重の係数を求めている。高橋※2の論文に よると，年最大積雪深の 100 年再現期間期待値と積雪荷重の荷重係数の関係に対 して，積雪日数の平年値を横軸とした場合の関係を示している。（図 1 参照）これ は，一年間のらち，いつ襲来するか明らかでない荷重（例えば地震荷重等）と積

雪荷重を組み合わせる場合の荷重係数を示している。女川原子力発電所の近隣で ある石巻特別地域気象観測所の観測データより，積雪日数の最大値が 80 日（観測期間1962年～2017年において）であることを踏まえると，この場合の荷重係数 は近似式より約 0.05 となる。設計基準値の積雪量を考慮した場合には，組み合わ せる積雪深さは約 $2.2 \mathrm{~cm} ~(43 \mathrm{~cm} \times 0.05) ~$ と算出される。

図1 積雪荷重が従となる場合に掛け合わせる荷重係数※2（赤線•赤字は追記）
（2）建築基準法の考え方を準用して平均値を求めた場合
建築基準法では，多雪地域において主荷重である地震•暴風と組み合わせる場合の平均的な積雪量として，短期積雪荷重の 0.35 倍の積雪量を考慮することとし ており，算出される平均的な積雪量は約 15.1 cm （設計基準積雪量 $43 \mathrm{~cm} \times 0.35$ ）で あることを確認した。
（3）観測記録により年最大積雪深さの平均値を求めた場合
副事象として想定する積雪荷重について，平均的な積雪荷重の一般的な設定方法として，最寄りの気象観測所における年最大積雪深さの平均値を求める方法が ある。女川原子力発電所の最寄りの気象観測所である石巻における年最大積雪深 さの平均値は気象観測データ（観測期間：1962 年～2017 年）より 17.0 cm である ことを確認した。

検討の結果，算出される平均的な積雪量は，観測記録により年最大積雪深さの平均値を求めた場合（ 17.0 cm ）が最も大きな値となることを確認した。

3．火山影響評価ガイドを踏まえて考慮すべき事項
「原子力発電所の火山影響評価ガイド」（以下，火山影響評価ガイドという）に おいて，降雨，積雪などの自然現象は，火山灰等の堆積物の静的負荷を著しく増大 させる可能性があるとしていることから，乾燥状態の降下火砕物の密度 $\left(0.7 \mathrm{~g} / \mathrm{cm}^{3}\right)$

に対して，同時期に想定される降雨等による荷重影響として，湿潤状態の降下火砕物の密度（ $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ ）を設定し，更に 17 cm の積雪荷重を組み合わせることとして いる。

また，降下火砕物による荷重と積雪による荷重の組合せにおいては，除灰の効果 は期待しないものとし，積雪については適切に除雪を行い，雪を長期間堆積状態に しない方針とすることで，積雪荷重に対する設計裕度を確保する。

以上の検討より，女川原子力発電所における降下火砕物の荷重に組み合わせる積雪荷重の積雪深さは，発電所立地の最寄りの気象観測所である石巻地域における年最大積雪深さの平均値（ 17.0 cm ）を採用する方針とする。

以上

［参考文献］

※ 1 ：建築物荷重指針•同解説（2015）（2 章 荷重の種類と組合せ，付5．5 許容応力度設計に用いる組合せ荷重のための荷重係数）
※2：高橋 徹：積雪荷重の推移過程モデルに関する一考察（日本建築学会 構造工学論文集 Vol．44B （1998年3月））

降灰時の外部支援及び開閉所の除灰の成立性検討について

女川原子力発電所 2 号炉における降灰時の間接的影響（長期間の外部電源喪失及び交通の途絶）に対して，外部からの支援については，技術的能力 1.0 支援に係わる事項において，事象発生後 6 日間までに発電所外からの支援受けられるよう支援計画を定め，体制を整備する。また，支援を受けるまでの7日間については，設置許可基準規則解釈第 33 条第 7 項の要求として 7 日間分の非常用電源設備の燃料を有しており，軽油タンクへの燃料補給なしで運転が継続できる。その後は外部からの軽油タンクへ の燃料補給や開閉所の除灰を実施し，外部電源の受電を行うことで，継続して電源を確保することとしているが，外部からの支援を受け入れるために開閉所の除灰，及び所内の燃料補給ルート確保が必要であることから，これらの成立性について検討を行 った。

1．開閉所の降灰除去
降灰後に外部電源を受電するため，開閉所の除灰の成立性検討を行った。GIS（ガ ス絶縁開閉装置）は筐体内に母線が内蔵されており降灰の影響を受けない構造とな っているが，外部電源を受電する送電線引込部の碍子（ブッシング）は，降灰の影響を受ける可能性がある。ただし，降灰による汚損碍子は清掃により機能回復が可能であることから，図1のとおり足場を構築し，碍子（ブッシング）の清掃（洗浄，乾拭き）を実施する。検討の結果，開閉所の清掃作業のタイムチャートは図 2 のと おりである。女川原子力発電所の開閉所（5回線）については，平行作業が可能で あることから，外部電源の復旧状況に合わせて清掃作業を実施する。

図1碍子（ブッシング）清掃のイメージ
※ 1 写真出典：産業構造審議会 保安分科会 電力安全小委員会 電気設備自然災害等対策ワーキンググループー中間報告書（平成 26 年 6 月 24 日 経済産業省 商務流通保安グループ 電力安全課）

図2 碍子（ブッシング）の清掃•復旧のタイムチャート

2．燃料補給ルートの除灰
燃料補給ルートの確保については，敷地内に設計層厚である 15 cm の降下火砕物 が堆積した場合において，タンクローリ等による燃料の陸送を想定し，正門ゲート から地下軽油タンクまでの燃料補給ルートの除灰成立性検討を行った。
（1）除灰方法の概要
図 3 に示す正門ゲートから地下軽油タンクまでの燃料補給ルートに降り積もっ た灰を当社所有のブルドーザで道路脇へ押土する。なお，正門ゲートから地下軽油タンクまでの燃料補給ルートは2 ルートあるが，距離が長いルート①（約 1.7 km ） で評価を行うこととする。

図3燃料補給ルート
（2）評価条件
a．降下火砕物条件
－堆積量： 15 cm ，密度： $1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤密度）
b．ブルドーザの仕様

- ブレード幅：約 3.7 m
- 速度（ 1 速）：前進 $3.3 \mathrm{~km} / \mathrm{h}$ ，後進 $4.4 \mathrm{~km} / \mathrm{h}$
c．除灰距離
－正門ゲートから地下軽油タンクまでの燃料補給ルート：1．7km
d．除灰時間の算出方法
ブルドーザが降下火砕物を道路脇に押し出す作業を1サイクルとして，ブルド
ーザの除灰能力から，除灰速度を算出し，燃料補給ルートの除灰時間を算出する。
（3）算出結果

作業内容			備考
（1）	$\text { ブルドーザの } 1 \text { サイクル当たりの }$最大押し出し可能重量	9．12（t）	土砂撤去実証試験によ り確認済み
（2）	ブルドーザの単位長さ当たりの除灰可能重量	$0.83(\mathrm{t} / \mathrm{m})$	ブレードの形状及び火山灰の条件により算定
（3）	1 サイクルで除灰できる距離	10 （m）	（1）／（2）を切捨て
（4）	1 サイクル当たりの除灰時間	0.5 （min）	注 1 参照
（5）	1 サイクル当たりの除灰速度	1.3 （km／h）	③／4 を切上げ
（6）	燃料補給ルートの距離	1.7 （km）	
（7）	燃料補給ルートの除去時間	80 （min）	⑥／5）を切上げ

注1：1サイクルの除灰時間の考え方
－1 サイクル当りの作業時間は，作業速度（前進 $3.3 \mathrm{~km} / \mathrm{h}$ ，後進 $4.4 \mathrm{~km} / \mathrm{h}$ ）で作業すると仮定して
$\mathrm{A}:$ 押し出し $(\mathbb{}(\mathbb{A}) \rightarrow$（B）$\rightarrow$ © $) \quad:(10 \mathrm{~m}+6 \mathrm{~m}) \div 3.3 \mathrm{~km} / \mathrm{h}=0.3 \mathrm{~min}$
B：ギア切り替え
： 0.1 min
C：後進（© \rightarrow（B）$\quad: 6 \mathrm{~m} \div 4.4 \mathrm{~km} / \mathrm{h}=0.09 \mathrm{~min}$

1 サイクル当りの作業時間 $(\mathrm{A}+\mathrm{B}+\mathrm{C})=0.3+0.1+0.09 \fallingdotseq 0.5 \mathrm{~min}$

（4）燃料補給ルートの除灰成立性検討結果
除灰作業に関する作業のタイムチャートを図 4 に示す。記載のとおり約 5 時間で除灰が可能であることを確認した。

図4除灰作業のタイムチャート

降下火砕物による摩耗や融解の影響について
降下火砕物はマグマを起源とする火山ガラス，鉱物結晶片にて構成されるものであ り，想定する火山により，主成分組成が異なることから，女川原子力発電所 2 号炉で想定する火山の主成分組成を整理し，降下火砕物による摩耗や融解の影響について確認した。

1．降下火砕物の組成

（1）火山ガラス
降下火砕物の主成分である火山ガラスは，地下深部の高温高圧のマグマが噴火時大気中に噴出されることによる急激な減圧•冷却によって結晶化できずに非晶質化したものである。東北地方の主要なテフラの火山ガラスの主成分組成を表1 に示す。

表1 宮城県中•北部のテフラ（火山ガラス）の主成分組成について＊1（赤枠は追記）

示標テフラ	試料採取地		SiO_{2}	TiO2	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	Total
愛島軽石$(\mathrm{K}-\mathrm{MD})$	川崎町安達	M	76.94	0.18	14.47	1.01	\ldots	0.61	1.79	1.27	3.88	100.00
		SD	0.53	0.02	0.44	0.03	\ldots	0.06	0.07	0.04	0.22	
肘折軽石 (Hj)	宮崎町台の原	M	77.79	0.16	12.76	1.05	\ldots	0.44	1.09	3.10	3.61	100.00
		SD	0.77	0.05	0.38	0.01	\cdots	0.20	0.11	0.12	0.85	
$\begin{aligned} & \text { 鳴子潟沼-上原 } \\ & \text { テフラ } \mathrm{NK} \text { - }) \end{aligned}$	鳴子町上ノ原	M	77.98	0.22	12.28	1.22		1.01	1.59	1.47	4.23	100.00
		SD	0.30	0.01	0.12	0.04	\ldots	0.01	0.01	0.10	0.13	
$\begin{aligned} & \text { 鳴子-柳沢テ } \\ & \text { フラ (N-Y) } \end{aligned}$	岩出山町安沢	M	78.11	0.17	12.98	1.28	\ldots	0.43	1.52	1.93	3.57	99.99
		SD	0.40	$0.0{ }^{\text {a }}$	0.41	0.07	．．．	0.08	0.05	0.04	0.12	
鳴子－荷坂テ$フ ラ(\mathrm{~N}-\mathrm{N})$	岩出山町安沢	M	78.01	0.12	12.93	1.29	\ldots	37.0	1.28	1.88	4.12	100.00
		SD	0.33	0.01	0.15	0.02	\ldots	0.03	0.03	0.04	0.34	
北原火山灰 （Kt）	一迫町十文字	M	77.61	0.07	13.37	0.61	\ldots	0.32	0.70	3.89	3.43	100.00
		SD	0.32	0.02	0.14	0.03	．\cdot ．	0.05	0.03	0.05	0.33	
一迫軽石 （IcP）	一迫町十文	M	76.99	0.15	13.07	1.93	．	0.53	1.86	1.21	4.26	100.00
		SD	0.41	0.02	0.15	0.05		0.07	0.04	0.02	0.40	

東北地方の主要なテフラの火山ガラスの主成分組成は， SiO_{2} が約 $77 \sim 78 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ が約 $12 \sim 14 \%, \mathrm{~K}_{2} 0$ が約 $1 \sim 4 \%$ 程度の範囲であることを確認した。
（2）鉱物結晶片
鉱物結晶片は，地下深部のマグマが徐々に冷却される過程で結晶化した造岩鉱物である。東北地域の主要なテフラに対する鉱物組成は表2に示すように石英，
（斜方•単斜）輝石，角閃石，カミントン閃石，磁鉄鉱及び黒雲母が含まれてい ることを確認した。

また，女川原子力発電所の降下火砕物の調査 ${ }^{* 2}$ では主な鉱物として（斜方•単斜）輝石，角閃石，黒雲母，磁鉄鉱を確認した。

表2 宮城県中•北部のテフラの岩相について＊1（赤枠•赤字は追記）

示標テフラ	鉱物組成	$\begin{gathered} \text { 火山ガラ } \\ \text { スの形態 } \\ \hline \end{gathered}$	屈 折 率
川崎スコリア（Z－K）愛島軽石（K－MD）	$\begin{aligned} & \mathrm{opx}>\mathrm{cpx} \\ & \mathrm{cum} ; \mathrm{qt} \end{aligned}$	pm	$\begin{aligned} & \operatorname{opx}(\gamma): 1.700-1.704 \\ & \operatorname{gl}: 1.504-1.507(1.505-1.506) \\ & \operatorname{cum}\left(\mathrm{n}_{2}\right): 1.660-1.665 \end{aligned}$
鳴子潟沼－上原テフラ （NK－U）	$\mathrm{opx}>\mathrm{cpx}=\mathrm{mt}$	pm	$\begin{aligned} & \mathrm{gl}: 1.492-1.500 \\ & \text { opx }(r): 1.711-1.715 \end{aligned}$
时折軽石（ Hj ）	opx $>$ ho ；qt	pm	$\begin{aligned} & \text { gl }: 1.499-1.501 \\ & \text { opx }(\gamma): 1.712-1.714 \\ & \text { ho }\left(\mathrm{n}_{2}\right): 1.668-1.671 \end{aligned}$
鳴子－柳沢テフラ $(\mathrm{N}-\mathrm{Y})$	opx＞ho，mt（bi，cpx）；qt	pm＞bw	$\begin{aligned} & \mathrm{gl}: 1.501-1.503 \\ & \text { opx }(\gamma): 1.717-1.722 \text { (1.719) } \\ & \text { ho }\left(\mathrm{n}_{2}\right): 1.673-1.676 \end{aligned}$
鳴子－荷坂テフラ $(\mathrm{N}-\mathrm{N})$	opx $>\mathrm{mt}$ ：qt	pm	$\begin{aligned} & \mathrm{gl}: 1.500-1.502 \text { (1.501) } \\ & \mathrm{opx}(\gamma): 1.724-1.728 \end{aligned}$
北原火山灰（Kt）	poor（mt＞opx，cum）	pm	gl ：1．499－1．502
一迫軽石（ IcP ）	$\mathrm{opx}>\mathrm{mt}$	pm	opx（ γ ）：1．728－1．733

鉱物組成の凡例		
$\cdot \mathrm{opx}:$ 斜方輝石	•qt：石英	
$\cdot \mathrm{ho}:$ 角閃石	$\cdot \mathrm{cpx}:$ 単斜輝石	
$\cdot \mathrm{mt}:$ 磁鉄鉱	•bi ：黒雲母	

2．降下火砕物の影響について

（1）摩耗
降下火砕物中に酸化アルミニウムの鉱物相が存在する可能性は極めて低い（添付資料— 1 参照）。一方，摩耗の影響は降下火砕物の硬度の影響を受けることから，女川原子力発電所で想定する降下火砕物の硬度について確認を実施した。
a．火山ガラス
火山ガラスの硬度については，鹿児島県垂水市における火山ガラスについて調査を実施しており，表3に示す主元素組成（ SiO_{2} ：約 $73 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $14 \%, \mathrm{~K}_{2} 0$ ：約 3% ）の火山ガラスは表 4 に示すようにモース硬度 5 であることを確認した。

これは東北地方の主要なテフラの火山ガラスの主成分組成（ SiO_{2} ：約 $77 \sim 78 \%$ ， $\mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $12 \sim 14 \%, \mathrm{~K}_{2} \mathrm{O}$ ：約 $1 \sim 4 \%$ 程度）と比較しても大きな差異がないことから，女川原子力発電所で想定する火山ガラスのモース硬度も同様に 5 程度と考えられ る。

表3 火山ガラスの主成分組成＊3（赤枠は追記）
Chemical composition（wt\％）

| $\overparen{\mathrm{SiO}_{2}}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | CaO | MgO | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | TiO_{2} | $\mathrm{Na}_{2} \mathrm{O}$ | $\mathrm{K}_{2} \mathrm{O}$ | $\mathrm{P}_{2} \mathrm{O}_{5}$ | MnO | ig．loss | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72.73 | 13.69 | 1.44 | 0.23 | 1.82 | 0.18 | 3.46 | 3.42 | 0.01 | 0.06 | 3.16 | 100.2 |

表4 火山ガラスの特性 ${ }^{* 3}$（赤枠は追記）

| | Shirasu glass | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | No． 1 | No． 2 | No． 3 | No． 4 |
| Specific
 gravity | 2.70 | 2.77 | 2.75 | 2.76 |
| Hardness
 （mohrs） | 5 | 5 | 5 | 5 |
| Softening
 point $\left({ }^{\circ} \mathrm{C}\right)$ | 873 | 868 | 875 | 870 |

b．鉱物結晶片

東北地方の主要なテフラに対する文献 ${ }^{1} 1$ 及び発電所敷地内及び敷地周辺の地質調査 ${ }^{*} 2$ の結果から確認された造岩鉱物は，石英，（斜方•単斜）輝石，角閃石， カミントン閃石，黒雲母，磁鉄鉱である。各造岩鉱物のモース硬度は表5，6に示すとおりであり，最大値は石英のモース硬度 7 である。

表5 造岩鉱物の特徴及び硬度＊4（赤枠は追記）

造岩鉱物名	色調•透明度•光沢など	自形結晶の形	割れ口	モース 硬度 $\%$	比重
石英	無色透明，白色半透明．ガラス光沢	複六方錐，六角柱状	不規則	7	2.65
カリ長石	白色，淡いピンク～黄色，半遥明， ガラス光沢	四角柱状	直方体の兓開	6	2.57
斜長石	無色透明，白色半透明，ガラス光沢	四角柱状	直方体の䐴開	6－6．5	2．6－2．8
白雲母	無色透明．真珠光沢	六角板状	－方向に䢃開	2．5－3	2.9
黒雲母	黑色不逄明，暗䟿～褀色半透明， ガラス光沢	六角板状	－方向に䢃開	2．5－3	2．7－3．3
角閔石	黒色不透明，暗緑～褐色半透明． ガラス光沢	長柱状	$60^{\circ} / 120^{\circ}$ に斜交する辟開	3	2.8
輝石	黒色不透明，緑色～褐色半透明， ガラス光沢	長柱状	ほぼ直交する 2 方向に響開	5－6	3．2－3．5
かんらん石	$\begin{aligned} & \text { 緑色透明, 带黄裼色半透明. } \\ & \text { ガラス光作 } \end{aligned}$	短柱状	不規則	6．5－7	3．2－4．4
糿鉄峵	黒色不透明，亜金属光沢．強隇性	八面体	不規則	5．5－6	5.2
方解石	無色透明，白色半透明，ガラス光沢	路面体，六角板～柱状，犬牙状	斜交する三方向に䢃開	3	2.7
柘榴石	赤色，黄褐色，緑色半透明． ガラス光沢	$\begin{aligned} & \text { 二十四面体, } \\ & \text { +二面体 } \end{aligned}$	不規則	6．5－7	3．2－4．2

表6 造岩鉱物の硬度（抜粋）※5（赤枠は追記）

以上のことから，女川原子力発電所で想定する降下火砕物のモース硬度の最大値 は 7 程度である。また，一般的な砂は石英，長石類，雲母類を主成分 ${ }^{*} 6$ としており，砂のモース硬度も石英が最大で 7 程度であることから，設備への影響は砂と同等で あると考える。

（2）融解

降下火砕物中に酸化カリウムの鉱物相が存在する可能性は極めて低い（添付資料 -1 参照）。一方，融解の影響は降下火砕物の融点の影響を受けることから，女川原子力発電所で想定する降下火砕物の融解について確認を実施した。
a．火山ガラス
火山ガラスの融解については，鹿児島県垂水市における火山ガラスについて分析 ${ }^{* 3}$ を実施しており，表3に示す主元素組成（ SiO_{2} ：約 $73 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 14% ， $\mathrm{K}_{2} 0$ ：約 3% ）の火山ガラスは約 $700^{\circ} \mathrm{C}$ からガラスが転移し，軟化温度は表 4 に示 すように $868 \sim 875^{\circ} \mathrm{C}$ であることが認められた。これは東北地方の主要なテフラ の火山ガラスの主成分組成（ SiO_{2} ：約 $77 \sim 78 \%, \mathrm{Al}_{2} \mathrm{O}_{3}$ ：約 $12 \sim 14 \%, \mathrm{~K}_{2} \mathrm{O}$ ：約 $1 \sim$ 4\％程度）と比較しても大きな差異がないことから，女川原子力発電所で想定す る火山ガラスの軟化温度は同様に約 $860 \sim 880^{\circ} \mathrm{C}$ 程度と考えられる。よって火山 ガラスの融解温度は $860^{\circ} \mathrm{C}$ 以上であると推定される。

b．鉱物結晶片

鉱物結晶片は火成岩の構成鉱物であることから，火成岩（マグマ）の融点と同等と考えられる。火成岩の融点は表6のとおり $850 \sim 1125^{\circ} \mathrm{C}^{*}$ 7であることを確認した。

表6 実測された溶岩の温度と粘性係数※7（赤枠は追記）

火 山	嘖火年	岩石名	温度（ ${ }^{\text {C }}$ ）	粘性率（P）	
三宅島	1940	玄䟼岩	1000	－	Minakami and Sakuma（1953）
三原山（伊豆大島）	1950	去武岩	$950 \sim 1100$		
	1951	玄武岩	1125	5.6×10^{3}	
	1951	玄武岩	1108	1.8×10^{4}	
	1951	玄武岩	1083	7.1×10^{4}	
	1951	玄武岩	1038	2.3×10^{5}	
桜 島	1946	安山岩	$850 \sim 1000$	－	Aramaki andKatsura（1973）
秋田駨ヶ岳	1970	安山岩	1090	－	
昭和新山	1945	デイサイト	$1000 \sim 900$	$10^{9} \sim 10^{11}$	
マウナロア（ハワイ）	1950	玄武岩	1070	4×10^{3} 7×10^{3}	$\}$ Macdonald（1954）
	1950	玄武岩	940	7×10^{3}	
キラウエア（ハワ1）	1952	玄武罘	1100	2×10^{4}	$\} \begin{aligned} & \text { Macdnald and } \\ & \text { Eaton (1964) } \end{aligned}$
	1955	玄武岩	1100	2×10^{3}	
	1955	玄武岩	1050	2.5×10^{3}	
バリクテイン（メキシコ）	1945－46	玄武岩質安山罘	1070	$10^{5} \sim 10^{6}$	
エトナ（イタリア）	1966	玄武岩質安山岩	$1010 \sim 1020$	$\begin{array}{r} 5.1 \times 10^{4} \\ \sim 3.8 \times 10^{5} \end{array}$	Tonguy and Biquand（1967）
	1966	玄武岩質安山岩	－	$\begin{array}{r} 0.4 \times 10^{5} \\ \sim 1.5 \times 10^{7} \end{array}$	Walker（1967＊）
ヘクラ（アイスランド）	1947	安山罘	－	$10^{5} \sim 10^{7}$	Einarsson（1949）
ベスビオ（イタリア）	1936	テフライト	－	7.6×10^{4}	Imbò（1959）
トライデント（アラスカ）	1953	デイサイト	－	6.9×10^{10}	Friedman et al．（1963）

以上のことから，女川原子力発電所で想定する降下火砕物の融点は $850^{\circ} \mathrm{C}$ 以上であ ると考えられる。火山灰の融解の影響について，非常用ディーゼル発電機のシリンダ から排出される排気ガス温度が約 $500^{\circ} \mathrm{C}$ であり，シリンダ内の金属表面付近はシリン ダ冷却水及びピストン泠却用潤滑油の効果により冷却されていることを踏まえると，火山灰は融解に至らないと考える。

