女川原子力発電所 2 号炉

設計基準対象施設について

平成 31 年 2 月

東北電力株式会社

目次

4 条 地震による損傷の防止

5 条 津波による損傷の防止
6 条 外部からの衝撃による損傷の防止（その他外部事象）
6 条 外部からの衝撃による損傷の防止（竜巻）
6 条 外部からの衝撃による損傷の防止（火山）
6 条 外部からの衝撃による損傷の防止（外部火災）
7 条 発電用原子炉施設への人の不法な侵入等の防止
8 条 火災による損傷の防止
9 条 溢水による損傷の防止等
10 条 誤操作の防止
11条 安全避難通路等
12 条 安全施設
14 条 全交流動力電源喪失対策設備
16 条 燃料体等の取扱施設及び貯蔵施設
17 条 原子炉冷却材圧力バウンダリ
23 条 計測制御系統施設（第 16 条に含む）
24 条 安全保護回路
26 条 原子炉制御室等
31 条 監視設備
33 条 保安電源設備
34 条 緊急時対策所
35 条 通信連絡設備

下線は，今回の提出資料を示す。

第4条：地震による損傷の防止
<目 次 >

第1部

1．基本方針
1.1 要求事項の整理
1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1.3 気象等
1.4 設備等
1.5 手順等

第2部

1．耐震設計の基本方針
1.1 基本方針
1.2 適用規格

2．耐震設計上の重要度分類
2．1 重要度分類の基本方針
2.2 耐震重要度分類

3．設計用地震力
3.1 地震力の算定法
3.2 設計用地震力

4．荷重の組合せと許容限界
4.1 基本方針

5．地震応答解析の方針
5.1 建物•構築物
5.2 機器•配管系
5.3 屋外重要土木構造物
5.4 津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物

6．設計用減衰定数
7．耐震重要施設の安全機能への下位クラス施設の波及的影響
8．水平 2 方向及び鉛直方向の地震力の組合せに関する影響評価方針
9．構造計画と配置計画
（別 添）
別添－1 設計用地震力
別添－2 動的機能維持の評価
別添－3 弾性設計用地震力 Sd •静的地震力による評価
別添—4 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討に ついて
別添－5 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
別添— 6 屋外重要土木構造物の耐震評価における断面選定の考え方
別添－7 主要建屋の構造概要及び解析モデルについて
別添－8 入力地震動について
（別 紙）
別紙－1 既工認との手法の相違点の整理（設置変更許可申請段階での整理）
別紙－ 2 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討
別紙—3 水平2方向及び鉛直方向の適切な組合せに関する検討について
別紙—4 サプレッションチェンバ内部水質量の考え方の変更について
別紙— 5 竜巻防護ネットの耐震構造設計について
別紙－6 原子炉本体の基礎の復元力特性について
別紙－7 使用済燃料貯蔵ラックの減衰定数について
別紙－8 規格適用範囲外の動的機能維持の評価
別紙－9 海水ポンプ室門型クレーンへの非線形時刻歴応答解析の適用
別紙－1 0 地震時における燃料被覆管の閉じ込め機能の維持について
別紙－11 東北地方太平洋沖地震等による影響を踏まえた建屋耐震設計方法へ の反映について
別紙－12 埋め込まれた建屋の周辺地盤による影響について
別紙－13 原子炬建屋屋根トラスの解析モデルへの弾塑性解析の適用
別紙－14 原子炬建屋基礎版の応力解析モデルへの弾塑性解析の適用
別紙－15 屋外重要土木構造物の耐震評価における断面選定について
別紙－16 土木構造物の解析手法及び解析モデルの精緻化について
別紙－17 後施工せん断補強筋による耐震補強について
別紙－18 液状化影響の検討方針について
別紙－19 地下水位低下設備について
別紙－20 防潮堤の構造の変遷について