以上
［参考文献］
※1：八木浩司•早田勉，宮城県中部及び北部に分布する後期更新世広域テフラとその層位，地学雑誌，1989，P48（別添資料－1）
※2：第446回 審査会合資料（女川原子力発電所 2 号炉 火山影響評価について（コメント回答），（補足説明資料）），2017．2．24，P67
※3：恒松修二•井上耕三•松田応作，シラスを主原料とする結晶化ガラス，窯業協会誌 84［6］， 1976，P32－40（別添資料－2）
※4：青木正博•目代邦康，増補改訂版 地層の見方がわかるフィールド図鑑，誠文堂新光社，2017，P200
※5：理科年表，国立天文台編 第 91 冊，平成 30 年，P668
※6：小田匡寛•榎本文勇ほか，砂粒子の形状•組成が砂の土質工学的性質に及ぼす影響に関する研究，土と基礎，19－2，1971，P7（別添資料－3）
※7：下鶴大輔•荒牧重雄ほか，火山の事典 第 2 版，朝倉書店，2008，P147

降下火砕物の主元素組成については，酸化物（ $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O}$ 等）の重量 $\%$ とし て示されていることが多い。これらの主元素組成が及ぼす影響について，以下の確認 を実施した。

1．降下火砕物の組成に関する調査
東北地方のテフラを調査している文献 ${ }^{*}$ において，表 1 に示すようにテフラ（火山ガラス）の主元素組成を示している。本論文の著者である山形大学の八木浩司教授に主元素組成が示す酸化物の影響について確認した結果を以下に示す。
＞火山ガラスの主元素組成を示しているのは，非晶質の火山ガラスの主要元素の割合を把握することでテフラの同定もしくは，マグマ組成を推定するために非晶質の火山ガラスの主成分を分析したものであり，酸化物（二酸化珪素，酸化 アルミニウム，酸化カリウム等）の鉱物相が存在していることを示しているも のではない。
＞降下火砕物は酸素に飽和しているため，成分分析の際に構成元素を酸化物とし て表示し，量比を求めているに過ぎない。

表1 宮城県中•北部のテフラ（火山ガラス）の主成分組成について＊1（赤枠は追記）

示標テフラ	試料採取地		SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	Total
愛島軽石 （ $\mathrm{K}-\mathrm{MD}$ ）	川崎町安達	M	76.94	0.12	14.47	1.01		0.61	1.79	1.27	3.88	100.00
		SD	0.53	0.02	0.44	0.03	\ldots	0.06	0.07	0.04	0.22	
时折軽石(Hj)	宮崎町台の原	M	77.79	0.16	12.76	1.05	\ldots	0.44	1.09	3.10	3.61	100.00
		SD	0.77	0.05	0.38	0.01	\ldots	0.20	0.11	0.12	0.85	
$\begin{aligned} & \text { 鳴子潟沼-上原 } \\ & テ フ ラ(\mathrm{NK}-\mathrm{U}) \end{aligned}$	鳴子町上ノ原	M	77.98	0.22	12.28	1.22	\ldots	1.01	1.59	1.47	4.23	100.00
		SD	0.30	0.01	0.12	0.04		0.01	0.01	0.10	0.13	
$\begin{aligned} & \text { 鳴子-柳沢テ } \\ & \text { フラ (N-Y) } \end{aligned}$	岩出山町安沢	M	78.11	0.17	12.98	1.28	\ldots	0.43	1.52	1.93	3.57	99.99
		SD	0.40	0.03	0.41	0.07	\ldots	0.08	0.05	0.04	0.12	
$\begin{aligned} & \text { 鳴子-荷坂テ } \\ & フ ラ(\mathrm{~N}-\mathrm{N}) \end{aligned}$	岩出山町安沢	M	78.01	0.12	12.93	1.29	\ldots	37.0	1.28	1.88	4.12	100.00
		SD	0.33	0.01	0.15	0.02	\ldots	0.03	0.03	0.04	0.34	
北原火山灰 （Kt）	一迫町十文字	M	77.61	0.07	13.37	0.61	\cdots	0.32	0.70	3.89	3.43	100.00
		SD	0.32	0.02	0.14	0.03		0.05	0.03	0.05	0.33	
一迫軽石 （IcP）	一迫町十文	M	76.99	0.15	13.07	1.93	\ldots	0.53	1.86	1.21	4.26	100.00
		SD	0.41	0.02	0.15	0.05		0.07	0.04	0.02	0.40	

また，文献 ${ }^{2}$ においても，マグマによる火成岩をつくる珪酸塩鉱物（表2参照） を示しており，鉱物の多くはアルミニウムやカリウム等を含む化学組成を示してい る。これらに関してマグマの代表的な化学組成（表3参照）を示しており，文献で は，以下のような記載がある。
＞火山岩の組成は酸化物の形で示したからといって，岩石中において個々の酸化物が必ずしもそのままの状態で入っていることを意味しているわけではない。 また，液体（マグマ）においても各々の酸化物がそのまま入り混じってはいな い。
＞酸化物の形で示したのは，たんなる分析技術上の制約からくる便宜的なもので ある。

表2 火成岩をつくる珪酸塩鉱物の代表例 ${ }^{*} 2$

鉱物族名	鉱 物 名	化 学 組 成
シリカ族	石英 クリストパル石	$\begin{aligned} & \mathrm{SiO}_{2} \\ & \mathrm{SiO}_{2} \end{aligned}$
長石族	斜長石 カリ長石	$\begin{aligned} & \mathrm{Ca}_{1-0} \mathrm{Na}_{0-1} \mathrm{Al}_{2-1} \mathrm{Si}_{2-3} \mathrm{O}_{8} \\ & (\mathrm{~K}, \mathrm{Na}) \mathrm{AlSi}_{3} \mathrm{O}_{8} \end{aligned}$
準長石族	ネフェリン	$\mathrm{NaAlSiO}_{4}$
雲母族	$\begin{aligned} & \text { 黒雲母 } \\ & \text { 白雲母 } \end{aligned}$	$\begin{aligned} & \mathrm{K}(\mathrm{Mg}, \mathrm{Fe})_{3}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)(\mathrm{OH})_{2} \\ & \mathrm{KAl}_{2}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)(\mathrm{OH})_{2} \end{aligned}$
角閔石族	普通角闆石	$\mathrm{NaCa}_{2}\left(\mathrm{Mg}, \mathrm{Fe}^{2+}, \mathrm{Al}\right)_{5}\left(\mathrm{Si}, \mathrm{Al}_{8} \mathrm{O}_{2}(\mathrm{OH})_{2}\right.$
姩石族	斜方輝石単斜輝石	$\begin{aligned} & \left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right) \mathrm{SiO}_{3} \\ & \left(\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}^{2+}\right) \mathrm{SiO}_{3} \end{aligned}$
ざくろ石族	アルマンデイン	$\mathrm{Fe}^{2+}{ }_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$
かんらん石族	かんらん石	$\left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right)_{2} \mathrm{SiO}_{4}$

表3マグマ（火山岩）の代表的な化学組成（単位は重量 \％）※2

	船形山 玄武岩	桜島 安山岩	昭和新山 デイサイト	神津島 流紋岩
SiO_{2}	49.56	57.11	69.74	76.06
TiO_{2}	0.72	0.82	0.45	0.22
$\mathrm{Al}_{2} \mathrm{O}_{3}$	17.88	16.94	15.59	13.62
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	2.82	1.91	1.52	0.21
FeO	7.54	6.09	2.59	0.57
MnO	0.16	0.13	0.08	0.08
MgO	7.03	3.87	0.85	0.08
CaO	10.92	8.42	3.63	0.73
$\mathrm{Na}_{2} \mathrm{O}$	1.50	3.09	3.43	4.25
$\mathrm{~K}_{2} \mathrm{O}$	0.22	1.37	1.36	3.29
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.06	0.15	0.22	0.02
$\mathrm{H}_{2} \mathrm{O}^{+}$	1.16		0.14	0.67
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.86		0.23	0.81
合計 2	100.43	100.04	100.36	0.38

よって，降下火砕物の主元素組成においては，酸化アルミニウム，酸化カリウム等を重量 \％として示すことが通例であるが，これらが鉱物相として存在することを示すものではない。

2．東北地方のテフラに対する調査
降下火砕物内に鉱物相として，酸化アルミニウムや酸化カリウムが存在する可能性を確認するため，文献調査を実施した。

文献 ${ }^{* 3}$ の，東北地方のテフラを構成する主な鉱物は，石英，（斜方•単斜）輝石，角閃石，カミントン閃石，緑簾石，カンラン石，黒雲母，黒曜石，アルカリ長石で あり，構成する鉱物中に，酸化アルミニウム及び酸化カリウムの鉱物相の存在は確認されなかった（別添資料－5 参照）。

また，女川原子力発電所の降下火砕物の調査 ${ }^{*} 4$ では主な鉱物として（斜方•単斜）輝石，角閃石，黒雲母，磁鉄鉱を確認しており，酸化アルミニウム及び酸化カリウ ムの鉱物相は確認されなかった。

3．まとめ
降下火砕物の主元素組成については，酸化物（ $\mathrm{SiO}_{2}, ~ \mathrm{Al}_{2} \mathrm{O}_{3}, ~ \mathrm{~K}_{2} \mathrm{O}$ 等）の重量 $\%$ と して示されていることが多いが，これらの主元素組成が及ぼす影響について確認し た結果を以下に示す。
＞降下火砕物の成分を示す場合には，構成元素を酸化物の重量 \％として示すこと が通例であるが，酸化物の鉱物相の存在を示すものではないことを確認した。
＞東北地方のテフラを調査した結果，降下火砕物中に鉱物相として，酸化アルミ ニウムや酸化カリウムが存在する可能性は極めて低いことから，摩耗や融解の影響も極めて小さいと考えられる。

以上

［参考文献］

※ 1：八木浩司•早田勉，宮城県中部及び北部に分布する後期更新世広域テフラとその層位，地学雑誌，1989，P48（別添資料－1）
※2：谷口宏充，マグマ科学への招待，裳華房，2001，P28－30（別添資料－4）
※3：町田洋•新井房夫，新編 火山灰アトラス［日本列島とその周辺］，東京大学出版会，2011，P144－153 （別添資料－5）
※4：第446回 審査会合資料（女川原子力発電所 2 号炉 火山影響評価について（コメント回答），（補足説明資料）），2017．2．24，P67

宮城県中部および北部に分布する後期更新世広域テフラとその層位

八木 浩司＊早田 勉＊

A stratigraphical study on the Late Pleistocene widespread tephras occurring in central and northern part of Miyagi Prefecture

Hiroshi YAGI ${ }^{*}$ and Tsutomu SODA＊＊

Abstract

Abstrart Widespread Tephra is a valuable time marker for tephrochronology and archaeology． Several fine ash fall deposit are distributed in central and northern part of Miyagi Pref．， The authors have correlated them to widespread tephras by means of following methods． They are lithological description of tephras，measurements of refractive indices of glass shards and heavy minerals，and analyses of major elements chemical composition of glass shards using a microprobe analyzer．As a results，four late Pleistocene widespr ead tephras are discovered in this study area．They are AT，Aso－4，On－PmI and Toya．The authors described the stratigraphic positions of those widespread tephras in detail．And furthermore， they mentioned the significance that four late Pleistocene widespread tephras were discovered in this study area．The results are summarized as follows．

1）In central part of Miyagi Pref．，the stratigrafic sequence of AT ash，Kawasaki scoria layer，Aso－4 ash and Medeshima pumice layer occur in ascending order is confirmed． Kawasaki scoria and Medeshima Pumice are valuable marker tephras in that region．

In northern part of Miyagi Pref．， 10 tephras or tephra formations and their stratigraphic positions are recognized．They are，in ascending order，Hijiori pumice layer，Narugo－ Katanuma－Uehara tephra，AT ash，Narugo－Yanagisawa tephra layer，Aso－4，Narugo－Nisaka tephra layer，Kitahara ash layer，On－PmI，Toya ash and Ichihasama pumice layer．Con－ sequently，the late Pleistocene tephra stratigraphy in Miyagi Prefecture is linked with those in central and southwestern part of Japan．

2）The stratigraphic relation between $\mathrm{On}-\mathrm{PmI}$ and Toya ash is revealed for the first time to implicate the occurrence of marine terrace developed in ca 100 ka in a tectonically active region．

[^7]－ 39 －

I．はじめに
近年，後期更新世の広域テフラに関する知見が集糐されてきた（町田ほか 1985，1987ほか多数）。広域 テフラは，多くの放射年代資料に加えて，本邦沿屎諸地域に発達する同地形面としての海成面及びその構成層との層序関係をもとに，汎世界的な海面変動に対応する時間スケールで噴出時期が与えられている。 このため，信頼性の高い噴出時期が明らかとなった広域テフラとの層序閦係から従来年代不詳のローカル な示褾テフラについても，その噴出時期を推定よることが可能となってきた。
宮城県内においても蔵王，鳴子，鬼首，栗鴚の各火山周辺部で複数の後期更新世の示標テフラが認めら れてきた（表1）。それらの示標テフラの多くは，地形発達史的関心のみならず，最近宫城県内で発見の暞次ぐ前期旧石器の編年学的関心から放射年代が得られている（板垣ほが1981；市川 1983，1986，1987；興水 1983，1986，1987ほか多数）。しかしそれらの年代值は，ばらつきが大きいことから，信頼性に不安 があった。このため官城県に分布する示標テフラと広堿テフラとの層序関係を明らかにし，それら示標テ フラの萣序を全国的な第四紀層序の枠組みに組み込むことが必要と考えられていた。

筆者らは，宮城県中部の仙台西部地域と北部の鬼首周辺地域（図1）においてローカルな示標テフラを

表1 宮城県中•北部の示標テフラとそれらの垻出年代

宮城県中部		宮堿県北部	
テフラ	年 代 值	テフラ	年 代 值
		时折㹩石（ Hj j$)$	$9.7-10.7 \mathrm{~kg}$＊（宇升ほが，1973）
		鳴子源沼－上原 （NK－U）	26ka＊（生子ほか，1983）
$\begin{aligned} & \text { 始夏 Tn 火山 } \\ & \text { (AT) } \end{aligned}$	$\begin{aligned} & \text { 21-22ka*(町田•新井, 1983) } \\ & 25 \mathrm{ka}^{*}(\text { 松本ほか, 1987) } \end{aligned}$	始良 Tn 火山灰（AT）	$\begin{aligned} & 21-22 \mathrm{ka}^{*} \text { (町田•新井, 1983) } \\ & 25 \mathrm{ka}^{*}(\text { 松本ほかっ, 1987) } \end{aligned}$
$\begin{aligned} & \text { 川畸スソリース } \\ & (\mathrm{Z}-\mathrm{K}) \end{aligned}$	$\begin{aligned} & \text { 26-31ka*(板垣ほか, 1981) } \\ & \text { ca 30ka*(ARA1 et al., 1986) } \end{aligned}$	$\begin{aligned} & \text { 鳴子-樌沢テフ } \\ & \text { ラ届 (N-Y) } \end{aligned}$	$40.6 \mathrm{ka}, 41.8 \mathrm{ka}, 43.5 \mathrm{ka}, 43.9 \mathrm{ka}^{* *}$（市川，1983） $40.3 \mathrm{ka}, 42.6 \mathrm{ka}, 44.3 \mathrm{ka}$ ， $63.4 \mathrm{ka***}$（舆水，1983） 80.8 ka ＊（中井，1988）
阿蘇 4 火山灰 （Aso－4）	70 ka ＊＊＊＊（町田ほか，1985）	阿䔉 4 火山灰 （Aso－4）	70ka＊＊＊＊（町田ほが，1985）
		鸣子－荷坂テワ $\text { ラ層 }(\mathrm{N}-\mathrm{N})$	$72.6 \mathrm{ka}, 72.9 \mathrm{ka}$＊＊（市川，1983） $41.4 \mathrm{ka}^{*}$（ОМОТО，1983）， 50.1 ka ＊（中开，1988） $45.0 \mathrm{ka}^{* *}$（市川，1986） $64.0 \mathrm{ka} * * *$（舆水，1988）
		北原火山灰 （Kt）	
		御䖝第一軽石 $(\mathrm{On}-\mathrm{Pm} \mathrm{I})$	80ka＊＊＊＊（町田恬が，1985）
愛捣軽石$(\mathrm{K}-\mathrm{MD})$	$\begin{aligned} & \text { 64ka** (市川, 1987) } \\ & 54-83 \mathrm{ka}^{* * * * *}(\text { 佐藤, 198) } \\ & 80 \mathrm{ka}^{* * *}(\text { 興水, 198) } \end{aligned}$	洞倠火山灰 （Toya）	90－100ka＊＊＊＊（町团ほ分，1987）
		$\begin{gathered} \text { 一这軙石 } \\ (\mathrm{IcP}) \end{gathered}$	124．3ka，122．4ka＊＊（市川i，1986） $146 \mathrm{ka}, 108 \mathrm{ka}^{* * *}$（興水，1986，1988）

[^8]-40 －

図1 宮城県中•北部及びその周辺地城の地形概改 2 km 以下の埋谷切埄面図等高線間隔は 100 m

挾む地尿中に，従来報告のなかった 4 枚の広域テフラを発見した。小論ではまずそれら広域テフラの対比 の根拠とローカルな示標テフラとの層序関係を報告する。次に広域テフラの層位からみた第四紀編年上の意義についても言及する。

II．宮城県中•北部における後期更新世の示標テフラと放射年代値

宮城県中部の仙台付近においては後期更新世の示標テフラとして，上位より川崎スコリア層，愛島（め でしま）軽石層が知られている（表1）。

川崎スコリア層は，蔵王火山起源の固結した暗褐色火山砂首である（板垣 1980）。その上下莌準の ${ }^{14} \mathrm{C}$

年代が 2 万 6 千年 B．P．および 3 万 1 千年 B．P．であることから（板哣ほか 1981），約 3 万年 B．P．の降下年代が推定されている（ARAI et al．1986）。
愛島軽石層は，川螘町内に給源火口が位䓢する安達火山から噴出した降下軽石で，カミングトン閃石を含む（板垣 1980，蟹沢 1985）。愛島軽石層は，仙台付近の台ノ原段丘より上位の段丘を覆い，青准山B

図2 宮城県中部の広城テフラ旁出地点（Loc．1， 2）と周辺の地形
使用した地形図は，国土地 理院発行 $1 / 25,000$ 「陸前川崎」図幅（ $\mathrm{NJ}-54-21-7-2$ ）
Loc． 1 は，愛島軽石の給源と考えられている安達火山 の中心付近に位譔する。安達火山は，仙台付近の最高位砂層である本砂金訸層（中川ほかっ，1960）の载る丘陵内 に発達した軽石丘である。
Loc． 2 は，川绮町北に発達する川内段丘（中川はか， 1960）上に位睘する。遺跡において願島軽石下位の層準から前期旧石器の出士が報告されている（須藤ほか 1985）。その年代は，熱ルミネッセンス年代 で 6 万 4 千年 B．P．（市川 1987），ESR 年代で 5 万 4 千年 B．P．~ 8 万 3 千年 B．P． （佐藤 1987），フィッション・トラック年代で8万年B．P．（興水 1987）の噴出年代 が得られているが（表1），統一的な見解は なかった。

鳴子•鬼首周辺の宮城県北部において は，後期更新世の示標テフラとして上位よ り肘折軽石層，鳴子瀉沼一上原テフラ層，鳴子一柳沢テフラ䉕，鳴子—荷坂テフラ莌，北原火山灰原，一迫軽石層（早田 1984）が知られている（表1）。

肘折軽石屏は，山形県肘折カルブラ起源 とする降下軽石（米地•菊池 1966）で， ${ }^{14} \mathrm{C}$ 年代から約 1 万年 B．P．の降下とされ ている（宇井ほか 1973）。

鳴子潟沼—上原テフラ層は，鳴子火山潟沼起源の灰白色細粇火山灰（早田 1989） で，${ }^{14} \mathrm{C}$ 年代から2万6千年 B．P．以前に降下したとされてきた（庄子ほか 1983）。
鳴子一柳沢テワラ莌と鳴子一哥坂デフラ層は，䲧子カルデラ起源で火砕流堆皘物お よび降下火山灰層•軽石層のユニットから構成される（早田 1984）。火砤流の堆積面は江合川流域に広い台地を形成する。馬場堌A遺跡において鳴子一柳沢テフラ層の上面や鳴子一柳沢テフラ層と偏子一荷坂テ フラ層に挟まれた層準に前期旧石器が出上 している（東北歴史資料館•石器文化談話会 1986）。これら2つのテフラ屏に対し て ${ }^{14} \mathrm{C}$ 年代，熱ルミネッセンス年代，フィ ッジョン・トラック年代からそれぞれ年代値が求められてきた（表1）。しがし鳴子一柳沢テフラ層で 4 万年 B．P．～6万3千年 B．P．（市川 1983，悬水 1983，中井 1988），鳴子一荷坂テフラ層で 4 万 1 千年 B．P．～

7 万 3 千年 B．P．（Omoto 1983，市川 1983，中井 1988）と同一テフラに対して得られた年代値に大きな幅があった。

北原火山灰㞓と一迫軽石層 は，給源火山がともに不明であ るものの宮城県北西部一帯で認 めることができる灰色の細粒火山灭むよび降下軽石層である （早田 1988）。馬場壇A遺跡に おいて北原火山圧莌と一迫経石莌に㣣まれた層準むよび一迫経石層下位に前期旧石器が出土し ている（東北歴史資料館•石器

图3 宮城県中部のデフラ柱状図
台ノ原段丘むよび青葉山段丘の柱状図は，それぞれ仙台市鹿野 と仙台市青葉山B進踪におかて観察
年代，フィッション・トラック年代は，10万8千年 B．P．～14万6千年 B．P．の間の値を示している（市川 1986，興水 1986，1988）。

III．宮城県中•北部に認められる細粒ガラ ス質火山灰

現地調査に於いては，広域デフラの可能性がある細粒ガラス質火山灰について岩相とローカルな示標テフ ラとの居序関係を記載した。以下地域ごとに述べる。宮城県中部
仙台西方約 15 km にある川崎町安達の露頭 Loc． 1 （図 2）においては，蔵王火山起源の川崎スコリア層 と安達火山を給源とする愛島軽石屇に挗まれた褐色風化火山圧土中に辟厚 4 cm の橙色 ガラス質細粑火山灭 （Kw 1）がパッチ状に認められる（図3）。川崎町川内 の Loc． 2 （図2）にむかては，川崎スコリア屏上位 の褐色火山灰土中に屏厚 2 cm の黄色ガラス質細粒火山灰（Kw 2）がパッチ状に認められる（図 3）。

宮城県北部

鬼首の江合川最上流部（図4）には，中～紐粒砂層 から粘土層で構成される未固結の細粒堆積物が認めら れる。この細絃堆積物は，従来，鬼首湖成層（加藤•島田 1953，小元 1964，Yamada 1972）と㭔ばれ てきた細粒堆積物を不整合で覆っている。この細粒堆積物を切る Loc． 3 において上下 2.5 m の堆積物中に，

図4 鬼首における広堿テフラ産出地点 （Loc．3，4）と周辺の地形使用した地形図は，国土地理院箟行 $1 / 25,000$「軍沢」図幅（NJ－54－20－7－2）括よび「鬼首」図幅（ NJ －54－20－8－1） 4枚のガラス質火山灰層（上位よりOnk 1－1～1－4）が挑まれている（図5）。Onk 1－1は層厚5cm の桃白色火山灰層である。Onk 1－2は莌厚 4 cm の灰白色火山灰菌で，下部に火山豆石が認められる。火

図5 宫城県北部のテフラ柱状図

図6 一遜町十文字における広域テフ ラ産出找点（Loc．5）と周辺の地形
使用した地形図は，国土地理院発行 $1 / 25,000$
「岩ケ畸」图幅（NJ－54－20－4－1）

山豆石の最大長釬は 8 mm である。Onk 1－3は層厚 4 cm の自色火山熷，Onk 1－4は層偮 8 cm の白色火山灰層で，ともに上部に二次堆積層をのせる。この二次堆積層には周辺に厚く分布する池月テフラ層，花山火砕流堆積物（早田 1988）起源の火山ガラスを混 ビえる。

Loc． 3 から 1.5 km 下流側の Loc． 4 では，有機質 な泥質堆積物中に6枚のガラス質細粒火山灰層（上位 よりOnk 2－1～Onk 2－6）が認められる（図5）。 Onk 2－1 は層原 22 cm の淡黄灰色の細粒砂状火山灰苟 で，本火山灰層を含を堆積物は，地滑り移動ブロック として下位の層準を覆う。Onk 2－2 は層厚 3 cm の青灰色火山灰層である。Onk 2－3は層厚 10 cm の白色火山灰層である。Onk 2－4，Onk 2－5 およびOnk 2－ 6 はそれそれ層厚 $1 \sim 2 \mathrm{~cm}$ の灰白色火山灰莌である。
鬼首から東へ約 10 km 離えた一迫町十文字付近の Loc． 5 では北原火山厕層と一迫経石屈に挗まれた裼色火山灰土中に細粒ガラス質火山灰（ $\mathrm{Jm}-1$ ）がパッ チ状に認められる（図5，図6）。

鳴子町•川渡の東北大学付属農場北（Loc．6）では偏子鸄沼一上原テフラの下位に細粒ガラス質火山灰 （Kt－1）が認められる（図5，図7）。な抽，鳴子鳰沼一上原テフラの挑まれる褐色火山灰土は黒ボク土 に覆われるが，その黒ボク土直下に，約 1 万年 B．P．に降下した肘折軽石の降灰層準あることが知られて いる（庄子ほか 1983）。

偏子の西 7 km の位置にある宮城•山形県境付近の最上町堺田（Loc． $7:$ 図 5，図8）では，湘沢火碑

流堆積物を不整合に覆う泥炭屇中に，層厚 3 cm の白色細粒ガラス質火山灰層（ Sk － 1）が認められる。

IV．細粒ガラス質火山灰の広域 テフラへの対比

広域テフラは，珪長質マグマに由来する巨大火础流やブリニー式噴火などの多量の本質物質の噴火に起源を持ち，遠隔地にま で達する細粒の火山ガラスを主体とする （町田•新井 1983）。このため広城テフラ の対比•同定に際して，火山ガラスの形態的特徵の記載，屈折率測定及び主成分分析 は有効な手法となる。本報告ではこれらの手法を用いて，採取した細粒ガラス質火山灰の対比•同定を行った。なね，火山ガラ スの屈折率は群馬大学の新井房夫先生におふ願いした。火山ガラスの主成分分析では，東北大学理学部青木研究室のエネルギー分散型EPMA（日立X560S•Kevex－Quantex 7000）を使用させていただいた。この EPMA は，標準試料分析や多くの鉱物試料に対するトータル・ストイキオメトリの

図7 嗃子町川度における広城デフラの业出地点（Loc．6）と周辺の地形使用した地形図は，国土垗理院発行 $1 / 25,000$ 「花山湖」図幅（ $\mathrm{NJ}-54-20-4-1$ ）打よぴ「川度」図幅 （NJ－54－20－4－2）Loc． 6 は，小元（1966）の三条面上に位僕する。点検から分析値の信頼性•再現性が確認されている （東北大学理学部岩鎕教室藤巻和公博士談）。

主成分分析に供した火山ガラスは，火山灰を超音波洗浄器で水洗いし，風化物を除去したのち粒径 0．088－0．125mmのものについて実体瀕微鏡下で值接分離した。分離した火山ガラスは，エポキシ樹脂 で固定•研磨•炭素被膜の蒸着の後，加速電圧20 KV ，ビーム電流 $2 \times 10^{-10} \mathrm{~A}$ ，ビーム径約 $2 \mu \mathrm{~m}$ で 1試料につき 10 粒子ずつ分析した。 1 粒子あたりの計測時間は $400 \sim 500$ 秒である。

上述の細粘ガラス質火山灰について行った岩相記载，屈折率測定，主成分分析の測定•分析結果を表 2，表3に示した。主成分組成の各分析値は，10粒子の平均値ですべて無水に換算したあのにその標準偏差とともに記してある。一部の試料を除いて以下 の理由から MnO を除いた分析結果を示した。な甘゙ なら，分析に供した火山ガラス中の MnO の含有率 は低く（ 0.1% 以下），その変異俰数（山田•生司 1983）b大きいことからら MnO が対比の鍵となりに

図 8 宮城•山形県境•琾田における広城デフラの産出地点（Loc．7）と周辺の地形
使用した地形図は，国土地理院発行 $1 / 25,000$「鳴子」图楅（NJ－54－20－8－2）および「羽前赤倉」図福（NJ－54－20－8－4）

表2 綀粒ガラス質火山灰の岩相記蔵

	筥頭位愦	テフラ	䤸物組成	火山ガラスの特徴	尻 折 㚔
中	Loc． 1 （川崎时安達）	Kw－1	vitric（ho，mt，opx）	bw 含有色ガラス	g1 ：1．507－1．510
部	Loc． 2 （川峰町川内）	Kw－2	vitric	$\mathrm{bw}>\mathrm{pm}$	$\mathrm{gl}: 1.499-1.501$
北部	Loc． 3 （鹪子朾鬼首）	Onk1－1 Onk1－2 Onk1－3 Onk1－4	vitric（ho，opx，au） vitric（opx） vitric（bi＞ho，opx） vitric	bw 含有色ガラス pm pm $\mathrm{pm}>\mathrm{bw}$	$\begin{aligned} & \mathrm{gl}: 1.509-1.512 \\ & \mathrm{gl}: 1.500-1.502 \\ & \mathrm{gl}: 1.500-1.503 \\ & \mathrm{gl}: 1.496-1.498 \end{aligned}$
	Loc． 4 （嗎子町鬼首）	Onk2－1 Onk2－2 Onk2－3 Onk2－4 Onk2－5 Onk2－6	vitric（opx，ho，bi） vitric（bi＞ho，opx） vitric vitric qt, pl（opx） qt，pl（opx）	$\begin{aligned} & \mathrm{pm} \\ & \mathrm{pm} \\ & \mathrm{pm}<\mathrm{bw} \\ & \mathrm{pm} \\ & \mathrm{pm} \\ & \mathrm{pm} \end{aligned}$	$\begin{aligned} & \mathrm{gl}: 1.502-1.505 \\ & \mathrm{gl}: 1.500-1.503 \\ & \mathrm{gl}: 1.496-1.498 \\ & \mathrm{gl}: 1.527-1.530 \\ & \mathrm{gl}: 1.505-1.508 \\ & \mathrm{gl}: 1.505-1.508 \end{aligned}$
	Loc． 5 （一迫町十文字）	Jm－1	vitric（opx，bi）	pm	gl ：1．502～1．504
	Loc． 6 （啘子町川度）	Kwt－1	vitric（opx，au，mt）	$\mathrm{bw}>\mathrm{pm}$	gl ：1．499－1．501（1．500）
	Loc． 7 （最上町䍝田）	Sk－1	vitric	$\mathrm{bw}>\mathrm{pm}$	gl ：1．499－1．501（1．500）

くいからである。さらに，エネルギー分散型 EPMA の特性として，含有率が 0.1% 以下と低い成分につ いて精度の高い測定には計測時間を長く取る必要があり，限られた分析機器借用時間内での効率を考慮し たからである。

これらの細粘カ゚ラス質火山灰を対比するため，宮城県中•北部の示標テワラねよび後期更新世の広域テ フラ11の岩相記載と主成分組成を表に示した（表4，5，6，7）。テフラの岩相記載は，新井•町田 （1980），町田ほか（1984），町田（1986），Arai et al．（1986）に従った。主成分組成は筆者らのオリジナ ルなデータで，上記の方法で分析した。表に示した各テフラの主成分組成は，一部のものを除いてそれぞ れ固有の組成を示す（表5，7）。各成分とも組成が類似する鳴子一柳沢テフラ層と鳴子一荷坂テフラ層す よび恵庭－a 軽石と支忽降下軽石－1の2組についても，各テフラの鋶物組成や鉱物の屈折率を比較すれば同定可能である（表4，6）。このようにテフラの同定に際して，岩相と主成分組成を組み合わせることが有効と考え作業を進めた。その結果，㕸良 T n 火山灰（AT），阿蘇 4 火山灰（Aso－4），御岳第 1 軽石 （On－PmI），洞全火山灰（Toya）に対比されるテフラを認めることができた。以下各広域テフラに対比さ れる細粒ガラス質火山灰（試料名）と対比の根抛を述べる。

给良 Tn 火山圧（AT）
$\mathrm{Kw}-2, \mathrm{Kwt-1}, \mathrm{Sk}-1$ は，屈折率が $1,499-1.501$ の薄いバブルウオール型火山ガラスからなる。主成分組成は SiO_{2} が $77.5 \sim 78.0 \%, \mathrm{~K}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}$ が 7% と高く， TiO_{2} が $0.09 \sim 0.11 \%, ~ \mathrm{Al}_{2} \mathrm{O}_{3}$ が $12.91 ~$ 13.16% と低い。このためこれらの火山灰は始良 Tn 火山灰（AT）に対比される。

阿蘇 4 火山灰（Aso－4）
Kw－1 抆よび Onk1－1は，ともに有色のバブルウォール型火山ガラスを含み，火山ガラスの屈折率は

表 3 細粒火山灰（火山ガラス）の主成分組成

テフラ		SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	Total
Kw－1	M	72.70	0.35	15.62	1.44	0.04	0.54	1.09	4.76	3.46	100.00
	SD	0.22	0.02	0.17	0.01	0.01	0.03	0.03	0.04	0.32	
Kw－2	M	77.27	0.09	12.87	1.05	．．．．	0.47	1.09	3.42	3.75	100.00
	SD	0.31	0.01	0.12	0.04	．．．．	0.01	0.01	0.13	0.10	
Onk 1－1	M	71.78	0.37	15.50	1.46	0.06	0.55	1.05	4.89	4.34	100.00
	SD	0.18	0.02	0.14	0.03	0.02	0.02	0.03	0.09	0.18	
Onk1－2	M	78.36	0.08	13.17	1.12	．．．．	0.31	1.04	1.96	3.96	100.00
	SD	0.22	0.01	0.08	0.05	\cdots	0.06	0.13	0.09	0.22	
Onk1－3	M	75.44	0.18	13.91	1.09	．．	0.57	1.32	3.82	3.67	100.00
	SD	0.80	0.02	0.44	0.06	．	0.12	0.10	0.14	0.34	
Onk1－4	M	78.26	0.07	13.43	0.79	\ldots	0.28	0.40	2.97	3.79	99.99
	SD	0.53	0.03	0.06	0.04	．．．．	0.01	0.01	0.10	0.61	
Onk2－1	M	75.84	0.05	14.45	0.45	．．．	0.38	0.66	4.12	4.06	100.01
	SD	0.29	0.02	0.12	0.04	\ldots	0.05	0.03	0.08	0.36	
Onk2－2	M	75.14	0.12	14.32	0.89	．	0.46	1.42	3.66	3.98	99.99
	SD	0.45	0.02	0.30	0.05	\cdots	0.02	0.28	0.14	0.13	
Onk2－3	M	78.17	0.06	13.55	0.84	．．．．	0.33	0.39	2.97	3.70	100.01
	SD	0.50	0.01	0.08	0.04	．．．．	0.05	0.02	0.11	0.47	
Onk2－4	M	70.17	0.56	15.43	3.83	\ldots	1.41	3.74	1.02	3.84	100.00
	SD	0.60	0.03	0.19	0.13	．	0.14	0.11	0.05	0.56	
Onk2－5	M	76.50	0.16	13.59	1.96	．	0.64	2.00	1.25	3.91	100.01
	SD	0.85	0.02	0.29	0.63	\ldots	0.29	0.36	0.08	0.20	
Onk2－6	M	76.78	0.15	14.03	1.70	\ldots	0.50	2.05	1.17	3.61	99.99
	SD	0.29	0.02	0.03	0.15	．．．．	0.06	0.07	0.05	0.51	
Jm－1	M	75.54	0.20	13.95	1.11	\cdots	0.57	1.36	3.78	3.49	100.00
	SD	0.17	0.02	0.22	0.02	\ldots	0.05	0.03	0.07	0.32	
Kwt-1	M	77.24	0.10	12.91	1.13	\ldots	0.36	1.02	3.58	3.66	100.00
	SD	0.29	0.02	0.11	0.08	．．．．	0.04	0.03	0.09	0.28	
SK-1	M	78.26	0.11	13.12	1.22	0.03	0.34	1.12	3.32	2.47	99.99
	SD	0.34	0.02	0.13	0.04	0.01	0.05	0.02	0.21	0.23	

1 試料あたり 10 粒子の平均值と㯲华偏羑 M ：平均値 SD ：悪準偏差
1．509－1．512 と非常に高い。主成分組成は， SiO_{2} が 72% 前後と低い。これに対し TiO_{2} が $0.35 \sim 0.37 \%$ ， $\mathrm{Al}_{2} \mathrm{O}_{3} \not$ が $^{2} 5.5 \sim 15.62 \%, ~ \mathrm{~K}_{2} \mathrm{O}+\mathrm{Na} \mathrm{O}$ が 9% 以上と高い。特に $\mathrm{K}_{2} \mathrm{O}$ が 4.8% 前後と分析試料中最も高 い。以上の特徵から，これらは阿薬 4 火山灰（Aso－4）に対比される。

御岳第1鞋石（On－PmI）
Onk 1－3，Onk 2－2，Jm－1は，黑雲母，角閃石およひ裓維状軽石型火山ガラスを含む火山灭である。火山ガラスの尾折率は1．502－1．504である。主成分組成は， SiO_{2} が 75% 強， MgO と CaO がそれぞれ 0.5% おょよび 1.4% 前後と中間的な値を示すことに対し， $\mathrm{Al}_{2} \mathrm{O}_{3}$ が 14% 前後， $\mathrm{K}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}$ が $7 \sim 7.5 \%$ 前後 と高めである。以上の特徴から，これらは御岳第1軽石（On－PmI）に対比される。
洞倠火山灰（Toya）
Onk 1－4，Onk 2－3は，屈折率1．496－1．498の繊維束状の軽石型および少量のバブルウォール型火山

$$
-47-
$$

表4 宮城県中•北部の示標デフラの岩相記载

示標テフラ	鉱物組成	$\begin{aligned} & \hline \text { 火山がラ } \\ & \text { スの形態 } \end{aligned}$	屈 折 监
川崎スコリア（Z－K）爱高軽石（K－MD）	$\begin{aligned} & \mathrm{opx}>\mathrm{cpx} \\ & \text { cum ; qt } \end{aligned}$	pm	$\begin{aligned} & \text { opx }(\gamma): 1.700-1.704 \\ & \mathrm{gl}: 1.504-1.507(1.505-1.506) \\ & \text { cum }\left(\mathrm{n}_{2}\right): 1.660-1.665 \end{aligned}$
唯子激沿－上原テフラ （NK－U）	$\mathrm{opx}>\mathrm{cpx}=\mathrm{mt}$	pm	$\begin{aligned} & \mathrm{gl}: 1.492-1.500 \\ & \text { opx }(\gamma): 1.711-1.715 \end{aligned}$
肘折軽石 (Hj)	$\mathrm{opx}>\mathrm{ho} ; \mathrm{qt}$	pm	$\begin{aligned} & \mathrm{gl}: 1.499-1.501 \\ & \text { opx }(\gamma): 1.712-1.714 \\ & \text { ho }\left(\mathrm{n}_{2}\right): 1.668-1.671 \end{aligned}$
鳴子－柳沢テフラ $(\mathrm{N}-\mathrm{Y})$	opx＞ho，mt（bi，cpx）；qt	$\mathrm{pm}>\mathrm{bw}$	$\begin{aligned} & \mathrm{gl}: 1.501-1.503 \\ & \text { opx }(\gamma): 1.717-1.722(1.719) \\ & \text { ho }(\mathrm{n} 2): 1.673-1.676 \end{aligned}$
喎子－荷坂テフラ $(\mathrm{N}-\mathrm{N})$	$\mathrm{opx}>\mathrm{mt}: \mathrm{qt}$	pm	$\begin{aligned} & \mathrm{gl}: 1.500-1.502(1.501) \\ & \text { opx }(\gamma): 1.724-1.728 \end{aligned}$
北原火山圧（Kt）	poor（mt＞opx，cum）	pm	$\mathrm{gl}: 1.499-1.502$
一迫軽石（IcP）	$\mathrm{opx}>\mathrm{mt}$	pm	opx（r）：1．728－1．733

ARAI et al．（1986）による
表 5 宫城県中•北部の示標テフラ（火山カララス）主成分組成

示標テフラ	武料探取地		SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	$\mathrm{K}_{2} \mathrm{O}$	Na 2 O	Total
愛島柽石(K-MD)	川畸町安達	M	76.94	0.12	14.47	1.01	．\cdot ．	0.61	1.79	1.27	3.88	100.00
		SD	0.53	0.02	0.44	0.03	．．．．	0.06	0.07	0.04	0.22	
时折軽石 （ Hj ）	宮峆町台の原	M	77.79	0.16	12.76	1.05	．．．．	0.44	1.09	3.10	3.61	100.00
		SD	0.77	0.05	0.38	0.01	．．．．	0.20	0.11	0.12	0.85	
$\left\|\begin{array}{l} \text { 鳴子渴沼-上原 } \\ テ フ ラ(N K-U) \end{array}\right\|$	嗗子町上ノ原	M	77.98	0.22	12.28	1.22	．．．．	1.01	1.59	1.47	4.23	100.00
		SD	0.30	0.01	0.12	0.04	\ldots	0.01	0.01	0.10	0.13	
$\begin{aligned} & \text { 鳴子-湘沢 } \\ & \text { フラ } \\ & \text { フ } \end{aligned}$	岩出山町安沢	M	78.11	0.17	12.98	1.28	．．．．	0.43	1.52	1.93	3.57	99.99
		SD	0.40	0.03	0.41	0.07	．．．．	0.08	0.05	0.04	0.12	
鸣子－荷奴テ$\neg ラ(\mathrm{~N}-\mathrm{N})$	岩出山町安讯	M	78.01	0.12	12.93	1.29	\ldots	37.0	1.28	1.88	4.12	100.00
		SD	0.33	0.01	0.15	0.02	．．．．	0.03	0.03	0.04	0.34	
北原火山灰 （Kt）	一遍町十文宇	M	77.61	0.07	13.37	0.61	．．．．	0.32	0.70	3.89	3.43	100.00
		SD	0.32	0.02	0.14	0.03	．．．．	0.05	0.03	0.05	0.33	
$\begin{gathered} \text { 一迫轻石 } \\ (\mathrm{IcP}) \end{gathered}$	一迫町十文	M	76.99	0.15	13.07	1.93		0.53	1.86	1.21	4.26	100.00
		SD	0.41	0.02	0.15	0.05		0.07	0.04	0.02	0.40	

1 試料あたり10柆子の平均值と標準偏差 M ：平均值 SD ：溍準偏差

ガラスを含む。主成分組成は， SiO_{2} が 78% と高く， TiO_{2} が $0.06 \%, \mathrm{MgO}$ が $0.2 \%, \mathrm{FeO}$ と CaO が 1 $\%$ 以下と他の火け灰に比べ低い。 2.9% 程度の $\mathrm{K}_{2} \mathrm{O}$ に比べ $\mathrm{Na}_{2} \mathrm{O}$ が 3.7% 強と高い。以上の特徵からこれ らは洞爺火山灰（Toya）に対比される。

なね，Onk 1－2 は火山豆石を含むことから給源が近いローカルなテフラと予想された。火山ガラスの主成分組成では， SiO_{2} が 78% と高く， $\mathrm{K}_{2} \mathrm{O}$ が 2% 以下と低いことから鳴子一柳沢テフラ層あるいは鳴子一荷

$$
-48-
$$

枠囲み部は本資料における抜粋又は参照箇所を示す

表6 広域テフラの岩相記載

広域テフラ	鋶物組成	火山がラ スの形態	屈 折 啬
十和田 a 火山圧（ $\mathrm{To}-\mathrm{a}$ ）	pl ；opx ；cpx	$\mathrm{pm} \gg \mathrm{bw}$	$\begin{aligned} & \mathrm{gl}: 1.496-1.504 \\ & \mathrm{opx}(\gamma): 1.706-1.708 \end{aligned}$
$\begin{gathered} \text { 十和田-中掫火山庣 } \\ (\mathrm{To}-\mathrm{Cu}) \end{gathered}$	opx $>\mathrm{cpx}$	pm	$\begin{aligned} & \mathrm{gl}: 1.501-1.512 \\ & \mathrm{opx}: 1.705-1.708 \end{aligned}$
魅界ーアカホヤ火山灭 $(\mathrm{K}-\mathrm{Ah})$	pl ；opx，cpx，（ho，qt）	$\mathrm{bw}>\mathrm{pm}$	$\begin{aligned} & \mathrm{gl}: 1.508-1.514 \\ & \mathrm{opx}(r): 1.709-1.712 \end{aligned}$
恵庭－a軽石（En－a）	opx，cpx	pm	$\begin{aligned} & \mathrm{gl}: 1.496-1.500 \\ & \mathrm{opx}: 1.710-1.715 \end{aligned}$
始良－Tn 火山灰（AT）	pl ；opi，cpx，（ho，qu）	$\mathrm{bw}>\mathrm{pm}$	$\begin{aligned} & \mathrm{gl}: 1.498-1.501 \\ & \mathrm{opx}(\gamma): 1.728-1.734 \end{aligned}$
支忽降下軽石 1 （Spfa1）	$\mathrm{opx}>\mathrm{cpx}, \mathrm{ho} \mathrm{(ol)}$	pm	$\begin{aligned} & \mathrm{gl}: 1.501-1.505 \\ & \text { opx }: 1.729-1.735(1.715-1.724) \\ & \text { ho : } 1.688-1.691 \end{aligned}$
大山－合吉軧石（DKP）	pl ；ho，opx，bi	pm	opx（ γ ）：1．702－1．708
阿雏4火山灰（Aso－4）	pl ；ho，opx，cpx	$\mathrm{bw}>\mathrm{pm}$	$\begin{aligned} & \mathrm{gl}: 1.506-1.514 \\ & \mathrm{opx}(\gamma): 1.699-1.701 \\ & \text { ho }(\mathrm{n} 2): 1.685-1.691 \end{aligned}$
鬼界－葛原火山圧 （ $\mathrm{K}-\mathrm{Tz}$ ）	pl，qt ；opx，cpx	$\mathrm{bw}>\mathrm{pm}$	$\begin{aligned} & \mathrm{gl}: 1.496-1.500 \\ & \text { opx }(\gamma): 1.705-1.709 \end{aligned}$
御岳第1轾石 $(\mathrm{On}-\mathrm{Pm} \mathrm{I})$	ho，bi，（opx）（Rhyoritic）	pm	$\begin{aligned} & \mathrm{gl}: 1.501-1.503 \\ & \text { opx }(\gamma): 1.706-1.711 \\ & \text { ho }(1.708): 1.681-1.690 \end{aligned}$
阿多火山灰（Ata）	pl ；opx，cpx	$\mathrm{bw}>\mathrm{pm}$	$\begin{aligned} & \mathrm{gl}: 1.508-1.513 \\ & \text { opx }(\gamma): 1.704-1.708 \end{aligned}$
洞蓈火山灰（Toya）	pl，qt ；opx	$\mathrm{pm}>\mathrm{bw}$	$\begin{aligned} & \mathrm{gl}: 1.494-1.497 \\ & \text { opx }(\gamma): 1.756-1.761 \end{aligned}$
阿蘇3火戻（Aso－3）	pl，cpx，opx	pm，bw	$\mathrm{gl}: 1.516-1.518$

新井•町田（1980），町田ほが（1984），町田（1986）おらよぴ ARAI et al．（1986）による

坂テフラ層の可能性が考えられた。しかしOnk 1－2は，角閃石を含まないことおよび斜方鿇石の届折率 から鳴子一荷坂テフラ層に対比された。Onk 2－1，Onk 2－4に対比されるテフラは見いだせなかった。 Onk 2－5，6は，化学組成からいずれも一迫軽石層に一致するが，上位のOnk2－5は再堆積物質と考え られる。

V．宮城県中•北部に認められる広域テフラの層位と第四紀後期編年上の意義

以上のように 後期更新世の広域テフラに対比された各細粒ガラス質火山灰について，その産出莌位をま とめれば以下のようになる（図9）。

始良 Tn 火山灰（AT）は，宮城県中部で川崎スコリア層の上位に，同北部で鳴子鳰沼一上原テフラ層 の下位 ${ }^{2}$ ，鳴子一柳沢テフラ層の上位に抰在する（図 9 ）。

阿蘇 4 火山灰（Aso－4）は，宮城県中部で川崎スコリア層の下位，愛島軽石層の上位に挗まれ ${ }^{3}$ ，同北部 では鳴子一柳沢テフラ層の下位，鳴子一荷坂テフラ層の上位に認められる（図 9 ）。鳴子一荷坂テフラ層の