女川原子力発電所 2 号炉

上位クラス施設の安全機能への下位クラス施設の波及的影響の検討

目 次
1．概要 1
2．波及的影響に関する評価方針 2
2.1 基本方針 2
2．2 下位クラス施設の抽出方法 4
2.3 影響評価方法 5
2.4 プラント運転状態による評価対象の考え方 5
3．事象検討 7
3.1 別記 2 に記載された事項に基づく事象検討 7
3.2 地震被害事例に基づく事象の検討 7
3．2．1 被害事例とその要因の整理 7
3．2．2 追加考慮すべき事象の検討 8
3.3 津波，火災及び溢水による影響評価 9
3．4周辺斜面の崩壊による影響評価 10
3.5 液状化による影響評価 10
4．上位クラス施設の確認 11
5．下位クラス施設の抽出及び影響評価方法 20
5.1 相対変位又は不等沈下による影響 20
5.2 接続部における相互影響 24
5.3 建屋内における施設の損傷，転倒及び落下等による影響 33
5.4 建屋外における施設の損傷，転倒及び落下等による影響 35
6．下位クラス施設の検討結果 37
6． 1 相対変位又は不等沈下による影響検討結果 37
6．1．1抽出手順 37
6．1．2 下位クラス施設の抽出結果 37
6．1．3影響評価方針 37
6.2 接続部における相互影響検討結果 44
6．2．1 抽出手順 44
6．2．2 接続部の抽出結果及び影響評価対象の選定結果 44
6．2．3 影響評価結果 44
6． 3 建屋内における施設の損傷，転倒及び落下等による影響検討結果 64
6．3．1 抽出手順 64
6．3．2 下位クラス施設の抽出結果 64
6．3．3 耐震評価方針 64
6． 4 建屋外における施設の損傷，転倒及び落下等による影響検討結果 110
6．4．1 抽出手順 110
6．4．2 下位クラス施設の抽出結果 110
6．4．3 耐震評価方針 110

添付資料1－1 波及的影響評価に係る現地調査の実施要領
添付資料 1－2 波及的影響評価に係る現地調査記録
添付資料2 原子力発電所における地震被害事例の要因整理
添付資料3 周辺斜面の崩壊等による上位クラス施設への影響
添付資料4 上位クラス施設に隣接する下位クラス施設の支持地盤について
添付資料5 設置予定施設及び撤去予定施設に対する波及的影響評価の考え方に ついて
添付資料 6 原子炉補機冷却海水系通水機能への下位クラス施設の波及的影響の検討について
添付資料 7 防潮堤•防潮壁への下位クラス施設の波及的影響の検討について

参考資料 下位クラス配管の損傷形態の検討について

1．概要

設計基準対象施設のらち耐震重要度分類 S クラスに属する施設，その間接支持構造物及び屋外重要土木構造物（以下「S クラス施設等」という。）が下位クラス施設 の波及的影響によって，その安全機能を損なわないことについて，また，重大事故等対処施設のらち常設耐震重要重大事故防止設備及び常設重大事故緩和設備並び にこれらが設置される常設重大事故等対処施設（以下「重要SA施設」という。）が下位クラス施設の波及的影響によって，重大事故等に対処するために必要な機能を損なわないことについて，設計図書類を用いた机上検討及び現地調査（プラントウ オークダウン）による敷地全体を俯瞰した調査•検討を行い，評価を実施する。

ここで，S クラス施設等と重要SA施設を合わせて「上位クラス施設」と定義し， Sクラス施設等の安全機能と重要SA施設の重大事故等に対処するために必要な機能 を合わせて「上位クラス施設の機能」と定義する。また，上位クラス施設に対する波及的影響の検討対象とする「下位クラス施設」とは，上位クラス施設以外の発電所内にある施設（資機材等を含む）をいう。

本資料では，設置許可段階で整理した波及的影響評価対象施設の抽出結果を示す ものであり，対象施設の耐震性評価を含む波及的影響評価については工事計画認可申請において提示する。なお，工事計画認可申請段階において，設置，撤去予定の施設の状況も踏まえ，施設の抽出結果について再度整理する。

2．波及的影響に関する評価方針

2.1 基本方針

波及的影響評価は以下に示す方針に基づき実施する。
（1）「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則の解釈」の別記 2 （以下「別記 2 」といら。）に記載された 4 つの事項を基に，検討すべき事象を整理する。また，原子力発電所の地震被害情報を基に，別記 2 の 4 つの事項以外に検討すべき事象の有無を確認する。
（2）（1）で整理した検討事項を基に，上位クラス施設に対して波及的影響を及 ぼすおそれのある下位クラス施設を抽出する。
（3）（2）で抽出された下位クラス施設について，配置，設計，運用上の観点か ら上位クラス施設への影響評価を実施する。