表 7 広域テフラ（火山ガラス）の主成分組成

域テフラ	試料採取圷		SiO_{2}				MnO		CaO	20	Na_{2}	Total
十和田 a 火山圧 （To－a）	十和田湖町胜連沼	M	75.94	0.33	13.45	1.80		62	2.14	1.4	． 30	100.01
		S	． 25	0.	0.05	0.04		0.04	0.06	0.0	0.30	
十和田一中掫火山灰（ $\mathrm{To}-\mathrm{Cu}$ ）	十和田湖町 宇梅部	M	74.98	0.40	14.11	2.31		0.90	2.79	1.32	10	100.01
		SD	． 43	0.03	0.15	0.13		0.08	0.14	0.04	0.44	
鬼界ーアカホヤ 火山灰（K－Ah）	西之表市島間	M	74.88	0.51	12.98	2.46		0.49	2.04	2.77	3.8	99.99
		S	． 2	0.02	0.16	0.06		0.02	0.10	0.03	0.22	
恵庭－a 軽石$(E n-a)$	日高町三岡	M	77.65	0.11	13.06	1.38		0.43	1.41	2.54	3.31	99.99
		SD	0.25	0.02	0.15	0.02		0.07	0.03	0.07	0.26	
姶良－Tn火山灰 （AT）	人戸火砕流	M	77.40	0.10	12.98	1.20	0.05	0.34	1.12	3.43	3.38	100.00
		SD	0.30	0.02	0.14	0.03	0.02	0.04	0.02	0.08	0.23	
支忽降下軽石 （Spfa 1）	閏別町富川	M	77.52	0.15	13.08	1.38		0.36	1.41	2.57	3.53	100.00
		SD	0.29	0.02	0.09	0.02		0.03	0.03	0.06	0.28	
阿赖 4 火山灰 （Aso－4）	竹田市戸上	M	71.71	0.38	15.51	． 44	0.05	0.54	1.04	5.02	4.32	100.00
		S	． 16	0.02	0.15	0.02	0.02	0.03	0.14	0.07	0.18	
鬼界－莴原火山灭（K－Tz）	国分市	M	79.37	0.17	12.82	0.96		0.50	1.0	3.03	2.1	100.00
		SD	0.26	0.03	0.11	0.03		0.04	0.05	0.04	0.30	
御岳第1軽石 （On－Pm I）	小山町生土	M	75.34	0.13	14.61	0.91		0.52	1.56	3.4	3.48	100.01
		S	0.90	0.02	0.22	0.03		0.10	0.03	0.15	0.79	
$\begin{aligned} & \text { 阿多火山灰 } \\ & \text { (Ata) } \end{aligned}$	国分市	M	73.96	0.40	13.84	2.06		0.70	1.83	3.16	4.09	99.99
		SD	0.18	0.03	0.12	0.06		0.10	0.06	0.20	0.05	
洞翁火山灰 （Toya）	江差町矽川	M	78.10	0.07	13.47	0.89	0.08	0.22	0.37	2.95	3.84	99.99
		SD	0.24	0.02	0.10	0.22	0.03	0.07	0.03	0.18	0.28	
阿蕬 3 火山灰 （Aso－3）	竹田市竹田高校	M	69.88	0.49	15.72	2.04	．．．	0.77	1.66	5.23	4.22	100.01
		SD	0.19	0.02	0.13	0.10		0.10	0.06	0.04	0.13	

直下には北原火山灰層があるが，さらにその下位に御岳第1軽石（On－PmI）が認められる4）（図9）。
洞符火山灰（Toya）は，御岳第1軽石（On－PmI）の下位，一迫軽石層の上位5》認められる（図9）。 このように本研究において，宮城県に分布する示標テワラと広域テフラとの層序関係を明らかにした結果，宮城県の示標テフラの層序まよびそれに基づく旧石器産出層位（東北歴史資料䬣•石器文化談話会 1986）を全国的な第四紀層序の枠組みに組み込むことができた。特に鬼首に打いて，On－PmIとToyaと の間に明確な上下関係を確認できたことは，東北日本北部の重要な示標テフラである Toya の層位を，南関東における後期更新世広域テフラ層序に組み込んだ点で意義がある。同時にこの成果は，これまで Aso -4 および Toya と海成面•段丘構成層との層位関係から組み立てられてきた東北日本北部における後期更新世海成面螎年（宮内 1988）をより磪かなぁのとする。すなわち東北地方北部沿岸の垂直隆起量の大 きな地域において，最終間氷期極相期海成段丘（ 12.5 万年 B．P．頃形成）の下位に発達する海成面（たとえ ば能代平野の畑谷II面，八戸付近の多賀台面）は，Toya に風成で覆われ，その下位の海成面が Aso－4 で風成で覆われることから10万年前頃めの離水と考えられていた（八木•宮内 1986，宮内 1988）。南関東に おいて既に明らかにされているとおりOn•PmI は，8万年前頃離水した小原台面構成層の最上部に挗まれ る（町田•鈴木 1971，町田ほか 1985）。従って On－PmI の下位にToyaがあることは，隆起地域にむ いてToya を風成でのせる最も下位の海成面が，12．5万年 B．P．（下末吉海進）以降 8 万年 B．P．（小原台

図9 宮堿県中•北部のテフラ總合柱状図
海進）以前に䧳水したことをより確実にする。

VI．まとめ

本研究で明らかになった事項を要約すれば次のようになる。
1．宮城県中•北部には始良 T n 火山灰（AT），阿蘇 4 火山灰（Aso－4），御乓第 1 軽石（On－PmI），洞部火山灰（Toya）の 4 枚の後期更新世広域テフラが，周辺火山起源の示標テフラに挗まれて存在する。特に鬼首では後期更新世の広域テフラである Aso－4，On－PmI，Toya がわずか 1.5 m の堆積物中に認め られる。現時点で鬼首は，On－PmI および Toya の分布のほぼ北限と南限になるが，各デフラの屏厚から みてより遠い地点にまで分布すると予想される？。
2．宫城県中部の後期更新世テフラ畓序は，上位より順に姶良 Tn 火山灰（AT），川耎スコリア莌，阿蘇 4 火山灰（Aso－4），愛島埾石層である。同北部では，上位より喝子潟沼—上原テフラ層，始良 Tn 火山灰（AT），鳴子一柳沢テフラ屇，阿蘇 4 火山灰（Aso－4），鳴子一荷坂テフラ屏，北原火山灰層，御岳第 1 軽石（On－PmI），洞竉火山灰（Toya），一迪㪑石層の順で認められる。この結果，宮城県中•北部におるけ るテフラ層序が全国的な第四紀後期のテフラ層序に組み込まれた。特に鬼首において，御岳第 1 軽石（On -PmI ）と洞爺火山灰（Toya）との間に明確な上下関係を確認できたことは，Toya の層位を，南関東にお ける後期更新世広域テフラ莌序に組み込んだ点で意義がある。またこれより東北地方北部沿岸の垂直䧝起量の大きな地域における 12.5 万年 B．P．から 8 万年 B．P．の間に発達した海成面の存在が支持される。

謝 辞

小論の作成に晸し，東北大学理学部岩鉱教室の青木謙一郎教骎には EPMA の使用をお許しいただい た。また同教室藤巻和宏博士には EPMA の使用に市たり直接御指導いただいた。群馬大学教育学部の新井房夫教授には，火山カラスの屈折率を測定していただいた。小䄖は，筆者の 1 人である早田の東京都立大学大学院在学中の研究に基づくところが大きく，その漈町田 洋教授にはご指導いただいた。現地調查

所の奥村晃史博士には，誡に有益なご批判ご討論をいただいた。以上の皆様にここに記して感㬚の意を表 します。
题後に1989年3月に東北大学理学部を退官された設笨 寛先生に小綸を捧げます。

注

1）今回発見した広城テフラ以外に，対比の可能性のあるテフラとして分析したもの全てについてその結果を示した。

2）AT の上位にある鳴子潟沼一上原テフラ層は，第一近似的に 2 万年頃の噴出と考えられる。
3）Aso－4の下位にある愛島軽石埥は，第一近似的に $8 \sim 9$ 万年前の噴出と考えられる。
3）Aso－ 4 と On－Pm1との間の層準に認められる鳴子一荷坂テフラ層と北原火山層は，第一近似的に それぞれ $7 \sim 8$ 万年前の䁦出と考えられる。
4）一道㙍石層はその上位にToyaが認められ，馬場壇A遣跡に抽いてその下位に赤色土湲が発達して いる（山田ほか 1986）。従って一迫㹩石莌の噴出年代は，第一近似的に $10 \sim 11$ 万年前頃と考えられる。

5）一追軽石層の上下の層準で発見された旧石器の年代䚌は，最終間氷期頃にまで䩗ることになる。
6）直接的に10万年 B．P．旨の離水とする資料はないが，サンゴ礁地城で明らかにされた後期更新世海成段丘病年にあてはめるならその時期の海成段丘に対比される。
7）その後の塏査の結果，On－PmI の分布の北端は岩手県胆沢㒛状地であることが明らかとなった（早田 1989）。

文 䊇

新井房夫•町田 洋（1980）：日本のテフラ・カタログ1—西南日本～東北地方の第四紀後期示栢テ フラの岩石記載的研究．軽石学䨀䛑，6，65－76．
Arai，F．，Machida，H．，Okumura，K．，Miyauchi，T．，Soda，T．and Yamagata，K． （1986）：Catalogue for late Quaternary marker－tephras in Japan II－Tephras occurring in northeast Honshu and Hokkaido－．Geogr．Rep．Tokyo Metropol．Univ．，21，223－250．
市川米太（1983）：座散乱木遣跡とその周辺遣跡の熱ルミネッセンス年代，石器文化談話会編「座散乱木遭跡III」，95－96．

- 前期旧石器時代の研究一」，東北歴史資料䬼资料集，14，131－132．
- —（1987）：省葉山遺跡 B 地点の TL 年代．東北大学埋蔵文化射訶査年報，2，127－128．

板垣直俊（1980）：仙台周辺の 2 つの示標テフラについて。東北地理，32， 46.
——唯島正幸•寺戸恒夫（1981）：仙台およびその周辺地薄に分布する洪樠世末期のスコリア層。東北地理，33，48－53．
䈍沢㙏史（1985）：仙台市及び周辺に分布する愛島埾石とその深成岩質岩片について—噴出源の推定 と極端に乏しいトーナル岩の存在一，岩雄会誌，80，352－362．
 ついて，岩鉱会䓽，39，190－194．
舆水達司（1983）：座散乱木遣踣とその周辺のフィッション・トラック年代。石器文化緂話会螎「座散乱木遣跡III」，97－99．
会編「馬場吵A遣跡 I—前期旧石器時代の研究—」，東北歴史資料館資料集，14，133－138．

- （1987）：愛島軽石層のフィッション・トラック年代．東北大学埋藏文化財調查年報，2，132－133．
- —（1988）：騳場坆A造跡およびその周辺のフィッション・トラック年代．東北歴史資料館•石器文化談話会䌕「馬場縞A遣跡II—前期旧石器時代の研究—」，東北歴史資料䭔資料集，23，55－64．
町田 洋（1986）：地史を解統する上の觧莌となるテフラ層，相模原市地形•地質調査会䇶「相模原の地形•地質調査報告書」，第3報，4－7．
- —新井㞔夫（1983）：広城テフラと齐古学．第四紀研究，22，133－148．
- •鈴木正男（1971）：火山灰の絶対年代と第四紀後期の編年一フィッション・トラック法による試み。科学，41，263－270．
——新井房夫•百瀬 貧（1985）：阿䧰 4 火山灭——分布の広域性と後期更新世示標層としての意

㬢．火山，第 2 集，30，129－145．

- ———宫内萘裕•奥村晃史（1987）：北日本を広く黄ら洞節火山灰。第四紀研究，26，129－145．
- ———小田静夫•遠藤邦彦•杉原重夫（1984）：テフラと日本考古学—考古学研究と關倸する テフラのカタログー。渡辺直経福「古文化財に関さる保存科学と人文•自然科学」，86，5－928．
松本英二•前田保夫•竹村忠二•西田史朗（1987）：始良 Tn （AT）の ${ }^{44} \mathrm{C}$ 年代．第四紀研究， 26 ， 79－83．
宫内崇裕（1988）：東北地方北部に扔ける後期更新世海成面の対比を槅年，地理䛨，61，404－422．
中井信之（1988）：放射性炭素年代測定結果の報告，東北歴史饻料館•石器文化談話会編「馬場冝A遣 II——前旧石器時代の研究——」，東北歴史资料馆資料集，23， 52.
小元久た夫（1964）：宫城県鬼首盆地の地形骙達史，東北地理，16，61－70．
——（1966）：宮城県鳥子盆地の地形発達史，地理評，39，521－537．
Омото（1983）：Radiocarbon dating using a low－background liquid scintillation counting sys－ tem．Sci．Rep．Tohoku Univ．，7th ser．，33，23－43．
佐藤高睹（1987）：青葉山遣踦B地点の火山灰の ESR 年代，東北大学埋蔵文化財詞㚗年報，2，129－ 130.

- —（1988）：旧石器時代の示標テフラ．日本第四紀学会講演要旨集，18，14－17．
- —（1989）：テフロクロノロジーによる前期旧石器時代逪物包含層の検討一仙台平野北部の造踪を中心に．第四衭研究，（投稿中）
庄子貞雄•山田一郎•高橋 正（1983）：座散乱木遺跡を中心とした遺跡土壌の土坽学的研究，石器文化談話会綃「坐散乱木造跡四」，80－94．
須藤 隆•䘦原 洋•佐川正敏（1985）：青案山 B 違跡の斎查成果。日本考古学協会第51回総会研究范表要后，13－14．
東北歴史資料館•石器文化锬話会（1986）：馬場壇A遗跡と層序，東北歴吏資料館•石器文化談話会編「馬場竩 A 遗跡 I——前期旧石器時代の研究——」，東北歴史资料館資料集，14，1－25．
宇井忠英•杉村 新•芝橋敬一（1973）：时折火碎流堆積物の ${ }^{14} \mathrm{C}$ 年代．火山，第 2 集，8，171－172．八木沿司•宮内崇镕（1986）：能代平野北部に打ける洞維火山灭の発見とその編年学上の意味，東北地理，38，236－237．
Yamada，E．（1972）：Study on the stratigraphy of Onikobe area，Miyagi Prefecture，Japan－ with special reference to the development of the Onikobe Basin－．Geol．Surv．Japan Bull．， 23，217－231．
山田一郎•庄子員雄（1983）：火山ガラスの性質ならびに火山帯とテフラの性質との閣係について，日本土壤肥料学雜誌，54，311－318．

資料集，14，118－122．
米地文夫•菊池缯一（1966）：尾花沢軽石層について，東北地理，18，23－28．
（1989年5月16日受付，1989年10月16日受理）

8）K．Shirasuka and G．Yamaguchi，Yogyo Kyokai． Shi 83，603－05（1975）．
9）A．M．Alper，R．N．McNally，P．G．Rible and R．C． Doman，J．Am．Ceram．Soc．45，263－68（1962）．
10）A．M．Alper，R．N．McNally，R．C．Doman and F．G． Keihn，J．Am．Ceram．Soc．47，30－3（1964）．
11）B．Phillips，S．Somiya and A．Muan，J．Am． Ceram．Soc．44，167－69（1961）．

12）山口悟郎，白須賀公平，せヲミックス 6，955－57（1971）．
13）大庭宏，杉田清，島田庇平，臫火物 18，10－22（1966）．
14）宗宮面行，能火物 24,39 （1972）．
15）S．M．Zubakov and A．L．Dyukov，Ogneupory No． 9，54－60（1972）．
16）M．E．Fine，Am．Ceram．Soc，Bull．51，510－15 （1972）．
（9／25／1975 変村）

論文•Paper

シラスを主原料とする結晶化ガラス

桓松修ニ・井上耕三•松田応作
 （九州工業技衔傌験所）

Crystallized Glasses Produced by the Use of a Volcanic Ash＂Shirasu＂

By

Shuji TSUNEMATSU，Kozo INOUE and Osaku MATSUDA
（National Industrial Research Institute of Kyushu）

Abstract

＂Shirasu＂is a sort of volcanic ash broadly deposited in southern Kyushu and consists mostly of glassy alumino－silicate．

In this paper，the authors describe the crystallizing behavior of some glasses produced by using＂Shirasu＂as a raw material without addition of any crystal nucleus and discuss the correlations between the structures of crystallized glasses and their strengths．

The results obtained are summarized as follows： 1．Heat treatments of the glasses in the systems＂Shirasu－CaO－MgO＂，Shirasu－CaO－ZnO＂and ＂Shirasu－ $\mathrm{CaO}-\mathrm{MgO}-\mathrm{ZnO}$＂caused the formation of the crystals of diopside，hardystonite－β－ wollastonite and diopside－hardystonite－β－wollastonite respectively．An unknown crystal was detected in each of almost all of the specimens．All the crystals grew from the surface to the inside of the glass specimens． 2．By the crystallization，the softening temperature of all of the glasses examined rose from about $870^{\circ} \mathrm{C}$ to about $1200^{\circ} \mathrm{C}$ and their hardness in Mohrs increased from 5 to 8 ． 3．The glasses in the systems＂Shirasu－CaO－ MgO^{\prime}＂and＂Shirasu－ $\mathrm{CaO}-\mathrm{MgO}-\mathrm{ZnO}$＂，in which diopside precipitated on heating，did not show an increase in strength by any crystallization procedure，whereas the strength of the glasses in the system＂Shirasu－CaO－ZnO＂heat－treated for 2 hours were 2 to 3 times as high as those of the original glasses respectively．As the heating time was further increased，however，their once increased strengths dropped rapidly， regaining their original values． 4．The high strengths achieved by crystallization were discussed in terms of the shape of the formed crystals，the processes of the crystal growth，the appearance of crystal grain boundary， etc．

［Received September 29，1975］

1．緒 暑
 ＂シラスとは，南九州に広く分布する厚い蛏石流（蛏石
 凝庣角䠌岩），降下軽石層むよびこれらの二次准皘層で，

第三紀から第四紀にかけて始良，阿多火山などから噴出
したるのである＂，と定義されている1）
従来，結晶化ガラスの製造法としては，結晶核形成剤

33 桓松修三ぼな
として $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}$ などを加え紫外線，ガンマー線を照射する方法， Pt, Ru あるいは $\mathrm{ZrO}_{2}, \mathrm{TiO}_{2}$ を用いる方法などがあるご，

シラスを主原料とし，これた $\mathrm{CaO}, \mathrm{MgO}, \mathrm{ZnO}$ など を添加して得られるガラスは，結晶核形成剤を添加する ことなく適当な熱処理によって結晶化する。
本報は，これらのガラス組成，熱処理によって生成す る結㫛の種類，結晶生成過程などと，得られた結晶化が ラスの物珄との関保について检討したものである。

2．実 駩 方 法

2.1 ガラス試料の撂製

ガラスの主原料として使用したシラスは，鹿児島県垂水市新城のシラス原侂をボールミルで約 20 時問粉砕し -149 と としたものである．表1 にその化学成分および鈜物組成を示方，ガラス劕と結晶質との分離は兵化亜鉛水溶液を用いる浮沈分離方法によった ${ }^{31}$ 。他の原料とし ては $\mathrm{CaO}, \mathrm{ZnO}$ および MgO を用いた。 CaO は市販 の試薬特級沈降性炭酸カルシウムをシリコニット電気炉 で $1100^{\circ} \mathrm{C}$ ， 2 時間焼成し鮦製した。 ZnO 怙よび MgO は，市販の試薬一䋊酸化亜鉛，試薬重質酸化マグネシウ ムをそれぞれ用いた。

表2に示す組成に間合したバッチ 2 kg をボールミル て 30 分間混合したものを高フルミナ坩堝に入れ，カン タルスーパー電気炉で $1400^{\circ} \mathrm{C}$ ， 2 時間加熱榕融し，水中 に投大急冷してガラスをつくった．そのガラスを，再度 カンタルスーパー電気炉で $1500^{\circ} \mathrm{C}$ ， 1 時間加熱熔融した のち，カーボンケースに流し込み電気炉で除歪みした。冷却後ガラスをダイヤモンドカッターで切断し，カーボ ランダム 800 番で研磨して $3 \times 5 \times 50 \mathrm{~mm}$ の大きさの棒状試験体を作成した。

2.2 示䔲熱分析

カ゚ラス試料の熱変化を調べるため理学電機製自記記録示差熱分析装直により示差熱分析を行った。基準物質と して $\leftarrow ー テ ル ミ ナ を$ 用いた。界㳑速度は $10^{\circ} \mathrm{C} / \mathrm{min}$ とし た。

2.3 結晶化のための熱処理

2.1 項に䔎べた方法によって作成した棒状ガラス試験体を，予め $700^{\circ} \mathrm{C}$ および $900^{\circ} \mathrm{C}$（これらの設定温度は 3.1 項参照）に設定した電気炬の均熱部に直き，それぞ れの温度に一定時間保持した後，さらに $5^{\circ} \mathrm{C} / \mathrm{min}$ で昇温し， $1000^{\circ} \mathrm{C}$ およぴ $1100^{\circ} \mathrm{C}$ て—定時間熱処理を行っ た．その熱処理条件を 表 3 に示す．熱処理の後，電気

Table 2．Chemical compsitions of Shirasu glasses （wt\％）．

No．	Shirasu	CaO	MgO	ZnO
1^{6}	70	20	10	0
2	70	20	0	10
3	70	25	0	5
4	70	20	5	5

Table 3．Heat treatment conditions for glass samples．

No．	Holding	Heating rate	Holding	
1	$700^{\circ} \mathrm{C}$	0.5 h	$5 \mathrm{C} / \mathrm{min}$	$1000^{\circ} \mathrm{C} 2,6,24,48 \mathrm{~h}$
2	$* 2 *$	$*$	$*$	$*$
3	$* 0.5 *$	$*$	$1100^{\circ} \mathrm{C}$	$*$
4	$* 2 *$	$*$	$*$	$*$
5	$900 \mathrm{C}^{\circ} 0.5 *$	$*$	$1000^{\circ} \mathrm{C}$	$*$
6	$* 2 *$	$*$	$*$	$*$
7	$*$	$0.5 *$	$*$	$1100^{\circ} \mathrm{C}$
8	$* 2 *$	$*$	$*$	$*$

炉より取り出し空邻したものを結晶化ガラスの曲げ強度用試験体とした。

2.4 曲げ強度

曲げ強度試験は，中央上部かっち荷重を加える三点何重法で行った．支点間距䧺を 3 cm としっ，次式により曲げ強度（ σ ）を求めた。

$$
\sigma=3 l P / 2 b h^{2}
$$

$\sigma:$ 曲河強度 $\left(\mathrm{kg} / \mathrm{cm}^{2}\right), l:$ スパン $(\mathrm{cm}), P:$ 破噮荷重（ kg ），$b:$ 幅（ cm ），$h:$ 厚さ（ cm ）

曲げ強度（o）は試験体5简の平均値である。

2.5 X線回折

 るため結晶化ガラスのX線回折を行った。これたは理学電機製自記X線回折装嘼（ CuK_{α} 線， $35 \mathrm{kV}, 15 \mathrm{~mA}$ ）を
砕したものを用いた。

2.6 顥微鏡覒察

結晶化ガラスを 3% 弗酸水溶液で約 1 分間エッチング し，反射型光学顕微鏡で觬察した。

2.7 結晶化ガラスの特性

結晶化によるガラス特性の変化を知るため結晶化前後 の比重，硬度および軟化温度を譋へた。
結晶化ガラスは，ガラス試料を表3のNo． 8 の条件 で 48 時問熱処理したるのを用いた。比重は粒度 $250 \sim$ 425μ としたものを用いっピクノメータによって眮定し た。硬度測定にはヒース硬度計を用いた。軟化温度はり トルトン軟化点測定器によって測定しだ，

Table 1．Chemical composition and mineral component of the Shirasu．

Chemical composition（wt\％）												Mineral component（wt\％）	
$\widetilde{S i O}_{2}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	CaO	MgO	$\mathrm{Fe}_{2} \mathrm{O}_{4}$	TiO_{2}	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{4} \mathrm{O}_{5}$	MnO	ig．loss	Total	Volcanic glass	Crystals
72.73	13.69	1.44	0.23	1.82	0.18	3.46	3.42	0.01	0.06	3.16	100.2	78.55	21.45

[^9]
3．実 联 結 果

3.1 示筀熱分析

一例として試料 No． 3 の示善媻分析結果を 図 1 に示す。 $703^{\circ} \mathrm{C}$ の吸熱はガラスの転移によると者えられる ＂． $906^{\circ} \mathrm{C}$ の発䰻は結晶析出による発熱である，これは， $910^{\circ} \mathrm{C}$ で熱処理したガラスのX線回折によって θ－wolla－ stonite 功析出していることで裏付けられる。他のガラ ス試料の転移温度およひ結晶析出温度も近似していた。

各ガラス武料の結唱化過程を肉眼むよび顥微続によ。 て饋察した，そのいくつかの結果を図2～5に示す。

Fig．1．Differential thermal analysis of the ＂Shirasu＂glass．

图 2 は試料 No． 4 （試料の大きさ，約 $15 \times 10 \times 15$ mm ）を蕉処理した後ダイヤモンドカッターで切断した断面であり，結品層が試料表面から内部に向って厚くな っている状熊を示す。なねる，試料 No． 3 の熟处理条件 3，4，7 およよび 8 以外は，すべて図 2 と類似の結唱層生成過程をとった。

图 3～5 はガラス試料を熱処理することにより生成し た結晶斯面についての顕微鏡镄察結果の中かっら特微的な bのを示したものである，図 3～5 の中で，たとえば試料 No． 1 を表3に示した警処理条件 4 で処理した も のは，以下［1－4］のように記す。
たとえば 図 3 に示す［1－4］では，すでた 2 時間で襍校状結昌層は試料内部まで生成しておるり，その後の時間

の経過に伴って結品粒界が明蹽になる。［4－7］について あほぼ同様の経過を示すが，針状結晶がやや大きく，樹枝状を呈する。一方，図4［2－5］および［3－5］の結晶 は，図 2 に示したと同様にガラス表面より成長し，熟処理2時間では結晶屇によってコーティングされた状態 となることが肉眼により親察された。［2－5］およよび［3－ 5］はガラス表面から内部に向って蓟枝状に成長した結唱層を示す。図5［2－7］では6時間以上経過するとそ れまでの針状結晶が微細な䉽子状結晶に変化し，［3－7］ ではよでに 2 時間で針状結㫛と粒子状結晶が混在した状態となる。
研磨による直線状の鲴いキズが多数認められたが，再加熱した試料にはなめらがになったきぁめて少数のキズが残在していた。

3.3 X線回折

各ガラス試料を $900^{\circ} \mathrm{C}$ 如ら $5^{\circ} \mathrm{C} / \mathrm{min}$ せ $1100^{\circ} \mathrm{C}$ まで昇温し， $1100^{\circ} \mathrm{C}$ で 48 時間保挴し，得られ充結㫛化力 ラスのX線回折図を 図6 に示す。試料 No． 1 は dio－ pside（ $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$ ）と 20 が 27.8° の未知結晶 （この結唱は現在不明），馱料 No． 2 は hardystonite （ $2 \mathrm{CaO} \cdot \mathrm{ZnO} \cdot 2 \mathrm{SiO}_{2}$ ），試料 No .3 は β－wollastonite（ β－ $\left.\mathrm{CaO} \cdot \mathrm{SiO}_{2}\right)$ ，hardystonite＊よよび未知絡唱，試料 No． 4 は diopside，hardystonite ざよび末知結品がそれぞえて認 められた。

つぎに，結㫛化により高強度を示すことのある試料 No． 2 およひびNo． 3 の結晶化ガラスについてX維回折 を行い，熱処理条件と析出結晶の種類との関係について調べた．その結果を 図7および8に示す。図7［2－2］ によれば， 24 時問の熱処理によって hardystonite の結晶成長はほぼ終ったあのと見られる，出た，6時䦎以上 では時間の経過に伴い前郡末知結唱が成長した。［2－8］ の結㫛化ガラスは，2時閒であシャーブな hardystonite のビークが見られ， 2 時問から 48 時間までの回折ピー ク高さの差はほとんどない，この結品化ガラスには未知結品は認められなかった。図8［3－5］では，嫩处理2時間から6時間の間に β－wollastonite，hardystonite＊＊ び未知結晶が成長している。［3－7］では2時間でシャー プな β－wollastonite が見られるが，時間の経過と其に結唱ピークは小を くなり，逆に hardystonite が成長 している，また，24封間までめだた なかったた未知結晶が 48 時間ではか なり成長している。

3.4 結唱化による諸特性の変化

各結晶化ガラスの渚特性を表4 に示す。陚料No． 1 の結唱化前後 の比重差は鋩料中最も大きく，その

［4－7］：sample 4，heat－treatment condition 7
［1－4］：sample 1 ，heat－treatment condition 4

Fig．3．Photo－micrographs of crystallized glasses．

6 条（火山）—別添 1－130

Fig．4．Photo－micrographs of crystallized glasses

Fig．5．Photo－micrographs of crystallized glasses．

Heat treatment condition No． 8 Crystalline phases D ：diopside， $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$ W ：β－wollastonite，$\beta-\mathrm{CaO} \cdot \mathrm{SiO}_{2}$ H ：hardystonite， $2 \mathrm{CaO} \cdot \mathrm{ZnO} \cdot 2 \mathrm{SiO}_{2}$
Fig．6．X－ray diffraction patterns of the heat－ treated glasses．

軟化温度は結晶化前後において $873^{\circ} \mathrm{C}$ から $1200^{\circ} \mathrm{C}$ 以上 （測定器懪界 $1200^{\circ} \mathrm{C}$ ）となった。他の試料の㩾化温度の変化も，ほぼ近似したものであった，モース硬度ばいず， れの試料も，結晶化によって 5 から 8 に向上した。

3.5 曲げ強度

結昌化ガラスの曲け強度を図9に示す。試料 No．1 およよび No． 4 は全般的に低強度で，軗処理条件による強度変化は小さい。試料 No． 2 および No． 3 について
 に相当）の曲ば強度は $700 \sim 800 \mathrm{~kg} / \mathrm{cm}^{2}$ であったが，何 れの熱処理条件にまるいても，熱処理 2 時間で曲げ强度は $1800 \sim 2700 \mathrm{~kg} / \mathrm{cm}^{2}$ に達するピークを示した。これは，結晶化のための再加熱を行わないガラスの $2 \sim 3$ 倍の値 である．その後の熟処理時間の経過に伴い，曲げ強度は全般的に低下の傾向を示すが，執料 No． 2 に限り熱処理条件 $3,4,7$ およひび 8 による結晶化ガラスは，一旦 $1000 \mathrm{~kg} / \mathrm{cm}^{2}$ 程度に強度が低下した後再び $2000 \mathrm{~kg} / \mathrm{cm}^{2}$程度まて增大した。

4．考 察

以下，結晶化ガラスの曲げ強度について考察する。
訆料No． 1 の結晶化ガラスでは，図3［1－4］に見ら れるように杵枝状の diopside の結晶粒界が発生したこ と，それに表4に示したように，結晶化前後の比重差

$$
(2-2)
$$

［2－2］Heat treatment condition No． 2

Fig．7．X－ray diffraction patterns of the heat－treated glass sample No． 2.

［3－5］Heat treament condition No． 5

［3－7］Heat treatment condition No． 7 Crystalline phases W：g－wollastonite，$g-\mathrm{CaO} \cdot \mathrm{SiO}_{2}$ H ：hardystonite， $2 \mathrm{CaO} \cdot \mathrm{ZnO} \cdot 2 \mathrm{SiO}_{2}$
Fig．8．X－ray diffraction patterns of the heat－ treated glass sample No． 3.

Table 4．Properties of crystallized glass and Shirasu glass．

	Shirasu glass				Crystallized glasst			
	No． 1	No． 2	No． 3	No． 4	No． 1	No． 2	No． 3	No． 4
Specific gravity	2.70	2.77	2.75	2.76	2.95	2.78	2.79	2.78
Hardness （mohrs）	5	5	5	5	8	8	8	8
Softening point（C）	873	868	875	870	$\begin{array}{\|c} \text { over } \\ \hline 1200 \end{array}$	1170	1190	over 1200

${ }^{+}$Heat treatment condition No． 8

＋Heat treatment condition for glass samples（Table 3）
Fig．9．Bending strength of the heat－treated glasses．

きたため低強度になったものと考えられる。
試料 No． 2 は熱処理条件 1，2， 5 および 6 のいずれ においても，熱処理 2 時間で最高強度を示した．これら の結唱はガラス表面より成長したが，2時間では内部ま で成長しておら音，觙験体は微細な結晶によってコーテ ィングされた状態であり，しかも結㫛化のための再加䋆 を行わないガラス表面に無数にあった侮は，結晶化した ガラス表面にはほとんどなくなっている，このことは再加熱によって，ガラスが㳄化流動化過程を経て結晶化し たためと思われる，また，結晶の方がガラスより一般に熱墟脹率が小さい，このため䉓気炉より取り出し，空冷 された状热では表面の結晶部分に圧絔応力が生ずること が考えられる＂，以上のようなことが高強度を示した原因と考えられる．前記熱処理条件におけるこのよらな強度変化は，試料 No． 3 について\＆，同樣の説明がなさ れよう．試料 No． 2 の熱処理 6 時間以上では強度が低下したが，これは内部に向って成長した結晶が針状に成長しているのと関係があるう。虫た，図7［2－2］に見 られる $2 \theta 27.8^{\circ}$ の未知結晶の成長と共に強度る低下し ているのあ見逃せない。热処理条件 $3,4,7$ および 8 に おいても， 2 時間から6時間にかけて強度は低下してい るが，以後増大している。これたついて考察すると，従来，高強度を示す結晶化ガラスは，その結晶形態が微細 な粒子状とされている ${ }^{3}$ ，このことから試料No． 2 につ いて 6 時間以上の強度増大は，图5［2－7］に示したよ 5に，6時間で内部まで成長した針状結晶が，以後徴細 な粒子状結晶に変化していることによると教えられる． また，6時間以上で強度が回後する段陼では，図7［2－ 8］に示されるように，未知結晶は認められで，結晶化前後の比重差が小さいために糨離，空洞化および変形な

枠囲み部は本資料における抜粑又は参照箇所を示す

どの現象も認められなかった。
試料 No． 3 を熱処理条件 7 で熱処理した場合には，熱処理条件 $1,2,5$ なよび 6 の場合ほど 2 時問がら 6 時閭にかけての柾站な強度低下はなかった。このことは図 5［3－7］に示すように，すでに2時間で微細な粒子状結㫛が生成していることと関保あるう。 この場合，図8［3 －7］のX線回折図を見ると，β－wollastonite のビークは時問の経過と共にやや小さくなり，逆に hardystonite，末知結晶のビークは伸びている，これが，その後の鸓度低下の原因と考えられる．試料 No． 3 について，熱処理条件5と7の 24 時間における曲げ強度を比較してみ ると，それぞれ約 $1000 \mathrm{~kg} / \mathrm{cm}^{2}$ および約 $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ で後者の強度は前者のそれの 2 倍であった．この時， 2θ 27.8° の未知結晶のビーク高さは図 8 に示されるよらに前者が後者の約 2 倍であり，未知結晶の強度におおぼす影響は大きいと考えられる．

陚料 No． 4 では，熱処理時間による強度変化はきわ めて小さかった。このことは，図3［4－7］の顠微鏡写真に示すように，時問䊹過による結晶形態の変化が少な いことと関連づけられる。

5．ま と め

1）本研究に使用したガラス試紏は，熱処理によって結㫛化し，試料 No． 1 では diopside，試料 No． 2 では hardystonite，試料 No． 3 では β－wollastonite と hardy－ stonite，試料 No． 4 では diopside，hardystonite および β－wollastonite が析出し，さらに試料 No． 2 の熱処理㭃件 $3,4,7$ および 8 以外の試料では， $2 \theta 27.8^{\circ}$ に未知結晶が生成した．これらの結晶は試料 No．3 の熱処理条件 $3,4,7$ および 8 以外の試料ではいずれもガラス表面から内部に向って成長した。
2）生成結晶に樹枝状の diopside を含さ試料 No． 1 おうび No． 4 は，結品化速度は早いが結㫛化えよる強

度増大は認められなかった。試料 No． 2 と No． 3 はい ずれも熱処理 2 時間で最高強度を示し，熱処理前のガラ ス強度の $2 \sim 3$ 倍となった。
3）諴料 No． 2 および No． 3 の結品化ガラスについ て最高強度を示したときの朒験体の状態は，その表面を結㫛層が杖杖っており，高強度を示した理由として表面圧縮応力の発生，表面の仵の消失などの効果が考察され た．試料 No． 1 は結晶化前後の比重差がとくに大きく変形，空洞の発生むよび結晶贋の㓱離などの現象と共に結晶紋界の成長なとが低験度の原因と考えられる。
4）試料 No． 2 の後熱処理温度が $1100^{\circ} \mathrm{C}$ の時に限 り，熱処理時間の経過に伴って一旦低下した強度が再び増大した。これは，針状の hardystoniteが粒状化して行 く事実と関你する bのと考えられる。
5）試料 No．1，No． 3 扔よび No． 4 には $2 \theta 27.8^{\circ}$ に未知棭唱が生成し，この結品の成長が著しい場合強度低下の現象が認められた。
6）い年れのガラス涶料も結唱化によってモース硬度 は 5 から 8 に增大し，軟化温度も約 $870^{\circ} \mathrm{C}$ から約 $1200^{\circ} \mathrm{C}$ に向上した・

文 献

会＂シラス＂（1970）p．1～11．
2）「カカラスエ学ハンドブック」，（1973）p．775－880．
3）溹山幸男，陣内和彦，古賀澈明，九州工業技術試験所銀告 No．2，84－86（1969）．
業牥報告 p．11－14（1967）．
5）JIS R 3104，ガラスの献化点試験法（1970）
6）山本 明，山手 有，功刀雅長，材料 13 ［134］880－ 84 （1964）．
7）「魚㯂材料科学」，p．170－75（1973）．
 （1961）．
（9／29／1975 受付）

砂粒子の形状•組成が砂の土質工学的性質に及ぼす影響に関する研究

小	田	$\begin{aligned} & \text { 框 } \\ & \hline \end{aligned}$	寬
榎	桑	文	勇＊＊
鈴	木		

1．まえがき

基本的には，土の力学的性垻は土粒子の基本的婁素 （土粒子の材買，士粒子の粒度組成，土粒子の形状，土粒子表面のあらさ，吸着イオンの䨘と最）と土粒子の集合状態（密度，含水量，骨組機造）とによって決定され る＂。土粒子の粒度組成，密度，含水量なとの㷧管因子 に関する実験的研究はしばしば報告されてきたが，測定技禾の普及が遅れている土絃子の材質，土絃子の形状，土粒子表面の粗さ，带祖粠造などが，土の土䔮工学的性質に及ぼ少影響についての理解はきわめて定性的であ る。この研究は础粒子の基本的要素，とくに砂粒子の材質，砂粒子の形状，麦面のあらさなどが，砂の土質工学的性質，とくにセン暷抵抗，最大•最小間ダキ比などに及ぼす影哴について敛討したものてある。この種の研究 は，砋質士の合理的な分類を実施するためにも不可久な あのであるら。十なわち，砂質士の土筫工学的性質を決定する最 b 基本的な支配因子は何であるかについての知幟が，矽質土の分類の前提条件であるら。

先にも述ごたように，砂の力学的性熲は研粒子の基本的要秦のみならず，砂舷子の集合状態の関数でもある。 それゆえに，砂粒子の基本的要素たけでは础の強度•変形常数は定まらない。Lかし，砂粒子の集合状熊は，他 とまったく独立して決定されるものではなく，粒子形状，粒度組成，粒子表画のあかさなとによっても支而さ れている。たとえば，破の間ダキ比の扳り得る縮囲は砂 の表面のあらさ，絃度組成などによって支仁されてお り，また，砂粒子の長軸の方向性拈よび粒子間接点ての接平面の方向性は粒子形状，とくに細長比に支配される ことが示されている ${ }^{2 \lambda, n}$ 。
与え，かつ砂粒个の集台状態（惓造）をある程渡決定す るということを考え合わせれぼ，砂の基本的要索の濑定方法の開発むよびひの測定最と強度•恋形常数との相関

＊建杸技济研宽要
＊＊甥村施
関係について，現時点で究明して打くことは意味のある ことと思いている。

この研究報告の能半は杪の基本的懯素，とくに鏣物細成，矽粒子の形状，砂粒子表面のあらさの測定方法と測定結果を示L，後半江直接をン晰試験，最大，最小間ゲ キ比試験について述べ，さらに基本的要䋕の測定結果と セン断抵抗•最大•最小間ゲキ比などの土質工学常数と の相関関係を示している。

2．試 料

本実験に使用した碰め試料は 10 種䊅（A䟞……J砂）
で，その採取地，比重ずよひく粒烽•粒度を表一1 亿示し

た。なさる操取した砂は，水洗い後乾燥して，1．19， 0.84 $0.42,0.25 \mathrm{~mm}$ の各フルイでフルイ分けた。実跧に使用した砂は，便宜上，たとえば，$A_{0.84}^{1.19}$ て表わし，これ は 1.19 mm フルイを通過し， 0.84 mm フルイに留ま る A 砂を示すことにする。

3．構成粒子の基本的要素の測定方法と測定結果

三笠正人＂は砂の種類を規定する因子として必要かつ十分なものとして次の 5 つの性質をあげている。それ は，土粒子の材質，土絃子の粒度組成，土粒子の形状，土粒子表面のあらき，吸着イオンの質と量である。これ らの规定因子としての性質を具体的，定量的に把握する ために测定すくき量は，鏣物組成，有機物含有量，比重，垠大䊉全，有効径，均等係数，絬士分含有量，球形率，丸味率， pH 徝，各種イオン含有量である。本研究に使用した砂は水洗い後鞍燥しているので，有機物含有量，粘土分含有量， pH 值，各種イオン含有量の測定は間題 にならない。また使用した砂の粒径•敕度は1．19～ $0.84 \mathrm{~mm}, 0.84 \sim 0.42 \mathrm{~mm}$ および $0.42 \sim 0.35 \mathrm{~mm}$ の 3
 して今後の議論を進める。比重は础の鉜物組成に完全に线存するので，独立変数とは見なきない。洸いかつフル イ分けした秒の試紏では，結局，鉣物組成，球形率，丸味䒠むよび粒洤が形の構成粒子の特性を把潅子るために測定すべき㪚である。

3.1 砂粒子の細長比と円摩度

 って古くから研究きれている。それらの研究によると，敉子形状と粞子表面のあらさとを明碓に区別すべき概念と して扱っている。粒子形状を表琴する量としてKrumb－ einのスフェリシチーががあり，粒子表面のあらさ測定 には Waddell の円摩度 ${ }^{\text {（ }}$ がある。スフェリシチー，円摩度とともに極めて良好な測定量を与えるが，測定が極 めてはん蜼であり，粒径の小さい砂に直接応用するのは不可能に近い。この研究ではこれらに代るものとして，細長比と修正円楽度とを用いた。
細長比……細長比測定の相路は次のとおりである ${ }^{2}$ 。直径 5 cm ，高さ 10 cm の円简容器に適当量の砂を詰 め，低粘性接並剤を粒子間に浸透させた後，固結させ る。固結した砂試料の鉛直徚面と水平断面とによう 擷

 ら無作為に M 图の粒子を抽出し，選定した粒子の断泊内にないて見掓けの長朝を短軸との長さ a_{i}, b_{i} を測定し 1 つの粒子の細長比 $\left(\frac{b_{i}}{a_{i}}\right)$ を求める。 $\bar{n}=\frac{1}{M}{ }_{i=1}^{M}\left(b_{i} / a_{i}\right)$

を矽の細長比とし，粒子形状のパラメーターとした。先 の報告において ${ }^{27,3)}$ ，砂の細長比は砂の祊造，すなわち粒子の長胎の方向性，粒子間接点における接平面の方向性なとを支配していることを実验的に実証した。この意味に括いても，平均的細長比五を粒子形状のインデック スとして利用できると判断している。
䇣正円摩度……Waddell ${ }^{+5}$ は粒子内に，直交する三軸 を考え，その長朝と中間骋とを含む平面に粒子を投影 し，次式によって円摩度 $R_{i}{ }^{\prime}$ を求めた。

この方法は測点の選定に㑚人差が生しやすく，測定時間が長くなるなどの欠点を持っている。Waddell の円摩度を若干修正し， 1 つの粒子の修正円摩度 R_{i} を

$$
\begin{aligned}
R_{i} & =\frac{1}{2}\left\{\frac{1}{2}\left(\frac{2 r_{i}^{2}}{l_{i}^{2}}+\frac{2 r_{i}^{i}}{l_{i}^{1}}\right)+\frac{1}{2}\left(\frac{2 r_{i}^{1}}{l_{i}^{2}}+\frac{2 r_{i}^{2}}{l_{i}^{2}}\right)\right\} \\
& =\frac{1}{2}\left(\frac{r_{i}^{2}+r_{i}^{4}}{l_{i}^{1}}+\frac{r_{i}^{1}+r_{i}^{3}}{l_{i}^{2}}\right)
\end{aligned}
$$

で定義する。

$P_{1} P_{3}=a b=l_{r}^{2}$ 。（見掛けの長柿）

$\mathrm{P}_{1} \mathrm{O}_{1}-r_{i}^{1}, \mathrm{P}_{2} \mathrm{O}_{2}-r_{i}^{2}$ ，
$P_{3} O_{3}=r_{i}^{3}, P_{4} O_{4}=r_{i}{ }^{4}$ ，

图－1 䅂正円摩度測建
図－1 に示したように，$r_{i}{ }^{2}, r_{i}{ }^{2}, r_{i}{ }^{3}, r_{i}^{4}$ はそれぞれ校子の任意断而の点 $P_{1}, P_{2}, P_{3}, P_{1}$ にむける曲率半径と L，$l_{i}{ }^{2}, l_{i}^{2}$ をそれぞれ $a b, b c$ の長さとする。 $\frac{2 r_{i}^{2}}{l_{i}{ }^{\prime}}$ ， $\frac{2 r_{i}^{i}}{l_{i}{ }^{2}}, \frac{2 r_{i}^{1}}{l_{i}^{2}}, \frac{2 r_{i}^{3}}{l_{i}^{2}}$ が小さい程，点 $P_{2}, P_{4}, P_{1}, P_{1}$ の先端は丸みのないものとなる。粒子の断面が円となるな らば，$\frac{2 r_{i}^{2}}{l_{i}{ }^{1}}=\frac{2 r_{i}^{4}}{l_{i}{ }^{i}}=\frac{2 r_{i}^{2}}{l_{i}{ }^{2}}=\frac{2 r_{i}^{3}}{l_{i}{ }^{2}}=1$ となり，$R_{i}=1$ である。 $\frac{2 r_{i}{ }^{2}}{l_{i}{ }^{2}}>1$ の場合は，P_{2} の先端部分を凸部とし て認めず，R_{i} を

$$
R_{i}=\frac{1}{2}\left(\frac{2 r_{i}{ }^{\prime}}{l_{i}^{\prime}}+\frac{r_{i}^{\prime}+r_{i}^{\prime}}{l_{i}^{2}}\right) \text { そ求める。 }
$$

前述の細莀比測定に使用した鉛直断向と水平断面め溥片 から $70 \sim 100$ 個の校子断道を無作渦に抽出し，R_{i} の平均值

$$
\begin{aligned}
& \bar{R}=\frac{1}{2 M} \sum_{i=1}^{M}\left(\frac{r_{i}^{2}+r_{i}{ }^{i}}{\left.l_{i}{ }^{1}+\frac{r_{i}{ }^{1}+r_{i}{ }^{1}}{l_{i}^{2}}\right)}\right. \\
& \text { (ただし, Mは测定個数) }
\end{aligned}
$$

この方法により求めた修正円摩度は Krumbein によ る visible chart ともよく対応しており，また円縻度測定にともなら甸人羑も少なくすることができ，短時間で測定可能という優れた点を持った方法である。各種の砂 について賰した $\bar{n}, \bar{R} を$ 表－2に示したが， $0.42 ~ 0.25$ mm むよびそれ以下の粒経で洼，測定技術上若干の疑問があり，今後 0.25 mm 以下の粒子の精度のよい測定 ができるように改良したい。