また，波及的影響評価に係る検討フローを第2．1－1図に示す。

[^0]第2．1－1 図 波及的影響評価に係る検討フロー

4 条一別紙 2－3

2． 2 下位クラス施設の抽出方法

上位クラス施設に対して波及的影響を及ぼすおそれのある下位クラス施設の抽出は，設計図書類を用いた机上検討及び現地調査（プラントウォークダウン）に よる敷地全体を俯瞰した調査•検討により実施する。
（1）事前準備及び机上検討 I［第2．1－1図（1）（2）］
女川原子力発電所 2 号炉の屋外配置図及び機器配置図等の設計図書類を用いて，屋外及び屋内の上位クラス施設を抽出し，その配置状況の情報を整理する。配置状況確認結果を踏まえ，検討事象ごとに，以下に示す考え方を踏まえて波及的影響を及ぼすおそれのある施設を抽出する。
a．検討事象が「建屋内下位クラス施設の損傷等による影響」又は「建屋外下位クラス施設の損傷等による影響」の場合
＞上位クラス施設が大型施設であれば，重量比から仮置物品等の影響を受けないことから，本項目（1）で調査した設計図書類の情報によって波及影響を及ぼすおそれのある施設を抽出する。
＞上位クラス施設が大型施設ではない場合には，現地調査が困難な場合 を除き下記（2）及び（3）に示す情報の補完作業を実施する。
b．検討事象が「相対変位又は不等沈下による影響」又は「上位，下位クラ スの接続部における相互影響」の場合
＞「相対変位又は不等沈下による影響」については，建屋外の大型施設 が評価対象となることから，本項目（1）で調査した設計図書類の情報 によって波及的影響を及ぼすおそれのある施設を抽出する。
＞「上位，下位クラスの接続部における相互影響」については，系統図等の設計図書類で網羅的に確認が可能であることから，本項目（1）で調査した設計図書類の情報によって波及的影響を及ぼすおそれのあ る施設を抽出する。
（2）現地調査（プラントウォークダウン）［第2．1－1図（3）］
机上検討 I で抽出された下位クラス施設の詳細な設置状況又は配置状況 を確認すること及び設計図書類では判別出来ない仮設設備又は資機材等が影響防止対策を施工していない状態で上位クラス施設周辺に配置されてい ないことを確認することを目的として，屋内外の上位クラス施設を対象と して現地調査を実施する。

現地調査の実施要領を添付資料1－1 に示す。また，現地調査記録の例を添付資料1－2に示す。

なお，現地調査における確認項目や判断基準についても添付資料 1－1 の実施要領に示す。
（3）机上検討 II［第 2．1－1図（4）］
現地調査を実施する必要があると判断したものの，現地調査を実施でき ない上位クラス施設については，現地調查と同様の判断基準で机上検討を実施する。
（4）検討対象施設の抽出［第2．1－1図（5）］
上記（1）～（3）において抽出された情報を用いて，上位クラス施設へ地震時に波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

なお，上位クラス施設と下位クラス施設の離隔距離が下位クラス施設の高さを超える場合は，「下位クラス施設の損傷等による影響」，「相対変位又 は不等沈下による影響」のいずれの検討事象においても影響がないものと考えられることから，該当する下位クラス施設は検討対象から除外する。

2．3影響評価方法［第2．1－1図（6），（7），（8）］

波及的影響を及ぼすおそれがあるとして抽出された下位クラス施設については，詳細評価を実施し，上位クラス施設の機能を損なわないことにより，その影響を確認する。

詳細評価において，抽出された下位クラス施設が耐震性を有していることの確認によって上位クラス施設の機能を損なわないことを確認する場合，適用する地震動は上位クラス施設の設計に用いる基準地震動 Ss とする。

詳細評価において，上位クラス施設への波及的影響が否定できない場合には，影響を防止するための対策を検討し，実施することで評価を完了とする。

2．4 プラント運転状態による評価対象の考え方

プラントの運転状態としては，通常運転時，事故対処時及び定期検査時があり，各運転状態において要求される上位クラス施設の機能を考慮して波及的影響評価 を実施する。

通常運転時は，ほぼ全ての上位クラス施設が供用状態（運転又は待機状態）に あり，下位クラス施設の波及的影響も考慮した上で，基準地震動Ss に対して安全機能を損なわないことを確認する。また，事故対処時においても，通常運転時と同様である。

定期検査時は，その工程に伴い，上位クラス施設は供用状態から除外され，系統も隔離される。その状態では当該施設の安全機能には期待しないことから，波及的影響評価の対象から除外する。また，定期検査時においても補機冷却系統や電源系等，一部の系統は供用状態にあるため，これらの施設については波及的影響評価の対象となる。例として，定期検査時のオペレーションフロアレイダウン エリアの資機材による使用済燃料プール及び開放された原子炉に対する影響評価 は，「第16条 燃料体等の取扱い施設及び貯蔵施設」の適合性評価として実施して