3.2 鉉物組成の測定

砂粒子としてごく一般的にみられる鉱物は，石英，長石類（加里長石，斜悵石），雯电類，角セン石類，靘石類，磁鉄鉱，かっ跌鉱などである。その他に，チャー ト，ケツ岩，火成岩，変成岩を起源とする岩片がある。 チャートの岩片は石英の微晶ないし非結㿟質の SiO_{2} か らなり，ケッ岩の岩片は粘土鉱物，雲执，炭質物質，石英などの微晶鎡物からなり，火成岩および変成岩の岩片 は石英，長石，雲母，角セン石，噿石などの鉱物の集合体である。 Horn ${ }^{n}$ ，Rowe ${ }^{\text {日）}}$ などが実験的に求めた鉱物 の粒子間摩擦鿇（ ϕ_{μ} ）などを考慮して，砂粒子を次の 8種に識別し記哉した。

石英（記号：Q）：1つの砂粒子が $1 \sim 2$ 估の石英缉結晶粒子からなるもの。

石英の集合体（刹号：$Q_{a g}$ ）：1 つの瞵粒子が $3 \sim 20$個の石英粒子の集台体をなすもの，他の㻌物 \＆若干含 む。

チャートの岩片（記号：Q_{c} ）：石英の微面䊀子か非結唱の SiO_{2} からなるもの，不神物も含き。

長石類（記号：Fe）：加里長石と斜畏石とを含む。他 の鉱物と葉合体をなす場合には，晨石類の占める体積が大きい時このグループに入れる。

チャート以外で，微結晶ならなる岩片（記号：R．F．） ：ケツ岩と火山岩の岩片が大部分を占める。

雲姆類（記号：M）：白雲俥と黑震母とを含む。
媈石，角せン石（乱号：P．A．）
その他（祋号：O）：上述以外の副成分鉱物と変成岩 および一部の火成岩の岩片を含む。

䂹試䄻から無作為に抽出した 200 個の砂粒子を偏光
果を表—2に示した。
3.3 粒子の破砕性

February， 1971
下線部は本資料における抜粋又は参照箇所を示す

No． 607

結果によると，砂粒子の破础性が試験結果を大きくな右 する。この事実から構成粒子の強度を考虑した分類が脑 ましい。しかし，上述の分類では否片の強廃を決定する粒子の風化程缦や粒子閒結合力なとは無視せざるを得な かった。そこで，構成粒子の風化程度や破础性について定性的な記述を表一2に示した。

4．最大•最小間ゲキ比試験と直接セン断試験

4.1 最大•最小間ゲキ比試験

最大•最小間ゲキ比は砂粒子の形状，表面のあらさ，柆径•粒度などの砂の基本的性質に依存すると同時に，測定方法によっても相当大きく異なった値を示す。測定容器の大きさ，詰め込み速度，詰め込み方法，詰め込み䦙間，含水状態なとの影兒を受ける。砂の $c_{\text {max }}, e_{\text {min }}$ の重要性はすでに認戴されているが，かならずしあ統一的試験方法は磪立されておらず，各研究者によって報告 されている豊浦標淮础の測定結果あ相当にばらついてい る現状である。

最大間ゲキ比（ $e_{\text {max }}$ ）……Kolbuszewski ${ }^{11}$ は䢂子の落下速度，詰め込み時間，容器の大きさ，水の影譻など について詳しく実軩し，$e_{\max }$ の測定法について次のよ

うな提案をした。 2000 cc の円柱状容器に 1000 g の砂 を入れ，よく振り，容器を逆さにする。その後で，すば
 る砂の間ゲキ比を測定する。
本研究では直径 5 cm ，長さ 20 cm の円筒容器を用 い，ほぼKolbuszewski の方法に従って求めた。

最小間ゲキ比（ e_{min} ）……最大間ゲキ比の場合と同様 Kolbuszewski の実輸がある。しかし，氏の捉案してい る方法は砥粒子の破砕（特に A，B 础の場合はいちじる しい）が認めよれ，今回の実験には不適当であると判断 した。そこて，便宜的に砂粒子の破砕が少ない，次のよ らな測定法を探用した。
再徎 5 cm 高さ 10 cm の円筒容器に砂を 3 層に分け注ぎ达む。各送ごとに上方に 0.85 kg のオモリを㯰き，容器の側璧を 50 可連打する。以上のよらにして承めた $e_{\text {max }}, e_{\text {min }}$ を表－ 3 に示した。

4.2 直接セン断試験

試験方法……本研究に使用した試験機は下部可動焐接 セン嘶試験機である。この型の試験機はセン断時の試料 の髟張に察し，試料とせン断箱内壁との間に大きな側向

表－3

${ }^{2}$	枓 名	$\begin{aligned} & \text { 最大関体 } \\ & e_{\text {masax }} \end{aligned}$	長小坥 4＊比 $\boldsymbol{e}_{\text {min }}$	$e_{\text {max }}{ }^{-c} \operatorname{cosin}^{\text {a }}$	σ_{1} （度）	（曼）	ϕ_{2} （㗆）	β_{2}^{\prime} （度）	$\begin{gathered} c_{1} \\ \left(\mathrm{~kg} / \mathrm{cm}^{2}\right) \end{gathered}$	$C_{1}{ }^{\prime}$ （ $\mathrm{kg} / \mathrm{cm}^{2}$ ）	相对密度 （\％）
$\begin{aligned} & \mathrm{A} \\ & \text { 哣 } \end{aligned}$	$\mathrm{A}_{0.84}^{1.18}$	1.125	0.678	0.448	56.5	56.5	44.0	44.0	0.10	0.05	90
	$\mathrm{A}_{0.42}^{0.81}$	1．235	0.785	0.450	55.6	54.0	46.0	47.0	0.20	0.14	95
	$\mathrm{A}_{0.2 \mathrm{c}}^{0.62}$	1.314	9.816	0.498	47.5	47.5		－	0.25	0.21	88
$\begin{aligned} & \text { B } \\ & \text { 部 } \end{aligned}$	$\mathrm{B}_{0.84}^{1.19}$	1.126	0.705	6．421	62.0	62.0	46.5	46.5	－0．20	－0．4	98
	$\mathrm{B}_{0.12}^{0.84}$	1.124	0.695	0.429	53.0	51.0	38.6	39.0	0.16	0.12	96
	$\mathrm{B}_{0}^{0.25}$	1.132	0.714	0.418	－	－	－	－	－	－	－－
c	$\mathrm{C}_{0.84}^{1.19}$	0.859	0.539	0.329	45.5	43，5	－	－	0.13	0.10	86
制	$\mathrm{C}_{0.42}^{0.84}$	0.951	0.610	0.341	50.6	49，0	－	－	0.16	0.12	100
D	$\mathrm{D}_{0.88}^{1.19}$	1.057	0.691	0.366	54.0	52.5	－	－	0.05	0.04	100
\％	$\mathrm{D}_{0.8}^{0.84}$	1.132	0.740	0.392	52.5	51.5	－	－	0.12	0.08	100
$\begin{gathered} \mathrm{E} \\ \text { zy } \end{gathered}$	$\mathrm{E}_{0.84}^{1.19}$	1.111	0.766	0.345	48.5	48.5	－	－	0.17	0.15	96
	$\mathrm{E}_{0.42}^{0.84}$	1.147	0.787	0.360	52.2	51.5	－	－	0.14	0.05	96
	$\mathrm{E}_{0.25}^{0.42}$	1.204	0.891	0.313	47.5	47.5	39.6	39.6	0.13	0.10	95
$\mathrm{F}_{0.84}^{1.19} 4$		1.085	0.725	0.360	52.2	51.5			0.10	0.08	100
$\mathrm{G}_{0.28}^{0.42}$		0.986	0．656	0.320	47.3	47.0			0.17	0.13	100
$\mathrm{H}_{0.84}^{1.19}$ 隹		1.359	0.938	0.421	53.0	53.0			0.30	0.20	100
$\mathrm{I}_{0.86}^{1.89}$ bt		1.113	0.786	0.327	49.7	49.0	－	－	0.10	0.10	95
$\mathrm{J}_{0.25}^{0.42} \mathrm{E}$		1.109	0.721	0.388	49.0	49.0	40.5	40.5	0.13	0.10	91

験によるものと比べ大きなセン断抵抗を生じる ${ }^{123}$ 。しか L，下部可動南接七ン断誠験機の普及性，澡作の簡使性 なとの利点とともに，得られる強度の絶対㨁ではなく，相対的な相互の強度関倸を求める目的には十分活用でき るなのと考え本試験機を採用した。今回の実験は砂粒子 の基本的要秦のせこ断抵抗への影管についてだけ周題に したので，含水比，相対密度および䓀め方などの砂の状態を，次に述ごるように，各試験で同一になるよう工夫 した。
使用した試料は表一1 に示した 10 種の合計 17 試料
 （含水比 $0.1 ~ 0.5 \%$ ）をセン断箱内に注ぎ込み，上方 を手で静がにおさえ，セン断箱の側面を速打しっなるへ く密な状態に詰めた。詰め込み終了時の試料原さとセン断箱直㙫との比が 2．3～3．5 となるように調整する。せ ン断前の試料の相対密度はほぼ $90 \sim 100$ \％であり，同一相対密度と見なした。垂直応力は $0.1,0.3,0.6,1.1$ ， 1．4，1．6，2．1， $2.6 \mathrm{~kg} / \mathrm{cm}^{2}$ に要化させることができ，毎分 $1 ~ 5$ 名のセン断速度でセン断する。

直接セン断試験結果……上述のように，密に詰めな砂試料のセン断試験において，その試料の破嬛時における垂直応力とせン断応力とをそれぞれのったとする。
試料について，のと τ_{f} の開保を図—2～図—6に永 した。図－2～図－6によると，測点がほぼ直線上にあ ると見なせるるの（ $\mathrm{C}_{0.12}^{0.81}$－砂， $\mathrm{G}_{0.25}^{0.42}$－砂， $\mathrm{H}_{0.81}^{1.19}$－形）$) ~$ ， けっして一直線では回㕞できないもの（ $\mathrm{A}_{0.84}^{1.19}$－砂， $\mathrm{B}_{0.42}^{0.84}$ －閯）とがある。ここでは，便宜上， 2 本の直線， $\mathrm{r}_{f}=$ $C_{1}+\sigma \tan \phi_{2}$ を， $\mathrm{T}_{f}=C_{2}+\sigma \tan \phi_{2}$ とによって袁わせる bのとした。一直線で表わせる場合は，$C_{2}=C_{2}, \phi_{1}=$ ϕ_{2} である。この上うな $\sigma-r_{f}$ 関係の非淔線性は粒子の破碎と密接に関係すると考えられているが ${ }^{107}$ ，この報告
 に費されるエネルギーを考虑した補止式，$\tau_{f}{ }^{\prime}=\tau_{f}-\sigma \times$ $\left(\frac{d H}{d \varepsilon}\right)$（ただし，$d \varepsilon:$ セン断ヒズミの増分 $d H:$ 試料高さの增分）から求めた 「 f^{\prime} と垂值伈力 σ との関係を図－2～図－6に示した。 τ_{f} と。との関係同様，$\tau_{f}^{\prime}=$ $C_{1}^{\prime}+\sigma \tan \phi_{1}^{\prime}$ と $\overbrace{f^{\prime}}=C_{2}{ }^{\prime}+\sigma \tan \phi_{2}^{\prime}$ とで回倨きれる。各倵料で求めた $\phi_{1}, \phi_{2}, \phi_{1}^{\prime}$ ，$\phi_{2}^{\prime}, C_{1}, C_{1}^{\prime}$ を表－ $\mathbf{3}$ に示し云。 C_{1}, C_{1}^{\prime} は，機械的啚差が大きく影鏊し，構成粒子 い基本的要秦との相関はは，いきりせず，今後の䛾論では触れないことにする。

5．最大•最小間ゲキ比およびセン断抵抗角に与える砂粒子の基本的要素の影響

5.1 鉱物組成の影響

䂹のセン断抵抗は，砂の粒子問摩幏，ダイレイタンシ

図－3 $\quad \mathrm{B}_{0.42}^{0.84}$ 移の $\sigma-\tau_{s}$ と $\sigma-\tau^{\prime} s$ 閣揀図

图－4 $C_{0.82}^{0.86}$ 砂の $a-r_{j}$ と $\sigma-r^{\prime} f^{\prime}$ 関係図

No． 807

図－6 $\mathrm{H}_{0.88}^{1.19}$ 杪み $\sigma-\tau f$ と $\sigma-\tau f^{\prime}$ 関俰圆
一，粒子の再配列，粒子の破磪なとの諸要因で決定され る。砂の粒子間摩擦角（ $\$_{u}$ ）はセン断抵抗に重要な役制 を占めるが，ゆゃの測定法およしで測定結果の報告は比較的 まれである。自然乾澡状態における粒子表面のなめらか な石英，長石，雲姆の粒子間摩擦係数はもれだれ， 0.11 $~ 0.16,0.12 \sim 0.13,0.26 \sim 0.30$ である ${ }^{73}$ 。 しかしっ粒子表面のあらい鉱物試料の ϕ_{a} は，表面の滑らかな試料の ϕ_{n} と異なり 3 ，事たチャート，ケッ岩なとの岩片の $\phi_{\text {\＃は実険的に求められていない。それてゆえ，砂の組成 }}$ から砂の ϕ_{μ} を定量的に推定することはできないが，各钩物でその化学組成，結晶構造，表面あらさが異なり，朔物によ」てゆいは相当変化すると考えられる。それゆ えに，仯のセン㯕抵抗には余物組成の影響が期待される が，表—2の錟物組成と表—3の $\phi_{1}, \phi_{1}^{\prime}$ との視察，打よ び，図一7 と図－8の 价によっても明らかなように，鋐物組成の顕著な影響は認めがたい。今回使用した試料 に関する限り，下部可動直接セン断による セン断抵抗

（垂直埝力範開は， $0.1 \sim 2.6 \mathrm{~kg} / \mathrm{cm}^{2}$ ） に鉱物組成の影笊 は小さいと判断で きる。
5.2 修正円杽度 $(\overline{\boldsymbol{R}})$ ，細長比（ \boldsymbol{n} ）の影響 $\bar{R}-\phi_{1}, \bar{R}-\phi_{1}^{\prime}$ ， $\bar{n}-\phi_{1}$ などの相関関係を 図—7，図 －8の（イ），図 －9の（ィ），に示す。垂直㑫力範囲が約 $1 \mathrm{~kg} / \mathrm{cm}^{2}$ 以下でせン断抵抗解 $\phi_{1}, \phi_{1}^{\prime}$ はともに修正円摩度，寸なわち粒子表面のあら さとかなりの相関関係を示すが， $\bar{n}-\phi_{1}$ はほとんど無相関である

図－7，図－8（イ）に上ると，粒徎 $1.2 \sim 0.84 \mathrm{~mm}$ な よび $0.84 ~ 0.42 \mathrm{~mm}$ の砂の測点はほぼ同じ回州曲線上 にあるが， $0.42 \sim 0.25 \mathrm{~mm}$ の矽はその回媑曲線よりわ戸゙が加方にはずれている。このことは修正円縻度の項で あふれたように， $0.42 \sim 0.25 \mathrm{~mm}$ 砂の修正円摩度の測定にともならあい主いさが原因なのかっ，粒柊の啍いが主因なのがは今後の問題である。水で飽和した石英の精子
砩 \rightarrow レの順序で，すなわち粒径が大きくなるにしたが って，ψ_{μ} は 31° から 22° へ と小さくなっている。こ の奏験事実を考磧すれば，粒洤 $0.42 \sim 0.25$ の砂の測点 は $1.19 \sim 0.84 \mathrm{~mm}, ~ 0.84 \sim 0.42 \mathrm{~mm}$ の測点から もとめ た回漏線より上方にあることが予想されるが，今回得た結果はこの予想と矛盾している。

下部可䡃直接せン澌試検加ら得た $0-r_{f}$ および $\sigma-\tau_{f}$＇ の関係は，加なら要しb直線的でないことはすたに指摘 した。 $\sigma-\tau f^{\prime}$ ゆ非直線関係を 2 直線，すなわち $\boldsymbol{r}^{\prime}=$ $C_{1}^{\prime}+\sigma \tan \phi_{1}^{\prime}$ と $f^{\prime}=C_{2}^{\prime}+\sigma \tan \phi_{2}$ とて表わすとっこ の 2 直線の交点は垂直応力が $0.6 \sim 1.7 \mathrm{~kg} / \mathrm{cm}^{2}$ の所に ある。 \bar{R} と $\boldsymbol{q}_{2}^{\prime}$ との関係を図—8（口）に示す。図—8 の（ロ）によると， $\bar{R}-\Phi_{2}^{\prime}$ はほぼ無相関な関係でばらつい ている。このことは，䊀子強度の低い A 砂，B 砂のよ らな砂をほほ $1.7 \mathrm{~kg} / \mathrm{cm}^{2}$ 以上の垂直灿力でせン北する時，そのセン澵破珧にともなって粒子の破确現象が強く あらわれ，セン陮抵抗にあたえる形状の㩆嶨が比較的低 ドすることによるものと考えられる。図一8の（口）の Kグループはのーをf 関係に抽いて直線を示するの，つま り $\phi_{2}^{\prime}=\phi_{1}^{\prime}$ であり，L グループは $\sigma-\tau f^{\prime}$ 関係が非直線 ゼある。 L グルーブに属する础は，K グループに属す る形に比へて，粒子強度が低いように思われてるが，まだ

图－8 ϕ_{1}^{\prime} ，ϕ_{2}^{\prime} と蓚正阴縻度 \bar{R} との関係図

图—— ϕ_{1} ，最大間ゲキ比と細長比との関保図

はかなりの相関関係を認めることができる が， $0.42 \sim 0.25 \mathrm{~mm}$ の砂はほぼ同一の \bar{R} に対し，$e_{\text {max }}$ の值は大きく変動している。 $1.19 \sim 0.84 \mathrm{~mm}$ の砂の回帰線は $0.84 \sim$ 0.42 mm の砂の回㷌線の下゙方に位情与る が，最上武雄 ${ }^{13)}$ b同䤤な頃向を報告して いる。 $R-e_{\text {min }}$ に弱い相関關係を認めるこ とができるが， $0.42 \sim 0.25 \mathrm{~mm}$ の硳はほ ぼ同じ \bar{R} の値に対し $e_{\text {min }}$ は大きく変動 L， $\bar{R}-e_{\max }$ と似た傾向を示す。 $\bar{n}-e_{\max }$ はほほほ無相関である。

5.3 まとめ

10 種， 17 試紏の下部可邪道接セン断試験結果から判断すると，砂粒子の すつ基本的珄䍚の中で修正円摩度がセン㯕括抗にも つ意味は大きく，鉱物組成，細長比の役割 は当初予想したよりは小さい。Kirkpatri－ ck ${ }^{(4)}$ は，ほぼ等しい形状と表面のあらさ をもつガラス玉の三蟿圧樎試験から，セン断抵抗は粒徍のみならず粒度によってる大 きな影筧を受けることを実証した。セン淠抵抗という絸点から流った砂を基本的要素 で分類する場合に，䊉子の表湎のあらさ，䢂径，粒度は無視し得ないファクターであ ちう。
今回の実験では銃物組成のセン断抵抗～ の関与は明らかてないが，Rowe ${ }^{6)}$ ，Lee ${ }^{\text {n }}$ による鮑和砂の排水三朝圧縮試験による と，粒子を構成している物質の $\phi_{ム}$ がセン断抵抗に敕めて大きな影筫を持つことを実

定性的な観察からの判断であり，結論は今後の研究に待 ちたい。なお，K，L の各ダルーブに限定すれば $\bar{R}-\Phi_{2}^{\prime}$ にかなりの相関関係を識めることができ，興味ある事実 である。 $\bar{R}-\phi_{2}$ にあ $\bar{R}-\phi_{2}^{\prime}$ と同様な関係を認めることか できることな付記しておく。
セン断破挬時のダイレイタンシーインデックス，D．1． は修正円摩度，粒徎などの関数であると予想されるかる式験機珹による䍚差が大きく，これを明ら加にすることは できなかった。 図－10のD．1－の関係に示されるよう
影響はは，，きりしない。
$\bar{R}-e_{\text {max }}, \bar{R}-c_{\text {min }}, \bar{n}-e_{\text {max }}$ などの閑係を図—11，図 －9，（口）に示す。ただし， $\mathrm{H}_{0.8 \mathrm{~B}}^{1.19 \text {－㫾は砂粒子自体に空 }}$ ゲキの多い粒子からななり，他の砂と一緒に含めて掝綸す るのは不適当と判断し省略した。粒径別に見れば，1．2 $\sim 0.84 \mathrm{~mm}$ および $0.84 \sim 0.42 \mathrm{~mm}$ の确は，$\hat{R}-e_{\text {max }}$ に

証しているので，三軸圧絔試験などこより㑒物組成の影翠についてさらに詳しい実験的研究が必要である。

図－10 垂直応力とダイレイタンンシーインデックスとの関程国

No． 607

図－11 最夫問ゲキ比，最小問ゲキ比と蓚正円摩度との擱係図

坊 考 文 献
1）三䇥正人：土の工学的性質の分類表とそ の意義，上と基㘉，第 12 炎，第 4 号， 1964，pp．17－24
2）小田医宽，風間禾恋：砂の異方性に関す る基硞的研爸，土と基穊，第 18 卷， 19号， 1970 pp． $15 \sim 21$
3）小由匡莧：矿めような柱状体の㥍遣に関与る基整的研究，第5回土質工学研究発远会僙演集 1970，pp．65－68
4）H．Waddell ：Volume，Shape and Roundness of Quartz Particles，Jour． Geol．，Vol．43， 1935
5）W．C．Krumbein ：Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles， Jour．Sedi．Petrol，II，No． 2
6）沓沢 新：肯林の呅度と形状のバラメー ター，とくに空げき率との関低（1），七ん ントコンクリート，No．179，1月号，

6．結 論

1）Waddell の円摩度を修正定媵した修正円摩度， $\bar{R}=\frac{1}{2 M} \sum_{i=1}^{M}\left(\frac{r_{i}{ }^{2}+r_{i}{ }^{4}}{l_{i}{ }^{1}}+\frac{r_{i}{ }^{1}+r_{i}{ }^{3}}{l_{i}{ }^{2}}\right)$ は粒子の表面の あ 5 を の定量的表現として活用てきる。
2）低い $\left(0<0.6 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ 垂直応力範贯によかいて，下部可動直接セン断試験より求めたせン断摩擦觕（\＄ $\left.\phi_{1}{ }^{\prime}\right)$ に括よぼす修正円摩度 \bar{R} の影響はいちじるしく，焦物組成，細長比の役割は比較的小さい。高い垂直応力
正円摩度への侬存性は小きく，砂核子の破砕性が強い支配因子であることが予測できた。

3）粒径をパラメーターに取れば，修正円摩度と最大 －最小問ゲキ比はある程度の相関関佰を持つが，縕長比 とは無相関である。

なお，この研究を実施するにあたり，常に温い御指導御㬮韃を糃わった埼玉大学小野寺逶教授，関陽太郎教
 く感謝いたします。
pp． $3 \sim 11$
7）H．M．Horn and D，V．Deere ：Frictional Character． istics of Minerals，Geotechnique，Vol．12，1962， pp．319～355
8）P．W．Rowe ：The Stress－Dilatancy Relations for Static Equilibrium of an Assembly of Particles in Contact，Proc．Royal Soc．London，Series A，Vol． 269，1962，pp． $500 \sim 527$ ．
9）K．L．Lee and I Farhoomand ：Compressibility and Crushing of Granular Soil in Anisotropic Triaxial Compression，Canadian Geotechnical Jour．，Vol．4， 1967，No． 1
10）K．L．Lee and H．B．Seed ：Drained Strength Chara－ cteristics of Sands，Jour Soil Mech．Found Div． No．SM 6，1967，pp．117－141
11）J．J．Kolbuszewski ：An Experimental Study of the Maximum andMinimum Porosities of Sands，Proc． 2 th．Int．Conf．Soil Mech．Found．Eng．，Vol．1， 1948，pp． $158 \sim 165$
 1968
13）最上武謰：粒状体の力学，土質力学（技報堂），第8章， 1969，pp．893～1032
14）W．M．Kirkpatrik ：Effects of Grain Size and Gra－ ding on the Shearing Behaviour of Granular Mat－ erials，Proc． 6 th Int．Conf．Soil Mech．Found． Eng．，Vol．1，1965，pp．273～278
15）I．K．Lee ：Stress－Dilatancy Performance of Feldsp． ar，Jour．Soil Mech．Found．Divi．，No．SM 2， 1966
（原稿受付，1970．5．14）

参考文献：谷口宏充，マグマ科学への招待，裳華房，2001，P24－31
2.2 いろいろな火成岩

マターは冷音固まれば火成岩と呼ばれる一連の岩石のみなもと ですし，地球上の岩石の多くは玄武岩か花こう岩などのように二

てある上部マントルや下部地毅もやはり珪酸塩の岩石からできて いて，マグマはその一部分が灌融して生まれる，と考えられてい ます。 したがって，私たちにとって重要なマグマのほとんどは溶融した理酸塩です。
しかし世の中には変わりものがいるもので，1936年5月には北海道の知床疏黄山で最大数チトン／日の溶触硫黄が流出し，合計 20 万トンに達しました，アフリカ東部の大地䩵帯と呼ばれる地域 には誏酸塩 $\left[(\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}) \mathrm{CO}_{3}\right]$ からなる火山岩が知られ ており，1960年10月にはタンザニアのオルドニョレンガイ火山 てナトリウムに富を㙳酸塩からなる溶岩が流出しました。また南米チリのラコ火山には，ほとんど磁鉄鉱だけからなる溶岩も知ら れています。したがって地球の内部には，硫黄や炭轮塩などが溶融して存在しているケースもあるわけです。このような例外を除 くと，やはりマグマの大部分は理较塩です。マグマが冷克固まっ てできたものが火成岩ですから，マグマの化学組成はほぼほ成岩 の化学組成に一致するはずてす。＂ほぼと言ったのは，マグマが合却する過程で水蒸気や炭酸ガスなどの揮発性成分（カスス成分） は抜け出ていってしまうから，厳密には一致しないためです。と もあれ揮発性成分が出てしまった拔け殻ではありますが，火成岩 の組成はマグマの組成をほとんど代表します。そこでマグマの化学組成的特徴を理解してゆく場合，まず火成岩の区分を知ってお〈必要があります。
火成岩はマグマが浍却固結してできた岩石の総称てすが，その組織と鉜物組成（実際には組織と化学組成とによって区分される

表2．2 火成岩の分類表

		70	4020	20		
火山韏		玄武䂞	安山首	テイサイト	流放菪	
	性至：		閶紜整岩		花こう兓落	
洆成家		はんれいい岩！	関粕岩	花こち羂䋑皆	花二ら岩	等持伏 相䢒
	外	\％	䱁士（力）	綃》力	絊く力 〈紏：铛長石，	力: カり展石)
主忩有色结物	加えら ん石。 部石， 鮊開石	跬石。 かんちん （夯関石）	踇石，角閦石。 （罢露散）	䈃石，鱼聞石，思高每	离閶石，量酸的， （繲石）	
主な無色圽	鈛辰石	歎辰石， （力り長石）	紋是石， （为）長石， 石茣）	㪶是石。力り長石，石英	解㔭石。 かり長石，嗼	

場合のほうが多い）とによって表 $2 \cdot 2$ のように区分されています。表にある用語のうち，火成岩の組織を表す「斑状」と「等粒状」 の違いを説明します。䝨状組織とは，細加い粒の鋐物あるいは力゙ ラスからなる生地（石基）の中に，際立った大きさの鉱物（珽晶） が共存するよろな組㱍を指します。それに対し等粒状組織は，鉱物のサイズに変化がなく，すべて似たようなサイズの鉱物からな る組繊を指します。鉱物の粒度にも明確な定莪はありませんが，細粒とはガラス質かっあるいは肉眼で鉱物粒が見分けられないく らい小ざい場合（だいたい直径が 1 mm 以下），中粒とは肉眼で粒 が見分けられるくらい（だいたい $1 \sim 5 \mathrm{~mm}$ くらい），そして粗粒と は肉眼で十分粒が見分けられ，観察できるくらい大きくなってい る（だいたい 5 mm 以上）場合を指すことが多いようです。
火山岩とは地表ないし地下浅部でマグマが急激に冷却固結する ことによって形成された岩石で，一般には班状組蟣をし，石基に

火山ガラスを有します。半深成岩は一般には地下浅部で固結した岩石て，火山ガラスを有しません，それに対し，深成岩は地下深部てマグマがゆっくり椧却固結してできた岩石で，鉱物粒が大き く成長し，等粒状組織を示すのが一般的てす。
マダマがゆっくり冷えれば椧えるほど鉱物は大きく成長しま す。地下深い場所では周囲に囲いがあるためゆっくり冷えますが，地表では周囲の大気中に熟が逃びていってしまらため急速に冷却 します。これが，火山岩と深成岩との間に鉱物の粒度差を生じて いる理由です。また斑状組織の場合，石基はマグアが最終的な冷却場所に到達したとき液体状懸であった部分で，それに対し，斑晶はすでに大きな結晶として成長していたことを示しています。 つまり，斑晶は地下深い位置ですでにできあがっていた鉜物て， それが液体とともに上昇してきたものなのです。
このような組織（主たる掵却場所に関係）をもとにした 3 分類 に，組成に基づく 4 分類を組み合わせると表 $2 \cdot 2$ のように玄武宕 から花こう岩までの合計 12 種䅡の岩石名が生まれます。表の左端 に書かれている超塭基性岩質の火山岩は，カナダやオーストラリ アなどに産する約 18 億年以上昔のコマチアイトという岩石で知 られています。しかし現在てはそのような組成のマグマは形成き れていないっと考えられているため当面の分類からは省略します。 ただし，マダマ発生に密接に関係してくる上部マントルを構成し ている岩石も超塩基性岩の一種であるため，非常に大切ではあり ます。デイサイトと命名されている火山岩は，以前，石英安山岩 と呼ぼれていました。しかしこの名前にはちょっと潩解を招きや

表 2.3 火成岩をつくる理致姫飣物の代表例

鹪物族名	䤲 物 名	化 学 組 成
シリカ族	石英 タリストバル石	$\begin{aligned} & \mathrm{SiO}_{2} \\ & \mathrm{SiO}_{2} \end{aligned}$
是石族	斜長石 カリ锭石	$\begin{aligned} & \mathrm{Ca}_{1-0} \mathrm{Na}_{0-1} \mathrm{Al}_{2-1} \mathrm{Si}_{2-3} \mathrm{O}_{8} \\ & (\mathrm{~K}, \mathrm{Na}) \mathrm{AlSi}_{3} \mathrm{O}_{8} \end{aligned}$
準長石族	ネフェリン	$\mathrm{NaAlSiO}_{4}$
繁酎族	思露堅白筄母	$\begin{aligned} & \mathrm{K}\left(\mathrm{Mg}, \mathrm{Fe}_{3}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)(\mathrm{OH})_{2}\right. \\ & \mathrm{KAl}_{2}\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right)(\mathrm{OH})_{2} \end{aligned}$
間問石族	普通角閔石	$\mathrm{NaCaz}_{2}\left(\mathrm{Mg}, \mathrm{Fe}^{2+}, \mathrm{Al}\right)_{8}\left(\mathrm{Si}, \mathrm{Al}_{8}\right)_{2}(\mathrm{OH})_{2}$
旃石族	鈄方解石弾鈃篭石	$\begin{aligned} & \left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right) \mathrm{SiO}_{3} \\ & \left(\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}^{2+}\right) \mathrm{SiO}_{3} \end{aligned}$
を゙くろ石族	アルマンデイン	$\mathrm{Fe}^{2+}{ }_{3 \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{12}}$
加んらん石埃	かんらん石	$\left(\mathrm{Mg}, \mathrm{Fe}^{2+}\right)_{2} \mathrm{SiO}_{4}$

すい問題点があるため，現在ではデイサイトと呼らようになりつ つあります。また，火成岩の中に出てくる主要な鉱物の化学組成 を表 $2 \cdot 3$ に示します。実際に火成岩中に出てくる鉱物はこれより かなり種類も多く，組成も復雑になっています。

マグマがどこで令交固まる加によって，火山丠，半深成岩そし て深成岩の 3 分類が生まれたわけですから，もとのマグマは同じ ものです。このため，今後の話では断りのないかかぎりマグマの組成的分類は火山岩名を用にて行うことにします。すなわち玄武岩質，安山岩質，デイサイト質そして流紋岩質マグマです。表に示 された分類は銀物組成に基づくものですが，火山岩の場合，椧却 のスピードが早すぎるため液体が完全には鉱物（結晶）になりき れず，一部分ないし大部分が火山ガラスとして残ってしまいます。

枠囲み部は本資料における抜粋又は参照箇所を示す

そのため，鉱物に基ゔく分類は遒切とは陙らず，正確には化学組成に甚づいた分類が使用きれています。化学組成に基づく警密で複権な分類はいろいろあるのですが，最も簡単な分類は二酸化珪素含有量に基づくものです。すなわち玄武岩では SiO_{2} が $45 \sim 53$重量 $\%$ ，安山岩は $53 \sim 63 \%$ ，デイサイトは $63 \sim 70 \%$ ，そして流鈫岩では $\mathrm{SiO}_{2}>70$ 重量 \％となっています。ただし，岩石の化学組成は本来連続的であって，このように分類するのはあくまでも便宜的なものであるため，研究者によって多少異なることに注意し てくなきい。
表2•4に，マクマの代表的な化学組成を示します。一般にマク マ（火山岩）の化学組成は SiO_{2} から $\mathrm{H}_{2} \mathrm{O}$ まての 12 種類の酸化物

（単位は重晝\％）

	船形山 玄武岩	桜鳥 安山岩	昭和新山 デイサイト	神津島流效背
SiO_{2}	49.56	57.11	69.74	76.06
TiO_{2}	0.72	0.82	0.45	0.22
$\mathrm{Al}_{3} \mathrm{O}_{3}$	17.88	16.94	15.59	13.62
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	2.82	1.91	1.52	0.21
FeO	7.54	6.09	2.59	0.57
MnO	0.16	0.13	0.08	0.08
MgO	7.03	3.87	0.85	0.08
CaO	10.92	8.42	3.63	0.73
$\mathrm{Na}_{2} \mathrm{O}$	1.50	3.09	3.43	4.25
$\mathrm{K}_{2} \mathrm{O}$	0.22	1.37	1.36	3.29
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.06	0.15	0.22	0.02
$\mathrm{H}_{2} \mathrm{O}^{+}$	1.16	0.14	0.67	0.81
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.86	0.14	0.23	0.38
合計	100.43	100.04	100.36	100.32

の組み合わせで表現します。もちろん他の種類の酸化物も入って いるのですが，量的には少ないため，ここでは無視します。袁 $2 \cdot 2$ の火成岩の鉱物組み合わせと表 2.3 の鉱物の化学組成を見ればわ かると思いますが，表 $2 \cdot 4$ のように火山岩の組成を酸化物の形く示したからといって，岩石中に抽いて個々の酸化物が必ずしもそ のままの状態で入っていることを意味しているわけではありませ ん。また液体（マグマ）ても各々の酸化物がそのまま大り混じつ てはいません，後にくわしく述べるように，マグマ中でこれら酸化物は解睢し，新たな組み合わせをつくり，複稚なイオンの混合物となっています。酸化物の形で示したのは，たんなる分析技術上の制約からくる便宜的なものです。 さらに各酸化物のうち $\mathrm{H}_{2} \mathrm{O}$ は， $110^{\circ} \mathrm{C}$ 以下で試料中加ら抜け出る＂マイナスの水＂と，それ以上で放出される＂ブラスの水＂との 2 種類に区分きれています。 マイナスの水は分析のとき試料粒子間に付若していた水で，プラ スの水が本当に岩石中に入っていた水，というふうに受け取られ ています。また水は揮発性成分ですから，量的にはマグマ過程の きまきまな段倩で簡単に変化してしまいます。
話は横道にそれますが，マグマの化学組成がこのように多様で ある原因を探ることはたいへん重要な研究テーマとされていま す．いくつかの機構が考えられますが，最も確実なものに結晶晶出分化作用があります。これはオリジナルなマグマの中で，冷却 にもとないそのマクマよりも SiO_{2} 量の少ない鉱物が生まれ，取り去られ，その結贸，残りの液体部分には SiO_{2} か富み多様性が生ま れる，という考えです。

さて，表 $2 \cdot 4$ でもう一つ注意しておぎたいことがあります。そ れは 4 価， 5 価の物質の酸化物 $\left(\mathrm{SiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{\mathrm{5}}\right.$ など）の総量が玄武岩加ら流紋岩になるにしたがって増加するのに対し， 1 佰刘よび 2価の金属雄化物（ $\mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$ など）の総量，および一段に 3 価 の金属酸化物の経量はともに滅少することです。このことは後に マグマの物性や横造とその化学組成との関係を考えるう えにむい てとても大切になります。

枠囲み部，下線部は本資料における抜粋又は参照箇所を示す
6 条（火山）一別添 1－146

参考文献：町田洋•新井房夫，新編 火山灰アトラス［日本列島とその周辺］，東京大学出版会，2011，P144－153

会津•福島•仙台（1／2）

火山・テフラ名	記 号	年代	測定方法	堆積様式と層相	分布•体積	A	V	注•［対比•他の名称］
十和田 a	To－a	AD 915		afa				表 3．4－4 参照．
榛名二ツ岳伊香保	Hr －FP	6世紀		afa				表 3．3－5 参照．
沼沢湖1．15）	$\mathrm{Nm}-\mathrm{N}$		C＊，A	pfl，pfa，pfl	$\mathrm{E}>70 \mathrm{~km}$ 図 3．4－1	4	4－5	沼沢湖カルデラのテフラ はこれより下位に数層あ る．
浅間板鼻黄色	As－YP			afa				［浅間二口 As－Ft］${ }^{12)}$表3．3－5 参照．
姶良 Tn	AT	28～30		afa（vitric）				本文•表3．1－3 参照，
安達太良二本松 1^{2}	Ad－N1			pfa	$\mathrm{ESE}>15 \mathrm{~km}$	2－3	4	［AI］${ }^{3)}$ ローム中．
蔵王川崎）	Za－Kw	>30	C，ST	sfa	ENE $>40 \mathrm{~km}$図 3．4－3	3	4	
安達太良二本松 $2^{2)}$	Ad－N2			pfa	ESE $>15 \mathrm{~km}$	2－3	4	［ Al$]^{3)}$ 口－ム中．
磐梯葉山 $1^{5,13,22)}$	$\mathrm{Bn}-\mathrm{H} 1$	$30 \sim 50$	ST	pfa，pfl				$[\mathrm{HP1}]^{5)},[\mathrm{HPlb}]^{24)}$
大山倉吉 ${ }^{11)}$	DKP	>55		afa（crystal）				本文•表3．2－1 参照
沼沢金山 ${ }^{14}$	Nm－Kn	$>50 \sim 55$	ST，FT	pfa，pfl，afa	ENE $>90 \mathrm{~km}$	4	4－5	［水沼 pfi］${ }^{15}$ ，［［早戸］${ }^{20)}$
安達太良二本松 $3^{2)}$	Ad－N3			pfa	$\mathrm{E}>15 \mathrm{~km}$	3	4	［A1］${ }^{3)}$ 口ーム中．
赤城追貝 ${ }^{13,14)}$	$\mathrm{Ag}-\mathrm{Ok}$			pfa				表 3．3－5 参照
	$\mathrm{Bn}-\mathrm{H} 2$	$70 \sim 80$	ST	pfa，pfl				$[\mathrm{HP2}]^{5)}$ ，［HP2a］${ }^{\text {a6）}}$
御岳奈川 ${ }^{13)}$	$\mathrm{On}-\mathrm{Ng}$			afa				表 3．3－1 参照．
阿蘇4	Aso－4	85～90		afa				本文•表3．1－5 参照

記 号	主 な 鉱 物
$\mathrm{To}-\mathrm{a}$	（opx，cpx）
$\mathrm{Hr}-\mathrm{FP}$	ho，opx；ep
$\mathrm{Nm}-\mathrm{N}$	opx，ho；qt
As－Y	（opx，cpx）
AT	
Ad－N1	opx，cpx
Za－Kw	opx，cpx
Ad－N2	opx，cpx
Bn－H1	opx，cpx
DKP	opx，ho，（bi）
Nm－Kn	ho，cum，（opx，bi）； （qt） Ad－N3 opx，cpx Ag－Ok Bn－H2 On－Ng Aso－4
opx，cpx	
（ho，opx）	

会津•福島•仙台（2／2）

火山・テフラ名	記 号	年代	測定方法	堆䄱様式と層相	分布•体積	A	V	注•［対比•他の名称］
安達太良松川 ${ }^{2}$	Ad－Mt			sfa，pfa	$\mathrm{NE}>15 \mathrm{~km}$	3	4	［A2］${ }^{3)}$ ローム中．
安違愛島 ${ }^{6}$ ．${ }^{\text {a }}$	$\mathrm{Ac}-\mathrm{Md}$	$90-100$	ST	pfa	$\mathrm{E}>20 \mathrm{~km}$ 図 3．4－5	4	5	Aso－4 の下位8），海岸平野下最終間氷期の地層中 ${ }^{\text {9．}}$ 。仙台の台ノ原段丘 （MIS 5c）をおおう ${ }^{10}$ ．
沼沢芝原 ${ }^{16.21)}$	$\mathrm{Nm}-\mathrm{Sb}$	$90 \sim 130$	$\mathrm{FT}^{(19)}$	pfa，afa	ESE $>80 \mathrm{~km}$			$[\mathrm{Td}-3]^{17)}$
安達太良岳2 ${ }^{239}$	$\mathrm{Ad}-\mathrm{Dk}$	120	ST	pfa	E $>20 \mathrm{~km}$図 3．4－1	3	4	［A2］${ }^{3)}$ 口 - 中中．
沼沢田頭18，21）	$\mathrm{Nm}-\mathrm{Tg}$	130	$\begin{aligned} & \mathrm{FT}^{(3,19)} \\ & \mathrm{OI}^{25)} \end{aligned}$	pfa，pfl	E			［横森 $\left.\mathrm{YkA}^{2,11)}, \mathrm{Td}-2^{(7)}\right]$

記 号	主 な 鉱 物
$\mathrm{Ad}-\mathrm{Mt}$	opx，cpx
$\mathrm{Ac}-\mathrm{Md}$	$\underline{\text { cum；qt }}$
$\mathrm{Nm}-\mathrm{Sb}$	
$\mathrm{Ad}-\mathrm{Dk}$	ho，bi，cum；qt opx，cpx
$\mathrm{Nm}-\mathrm{Tg}$	bi，（ho，cum，opx）； qt

肘折•鳴子•鬼首

火山・テフラ名	記 号	年代 測定方法	堆積檥式と層相	分布•体積	A	V	注•［対比•他の名称］
时折尾花沢 ${ }^{1,2)}$	$\mathrm{Hj}-\mathrm{O}$	$11 \sim 12 \quad C^{*}$	pfa，pfi	$\begin{aligned} & \mathrm{E}(\mathrm{~S})>110 \mathrm{~km} \\ & \text { 図 } 3.4-2 \end{aligned}$	3	5	［尾花沢］${ }^{3)}$ ，［肘析 $]^{2,4)}$ ，縄文早期と縄文草創期•細石器文化層の境 ${ }^{5}$ ．
鳴子鳰沼上原 ${ }^{1}$	$\mathrm{Nr}-\mathrm{KU}$	$10 \sim 20 \quad$ C，ST	$\mathrm{pfa} \cdot \mathrm{afa}(\mathrm{pp})$	$\mathrm{E}>15 \mathrm{~km}$	2	4	［ 溤沼 c］${ }^{\text {a }}$
始良 Tn	AT	28～30 C	afa				本文•表3．1－3 参照
鳴子柳沢 ${ }^{11}$	$\mathrm{Nr}-\mathrm{Y}$	$\begin{aligned} & 41 \sim 63^{6.7,15)} \\ & \text { TL, FT } \end{aligned}$	pfl，afa，pfl（pp）	E 60 km 図 3．4－3	3－4	5－6	［安沢下部 ${ }^{\mathrm{B})}$ を含む。 ［柳沢凝灰岩］${ }^{9}$ ）
阿蘇 4^{107}	Aso－4	85～90	afa				本文•表3．1－5 参照．
鳴子荷坂 ${ }^{1.8)}$	$\mathrm{Nr}-\mathrm{N}$	90 ST	pfa，afa，pff，afa	ESE 60 km 図 3．4－4	4	5－6	［荷坂疑灭岩］${ }^{97}$
北原 ${ }^{1.12)}$	Kth	$90 \sim 100$ ST	pfa，afa	ENE $>100 \mathrm{~km}$ 図 3．4－4	3－4	4 ？	肘折カルデラ起源か。 ［成喏，毒沢 ${ }^{17}$ ，新庄 ${ }^{16}$ ］
御岳第 $1^{1.10)}$	On－Pm1	$95 \sim 100$	afa				本文•表3．3－3 参照．
三磭木次	SK	105	afa				本文•表 3．2－1 参照
洞紊1．10）	Toya	112～115	afa				本文•表3．5－2 参照．
鳴子－迫 ${ }^{1)}$	Nr －It	$\begin{aligned} & 108 \sim \\ & 146^{6.11 .13)} \mathrm{TL}, \mathrm{FT} \\ & 110 \sim 120^{157} \mathrm{ST} \end{aligned}$	pfa	$\mathrm{E}>50 \mathrm{~km}$ 図 3．4－5	4	5	［中里］${ }^{14)}$ ，ローム層中．

記 号	主な 鉱 物
$\mathrm{Hj}-\mathrm{O}$	opx，ho；qt
	，
$\mathrm{Nr}-\mathrm{KU}$	opx，cpx
AT	
$\mathrm{Nr}-\mathrm{Y}$	$\begin{aligned} & \text { opx, ho, (bi, cpx, ol); } \\ & \text { qt, ob } \end{aligned}$
Aso－4	ho，opx，cpx
$\mathrm{Nr}-\mathrm{N}$	opx ；qt，ob
Kth	（opx，ho，cum，bi）
On－Pm1	
SK	bi；qt
Toya	
Nr －It	opx

[^10]岩手•秋田（1／2）

火山・テナラ名	䟕 雱	年代 粥定方法		分布•体硣	A	V		吅 号	主分管物
		AD 1200～1400の层	野期に入り口，少态国スコワア間	AD 1686 の灯	ス在犕	出，Є	のうちTo－at郎相って 		
十和成 a	T0－a	AD 915	pfa，afa					To－a	opx，cpx
十査田中称	$\mathrm{To}-\mathrm{Cu}$	6.	pfa				表3A－4 绞理。	$\mathrm{To}-\mathrm{Cu}$	opx，cpx
	Ah－Y	110～11．8 C^{*}	pt，pta	ENE 65 km 图3．4－3			pa［生保内 $]^{6}$ ，樶文草觬朋とずイント文化冨に ［AK－12］＊＊蕄い」ンボ リッーシェン。	Ak－Y	opx，cpx，（ob）
	Ak－K	$12 \sim 13.5 \quad \mathrm{C}^{* *}$	sfa，pfa，afa	$\begin{aligned} & \text { E } 80 \mathrm{~km} \\ & \text { 图 } 3 . A^{-3} \end{aligned}$			唘いインばリッーション あり＂，（分］${ }^{10}$ あ一祝 $[A k-13]^{0}$ ．	Ak－K	apx，cpx，（ot）
十吅田八入㕩	$\mathrm{To}-\mathrm{H}$	15	pfl				本文24筑［2］－表3．4－4 pif ${ }^{19}$ ．	To－H	opx，cpx，bo
䞩家Tn	AT	28～30	3fas					AT	
十和田大不重	To－Of	≥ 32	pal				本文24朔［3］•麦 9．1－4橎程	To－OH	opix，cpx
	Iw－Y，Od	$35 \sim 50=\quad \text { C }$	afa，pfa，sfa， afn．ps （多教因ニニッ － 1	ENE $>30 \mathrm{~km}$ （⿴囗 3 －4		4	 長期の话動库幾如地，	Iw－Y，Od	opx，cpx
	$\mathrm{Yk}-\mathrm{Y}$	$>41^{\text {sen }}$ ST	$p \mathrm{p}^{3}$	$\mathrm{E}(\mathrm{~S})>50 \mathrm{~km}$ 図3．4－3		4－5	［标的野］${ }^{10}$ ，［国沢］${ }^{10}$ 。 ［胃只层 $]^{10}$ D—部。	$\mathrm{Yk}-\mathrm{Y}$	opx，ho，（cpx）；gt
	Yk－M	$50-60^{300}$ ？	pta	$\mathrm{BN}>100 \mathrm{kcm}$ 図3． $4-3$		4－5	 不朋，下性に焦 n_{2} の ho を6つ火山压土（Nm• Knらしい） $\begin{gathered}\text { あり。 }\end{gathered}$	$\mathrm{Yk}-\mathrm{M}$	opx，cpx
	$\begin{aligned} & \mathrm{I} w-\mathrm{K1}, \\ & \mathrm{I} w-\mathrm{K} 2, \\ & \mathrm{I} w-\mathrm{Ka} \end{aligned}$	 活寒冾新（MIS 4～3）に啨出 ${ }^{162 \pi}$ 。						$\begin{aligned} & 1 \mathrm{w}-\mathrm{K} 1, \\ & 1 \mathrm{w}-\mathrm{K} 2, \\ & 1 \mathrm{w}-\mathrm{Ki} \end{aligned}$	
十枸囲川口 ${ }^{\text {a }}$	Kw	80？ST	pfa	十和田から SES $>80 \mathrm{~km}$ ．图344			給漂十絾田。［十和田きコ の最下艦	Kw	opx，cpx，ol
浄法寺 ${ }^{\text {P }}$	Jh		pfa	｜	$3-4$			Jh	opx，cpx，ol

岩手•秋田（2／2）

火山・テフラ名	記 号	年代 洞定方法	堆栍栜式と層相	分布•体樍	A	V	注•［対此•他の名称］
阿蘚 4^{150}	Aso－4	85～90	afa（vitric）				本文•表3．1－5参照，［葉の木谷地第1］${ }^{177}$ ，男鹿市安田では漂着軽石あり ${ }^{15)}$ 。
北原18．03）	Kth		afa				表3．4－2 采照．
御岳第 $1^{10.21)}$	On－Pml	$95 \sim 100$	afa				本文•表3．3－3 参照，
三形木次 ${ }^{180}$	SK	105	afa				本文•老3．2－1 参榪，
	Toya	$112 \sim 115$	afa				本文•表3．5－2素照［葉 の木谷地第2 $]^{12}$ ，［ビンク タフ］${ }^{18250}$ ，［胆沢 $]^{19]}$ 。

記 号	主な锍物
Aso－4	（ho，opx，cpx）
Kth	bi，（cum）；qt
On－Pm1	（opx，ho，bi）
SK	bi
Toya	（opx，cpx，ho）

枠囲み部は本資料における抜粋又は参照箇所を示す

青森（1／2）

火山・テフラ名	記 号	年代	剂定方法	堆棈様式と層相	分布•体棈	A	v	注•［対比•他の名称］	記 号	主な鉱物
白頭山苦小牧 ${ }^{1.2)}$	B－Tm	10世紀	C，A	afa	$\begin{aligned} & \mathrm{E}>1500 \mathrm{~km} \\ & \text { 図2.4-1 } \end{aligned}$		6	本文•表3．6－2 参照	B－Tm	vitric；af，（cpx）
十和田 $\mathbf{a}^{\text {2，}{ }^{\text {a－5 }}}$	To－a	AD 915	H，C，A	pfa，afa，pfl	$\begin{aligned} & \mathrm{S}>300 \mathrm{~km} \\ & \mathrm{E}>80 \mathrm{~km} \\ & \text { 図 } 3.4-2 \end{aligned}$		5	［大湯 ${ }^{6}$ ） ，［毛駄］${ }^{7}$ ．	To－a	opx，cpx ；ob
＋和田 $\mathrm{b}^{\text {3 }}$	To－b	ca． 2	C＊	pfa	$\mathrm{E}>40 \mathrm{~km}$				To－b	opx，cpx
十和田中掫，${ }^{\text {，}}$ ）	To－Cu	6	$\mathrm{C}^{* 3,18)}, \mathrm{ST}$	pfa	SE $>200 \mathrm{~km}$ ，東北地方一帯16）図 3．4－2		5	［安家］$]^{193}$ ，［高䪷 ${ }^{10)}$ ，［吾婁］${ }^{202}$	To－Cu	opx，cpx
十和田南部，${ }^{\text {，10）}}$	To－Nb	8.6	C＊	pfa	$\begin{aligned} & \text { ESE }>80 \mathrm{~km} \\ & \text { 図 } 3.4-2 \end{aligned}$		5		To－Nb	opx，cpx
十和田二の倉（群）${ }^{\text {® }}$	To－Nk	$10 \sim 13$	C＊	複数の sfa ，afa	ESE $>40 \mathrm{~km}$			［N．A．$]^{\text {8 }}$ ）	To－Nk	opx，cpx，（ol）
十和田八 ${ }^{\text {F }}$ ，11）	To－H	$\} 15$	$\mathrm{Or}^{\text {11）}}$ ， C	pfl，afa	pfl ：conc． 50 km図 2．4－2		6	本文 2.4 ［2］参照	To－H	opx，cpx，ho ；（qt）
	To－HP			pfa，afa	$\mathrm{E}>350 \mathrm{~km}$ 図 2．4－2	4			To－HP	opx，cpx，ho；（qt）
十和田ビスケット2 $2^{12)}$	To－BP2	$\begin{aligned} & \text { ca. } 20 \\ & \text { MIS } 2 \end{aligned}$	ST	pfa	ENE $>65 \mathrm{~km}$		5	インボリニーション発達，	To－BP2	opx，cpx
姶良 Tn	AT	28～30						本文•表3．1－3参照	AT	
十和田大不動5，10，12，13）	To－Of	$\mid \geq 32$	C，ST	pfl，afa	pfl ：conc． 50 km図 2．4－3		6	本文 2.4 ［3］参照	To－Of	\}opx, cpx
	To－BP1	MIS 3		pfa	$\begin{aligned} & \mathrm{E}(\mathrm{~N})>800 \mathrm{~km} \\ & \text { 図 } 2.4-3 \end{aligned}$	4		$\begin{aligned} & \left.\left[\text { [ビスケット1 (} \mathrm{BP}_{2}\right)^{2}\right]^{98} \\ & \text { インボリニーション発達. } \end{aligned}$	To－BP1	

青森（2／2）

火山・テフラ名	記 号	年代 汶定方法	堆積様式と㽬相	分布•体㭗	A	V	注•［対比•他の名称］
十和田合同 ${ }^{12,157}$	To－G	MIS 42^{222}	pfa，sfa，afa	$\mathrm{E}>65 \mathrm{~km}$ 図 3．4－3	3	5	インボリューション発违。
十和田中ビダンコ	To－Kb	同上	pfa				
十和田奠淋 ${ }^{12,13)}$	To－Os	$\left\lvert\, \begin{aligned} & \text { 局一㺓火 } \\ & \text { 蛤起 } \end{aligned}\right.$	pfl		2	$5 ?$	
十和田レッド年13）	To－Rd	MIS 5a？ST	pfa	$\mathrm{NE}>60 \mathrm{~km}$图 3．4－3	3	5	無入頝川活い河成段丘 （MIS 5a？）上．
十和田 $\mathrm{SP}^{12}{ }^{19}$	To－SP	MIS $5 a{ }^{2 \times 27}$ ST	pfa，pfl	ENE $>50 \mathrm{~km}$ 図 3．4－4	3	4	
十和田オコン2 $2^{12,13)}$	To－Ok ${ }_{2}$	同上	pfa	$\mathrm{E}(\mathrm{~S})>70 \mathrm{~km}$ 图 3．4－4	3－4	4－5	$\begin{aligned} & {\left[\mathrm{OP}_{2}\right]^{12\rangle} \text { 岩手の }[\mathrm{Kw}] \text { に }} \\ & \text { つつく } \end{aligned}$
十和田 QP^{12} 13）	To－QP	同上	pfa	ESE $>30 \mathrm{~km}$ 図 3．4－4	3	4	
深浦	Fk		pfa		？	？	Aso－4 や十和田テフラ群との屇位関俰不明．給滰不明。
十和田 $\mathrm{T} 17^{12,1313}$	To－T17		pfa	$\mathrm{E}(\mathrm{S})>40 \mathrm{~km}$	3	4	
阿蘇 $4^{\text {10）}}$	Aso－4	85～90	afa				本文•表3．1－5 参照
十和田アオスジ12，19）	To－AP	MIS 5 c ST	pfa	$\mathrm{E}(\mathrm{~S})>60 \mathrm{~km}$ 図 3．4－5	3	5	根城河成段丘㩍層（MIS 5c）植上
十和田カステラ ${ }^{\text {2218）}}$	To－CP		pfa	$\mathrm{E}(\mathrm{S})>70 \mathrm{~km}$ 図 3．4－5	3－4	5	
河趣 ${ }^{17}$	Toya	112～115	afa				［黄色シルト質孚石YP］${ }^{149}$ ， ［白タフ（WT）$]^{\text {bs }}$本文•表3．5－2意照
ザラメ $2^{12.13)}$	ZP2		pfa	$\mathrm{E}>50 \mathrm{~km}$ 図3．4－5		4	給㝓十和田加。
ザラメ1 $1^{12,18)}$	ZP1		pfa	ENE $>50 \mathrm{~km}$	3	4	高能海成段丘訬䂺睸（MIS 5e）とこれより一段低い多賀台段丘穄層をね打 5．給源十和田加。

[^11]| 鉱物組成の凡例 ${ }^{\text {\％}}$ | | |
| :---: | :---: | :---: |
| －opx ：斜方輝石 | －qt ：石英 | －cpx ：単斜輝石 |
| $\cdot \mathrm{ho}$ ：角関石 | －cum ：カミントン閉石 | －ep ：緑䉑石 |
| －ol ：カンラン石 | －bi ：黒雲母 | －ob：黒曜石 |
| －af ：アルカリ長石 | | |

※：青枠囲みは追記

外部事象に対する津波防護施設，浸水防止設備及び津波監視設備の防護方針について

1．概要

津波防護施設，浸水防止設備及び津波監視設備（以下「津波防護施設等」という。） の外部事象に対する防護方針を以下に示す。

2．防護に関する考え方
以下の考え方に基づき，女川原子力発電所において設計上考慮すべき外部事象に対する津波防護施設等の機能維持のための対応の要否について整理した。

外部事象に対する津波防護施設等の機能維持対応要否判断フローを図1に示す。
（1）設計上考慮すべき事象が，津波もしくは津波の随伴，重畳が否定できない事象 に該当するかを確認する。定量的な重畳確率が求められない事象については，保守的にその影響を考慮する。
（2）津波の随伴，重畳が否定できない場合は，当該事象による津波防護施設の機能喪失モードの有無を確認する。機能喪失モードが認められる場合は，設計によ り健全性を確保する。
（3）津波の随伴，重畳が有意でないと評価される事象についても，女川原子力発電所の津波防護施設については，基準津波の高さや防護範囲の広さ等その重要性 に鑑み，自主的に機能維持のための配慮を行う。

※1：定量的に評価できないものを含む
※2：「○」，「 $\triangle\rfloor$ ，「一」は，後掲の表 1 における整理に対応している

図 1 外部事象に対する津波防護施設等の機能維持対応要否判断フロー

3．検討結果
上記フローに基づく各事象に対する防護方針の検討結果を以下に示す。 （詳細は表1のとおり）
（1）津波の随伴，重畳が否定できない事象 ${ }^{1}$ に対する防護方針
これらの外部事象に対しては，津波との随伴もしくは重畳の可能性を否定でき ないため，荷重の重ね合わせのタイミングも考慮した上で設計への反映の要否を検討し，津波防護施設等への影響が考えられる事象に対しては，津波防護施設等 の機能を維持する設計とする。
※1：地震，風（台風），凍結，降水，積雪，落雷，森林火災
（2）津波の随伴，重畳が有意ではない事象（竜巻，火山の影響）に対する防護方針「竜巻」，「火山の影響」の 2 つの外部事象に津波は随伴せず，また，基準津波と の重畳の確率も有意ではないため，津波防護施設等を防護対象施設とはしないも のの，津波防護施設等の機能が要求される時にはその機能を期待できるように以下の対応を自主的に実施する。
a．「竜巻」
設計竜巻と基準津波が重畳する年超過確率は約 $1.9 \times 10^{-12} \sim 1.9 \times 10^{-13}$（／年）で あり，竜巻と津波の重畳は有意ではないと評価されるが，竜巻が襲来した場合に は必ず作用する風荷重に対しては，津波防護施設等の健全性を維持する設計とす る。また，竜巻が襲来した場合でも，必ずしも津波防護施設に作用するとは限ら ない竜巻飛来物の衝撃荷重に対しては，大規模な損傷に至り難い構造とする。
b．「火山の影響」
設計で想定する降下火砕物の噴火と基準津波が重畳する年超過確率は約 $1.2 \times$ $10^{-10} \sim 1.2 \times 10^{-11}$（／年）$*_{2}$ であり，火山の影響と基準津波の重畳は有意ではない と評価されるが，降下火砕物の堆積荷重について長期荷重に対する構造健全性を確保するとともに，降灰後に適宜除去が可能な設計とする。
※2：約 1 万 2 千年前の肘折尾花沢噴火を考慮

			\square	波の随伴，重畳が否定できないため，設計で価波の随伴，重畳は有意ではないが，機能維持に対応が不要な事象（一）	生を確保 いて設計	$\begin{aligned} & \text {-る事象 (○) } \\ & \text { :配慮する事象 (} \mathrm{C} \end{aligned}$
		表1 外部	に対する	防護施設等の対応方針整理表（	$2)$	
設計上考慮すべき外部事象	（1） 随伴事象として津波を考慮要	（2） 独立事象として津波が重畳し得る	津波との重畳 を考慮要 (11か(2)が○)	津波防護施設の機能喪失による安全施設等の機能喪失の可能性	設計への 反映要否	機能維持のための対応方針
地震	\bigcirc	－	\bigcirc	あり 地震荷重により損傷した場合，安全施設等への津波の到達，浸水による機能喪失が想定され る。	\bigcirc	耐震 S クラスとして基準地震動 Ss に対 し健全性を維持し，津波に対する防護機能を維持する。 また，津波と余震の組合せも考慮する。
風（台風）	－	\bigcirc	\bigcirc	あり 風荷重により損傷した場合，安全施設等への津波の到達，浸水による機能喪失が想定される。	\bigcirc	－風荷重，津波荷重を考慮した設計と する。 －津波監視カメラは，風荷重を考慮し た設計とする。
竜巻	－	－	－	以下のとおり，重畳の頻度は無視し得る。 - 設計竜巻の確率：約 $1.9 \times 10^{-6} /$ 年 - 基準津波の年超過確率 \Rightarrow 重畳確率：約 $1.9 \times 10^{-12} \sim 1.9 \times 10^{-13} /$ 年年超過確率が 1×10^{-7}／年未満であり，有意では ない。 $: 1 \times 10^{-6} \sim 1 \times 10^{-7} \quad / \text { 年 }$	\triangle	防潮堤•防潮壁の設計においては，自主的に以下の配慮を行い，信頼性を高 める。 －風圧力に対しては，健全性を維持す る設計とする。 －飛来物については，大規模な損傷に至り難い構造とする。 －津波監視カメラは，風荷重を考慮し た設計とする。
凍結	－	\bigcirc	\bigcirc	あり 凍害により止水目地が損傷した場合，安全施設 への津波の到達，浸水による機能喪失が想定さ れる。	\bigcirc	止水目地は最低気温を考慮した設計と する。
降水	－	\bigcirc	\bigcirc	降雨による海水面の上昇の影響は無視し得る。	－	－

	：津波の随伴，重畳が否定できないため，設計で健全性を確保する事象（○） ：津波の随伴，重畳は有意ではないが，機能維持について設計上配慮する事象（ \triangle ） ：対応が不要な事象（一）

表1 外部事象に対する津波防護施設等の対応方針整理表（2／2）						
設計上考慮すべき外部事象	（1） 随伴事象として津波を考慮要	（2） 独立事象として津波が重畳し得る	津波との重畳 を考慮要 （1）か（2）が○）	津波防護施設の機能喪失による安全施設等の機能喪失の可能性	設計への 反映要否	機能維持のための対応方針
積雪	－	\bigcirc	\bigcirc	積雪荷重により損傷した場合，安全施設等へ の津波の到達，浸水による機能喪失が想定さ れる。	\bigcirc	積雪荷重と津波荷重を考慮した設計と する。
落雷	－	\bigcirc	\bigcirc	落雷による津波監視設備の機能喪失が想定 される。	\bigcirc	津波監視設備については，既設避雷設備の遮へい範囲内への設置を行う。
火山	－	－	－	以下のとおり，重畳の頻度は無視し得る。 - 想定する火山の確率：約 $1.2 \times 10^{-4} /$ 年 $*$ - 基準津波の年超過確率 \Rightarrow 重畳確率：約 $1.2 \times 10^{-10} \sim 1.2 \times 10^{-11} /$ 年年超過確率が $1 \times 10^{-7} /$ 年未満であり，有意 ではない。 $: 1 \times 10^{-6} \sim 1 \times 10^{-7} \quad / \text { 年 }$	\triangle	設計にて長期荷重に対する構造健全性 を確保するとともに，降灰後に降下火砕物を適宜除去が可能な設計とする。
生物学的事象	－	－	－	なし 生物による影響（閉塞，侵入）による機能霛失モードを有しない。	－	－
森林火災	－	\bigcirc	\bigcirc	なし 防火帯により森林との離隔距離が確保され るため，熱影響を受けることはない。	－	－

※ 約 1 万 2 千年前の肘折尾花沢噴火を考慮
6 条（火山）一別添 1－154

火山影響評価における監視カメラ及びモニタリングポストの扱いについて

監視カメラは設置許可基準規則第 26 条（原子炉制御室），モニタリングポストは同規則第31条（監視設備）の要求を満足する必要があることから，本設備については，降下火砕物の影響に対して機能維持，又は降下火砕物による損傷を考慮して，代替設備により必要な機能を確保すること，必要に応じてプラントを停止し，安全上支障の ない期間での除灰，修復等の対応，又はそれらを適切に組み合わせることで安全機能 を損なわない設計としている。
なお，監視カメラ及びモニタリングポストは，外部事象防護対象施設ではないが，損傷した場合でも外部事象防護対象施設に対して波及的影響を及ぼすことはないこ とから，火山影響評価における評価対象施設等として抽出していない。

表1に監視カメラ及びモニタリングポストの概要を示す。

表1 監視カメラ及びモニタリングポストの概要

		監視カメラ	モニタリングポスト
イメージ			
数量		$\begin{aligned} & \text { 計 } 8 \text { 台 (津波用 } \times 2 \text {, 自然現象用 } \\ & \times 6 \text {) } \\ & \hline \end{aligned}$	計 6 箇所
火山影響 への考慮	構造物への 静的負荷	－降下火砕物の影響を受けにくい設置場所の考慮 －降下火砕物が堆積しにくい形状	－降下火砕物が堆積しにくい形状
	構造物への化学的影響 （腐食）	－外装は鋼製（塗装あり）であり，短期での腐食は生じない	－外装はアルミニウム合金（塗装あり） であり，短期での腐食は生じない
	絶縁低下	－外気を取込む機構がなく，防塵構造である	•外気を取込む機構がなく，防塵構造 である
その他		－自然現象の検知は水位計，気象観測設備，目視確認で可能	－可搬型モニタリングポスト※及び放射能測定車 ${ }^{*}$ でも同様な測定が可能 ※重大事故等対処施設として配備。

女川原子力発電所 2 号炉

運用，手順説明資料
外部からの衝撃による損傷の防止
（火山）

第6条 外部からの衝撃による損傷の防止（火山）

安全施設は，想定される自然現象（地震及び津波を除く。次項において同じ。）が発生した場合においても安全機
能を損なわないものでなければならない。
2 重要安全施設は，当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自然現象により当該重要安全
施設に作用する衝撃及び設計基準事故時に生ずる応力を適切に考慮したものでなければならない。

安全施設は，想定される自然現象（地震及び津波を除く。次
項において同じ。）が発生した場合においても安全機能を損
なわないものでなければならない。

6 条（火山）一別添2－2

6 条（火山）一別添2－3
技術的能力に係る運用対策（設計基準）

設置許可基準規則対象条文	対象項目	区分	運用対策等
第 6 条外部からの衝撃によ る損傷の防止	降下火砕物の除去作業及 び除灰後における降下火砕物による静的荷重や腐食等の影響に対する保守管理	運用•手順	－降灰が確認された場合には，建屋や屋外の設備等に長期間降下火砕物の荷重を掛け続けないこと，また降下火砕物の付着による腐食等が生じる状況 を緩和するため堆積した降下火砕物の除灰を実施する。 －降下火砕物による影響が見られた場合，必要に応じ補修を行う。
		体制	（担当箇所による保守•点検の体制） （降灰時の体制）
		保守 •点検	- 日常点検 - 定期点検 - 降灰時及び降灰後の巡視点検
		教育•訓練	－運用•手順，保守•点検に関する教育
	外気取入ダンパの閉止，換気空調系の停止，再循環運転	運用•手順	－降灰が確認された場合には，外気取入口に設置しているバグフィルタ，状況 に応じて外気取入ダンパの閉止，非常用換気空調設備の停止又は再循環運転 により，建屋内への降下火砕物の侵入を防止する。
		体制	（降灰時の体制）
		保守 •点検	－
		教育•訓練	－運用•手順に関する教育

6 条（火山）一別添2－4
184

設置許可基準規則対象条文	対象項目	区分	運用対策等
第 6 条外部からの衝撃による損傷の防止	バグフィルタ取替•清掃作業等	運用•手順	降灰が確認された場合には，非常用換気空調設備の外気取入口のバグフィ ルタについて，バグフィルタ差圧を確認するとともに，状況に応じて清掃 や取替を実施する。 ディーゼル発電機運転時は，バグフィルタの巡視点検を行い，必要に応じ取替•清掃を行う。
		体制	（降灰時の体制）
		保守 •点検	－降灰時の巡視点検
		教育•訓練	－運用•手順に関する教育

6 条（火山）一別添2－5
185

[^0]: 下線は，今回の提出資料を示す。

[^1]: （3）：影響因子と直接関連しない【評価除外理由】

 （2）：腐食に対して，機能に有意な影響を受け難い

[^2]: ※1：塗装ハンドブックによると，プラントの塗装として，酸，アルカリなどに水分の加わった強度腐食環境での塗装には耐薬品性のある塗料として，エポキシ樹脂塗料，タールエポ キシ樹脂塗料などが使用されるとの記載がある。

 〔参考文献〕：石塚末豊•中道敏彦，塗装ハンドブック，1996，朝倉書店，P312
 （注）：評価対象施設のうち，屋内設備（非常用ディーゼル発電機（屋内設備），計測制御設備（安全保護系）及び非常用電源設備（所内低圧系））は，外気取入口に設置されているバグ
 なわれることはない。

[^3]: ○ ：降下火砕物に対し安全機能を維持できる
 又は降下火砕物による損傷を考慮した場合でも，対応する設計基準事故対処設備が降下火砋物に対し安全機能を維持できる（防止設備）又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない設備） —：他の項目にて整理

[^4]: ○ ：降下火砕物に対し安全機能を維持できる
 又は降下火砕物による損傷を考慮した場合でも，対応する設計基淮事故対処設備が降下火砕物に対し安全機能を維持できる（防止設備）
 又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない設備） —：他の項目にて整理

[^5]: ○：降下火砕物に対し安全機能を維持できる
 又は降下火砕物による損傷を考慮した場合でも，対応する設計基準事故対処設備が降下火砕物に対し安全機能を維持できる（防止設備）又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない設備）一：他の項目にて整理

[^6]: ○ ：降下火砕物に対し安全機能を維持できる
 又は降下火砕物による損傷を考慮した場合でも，対応する設計基準事故対処設備が降下火砤物に対し安全機能を維持できる（防止設備）又は降下火砕物による損傷を考慮して，代替設備による機能維持や安全上支障のない期間での修復等の対応が可能（緩和設備，防止でも緩和でもない 設備） —：他の項目にて整理

[^7]: ＊防衛大学校•地球科学教室 Department of Geoscience，National Defense Academy
 ＊＊パリノ・サーヴェイ（株）研究所 Institute of Palynosurvey Co．，Ltd．

[^8]: ＊：${ }^{14} \mathrm{C}$ 年代 ${ }^{* *}: ~ \mathrm{TL}$ 年代 ${ }^{* * *}: ~ \mathrm{FT}$ 年代 $\quad * * * *:$ 佰序年代 ${ }^{* * * * *: ~ E S R ~}$ 年代

[^9]: 枠囲み部は本資料における抜粋又は参照箇所を示す

[^10]: 棵囲み部は本資料における抜粺又は参照笽所を示す

[^11]: 枠囲み部は本資料における抜粋又は参照箇所を示す