おり，影響がないことを確認している（別途，16 条のヒアリングにて説明予定）。上記のことから，事故対処時及び定期検査時の評価は，通常運転時において要求される上位クラス施設の機能を考慮した波及的影響評価に包含される。

3．事象検討

3.1 別記 2 に記載された事項に基づく事象検討

別記 2 に記載された 4 つの事項を基に，具体的な検討事象を整理する。
（1）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位によ る影響
（1）地盤の不等沈下による影響
－地盤の不等沈下による下位クラス施設の傾きや倒壊に伴ら隣接した上位 クラス施設への衝突
（2）建屋間の相対変位による影響
－上位クラス施設と下位クラス施設の建屋間の相対変位による隣接した上位クラス施設への衝突
（2）上位クラス施設と下位クラス施設との接続部における相互影響
－機器•配管系において接続する下位クラス施設の損傷又は隔離に伴う上位クラス施設側の系統のプロセス変化
－電気計装設備において接続する下位クラス施設の損傷に伴う電気回路及 び信号伝送回路を介した悪影響

③ 建屋内における下位クラス施設の損傷，転倒及び落下等による上位クラス施設への影響

- 下位クラス施設の転倒，落下及び倒壊に伴う上位クラス施設への衝突
- 可燃物を内包した下位クラス施設の損傷に伴う火災
- 水•蒸気を内包した下位クラス施設の損傷に伴ら溢水
（4）建屋外における下位クラス施設の損傷，転倒及び落下等による上位クラス施設への影響
（1）施設の損傷，転倒及び落下等による影響
- 下位クラス施設の転倒，落下及び倒壊に伴う上位クラス施設への衝突
- 可燃物を内包した下位クラス施設の損傷に伴う火災
- 水•蒸気を内包した下位クラス施設の損傷に伴ら溢水
（2）周辺斜面の崩壊による影響
－周辺斜面の崩壊による土塊の衝突

3.2 地震被害事例に基づく事象の検討

3．2．1被害事例とその要因の整理
別記 2 に記載された事項のほかに考慮すべき事項がないかを確認するため，原子力施設情報公開ライブラリ（NUCIA：ニューシア）から，同公開ライブラリ に登録された以下の地震を対象に，原子力発電所の被害情報を抽出した。

これまでの被害事例において，下位クラス施設の破損等による波及的影響を含めて上位クラス施設の安全機能が損なわれる事象は確認されていないため，被害事例は全て上位クラス施設以外のものとなるが，これらの地震被害の発生要因（原因）を整理し，3．1項で検討した波及的影響の具体的な検討事象に加 えるべき新たな被害要因がないかを検討した。

被害事例とその要因を整理した結果を添付資料2に示す。
（対象とした情報）

- 宮城県沖地震（女川原子力発電所：平成17年8月）
- 能登半島地震（志賀原子力発電所：平成 19 年 3 月）
- 新潟県中越沖地震（柏崎刈羽原子力発電所：平成19年7月）
- 駿河湾地震（浜岡原子力発電所：平成 21 年 8 月）
- 東北地方太平洋沖地震（女川原子力発電所，東海第二発電所，福島第二原子力発電所：平成 23 年 3 月＊）
＊NUCIA 最終報告を対象とした（福島第二は一部中間報告を対象）。

添付資料2の整理の結果，地震被害の発生要因は以下の I～VIに分類された。 ［地震被害発生要因］
I ：地盤の不等沈下（液状化による影響を含む）による損傷
II：建屋間の相対変位による損傷
III ：地震の摇れによる施設の損傷•転倒•落下等
IV：周辺斜面の崩壊
V：使用済燃料プールのスロッシングによる溢水
VI ：その他（地震の摇れによる警報発信等，施設の損傷を伴わない $\mathrm{I} \sim \mathrm{V}$ 以外 の要因等）

3．2．2 追加考慮すべき事象の検討

上記 I～VIの要因が 3.1 項で整理した（1）～（4）の検討事項の対象となってい るかを第3．2．2－1 表に整理した。

第3．2．2－1 表に示すとおり，I～Vの要因は（1）～（4）の検討事項に分類されて おり，いずれの検討事項にも分類されなかった要因は，「VI：その他（地震の揺れによる警報発信等，施設の損傷を伴わない I～V以外の要因等）」であっ た。

要因VIについては，地震の揺れによる警報発信，機器の誤動作，避圧弁の動作等の要因並びに地震に起因する津波，火災及び溢水による要因である。この らち警報発信，機器の誤動作，避圧弁の動作等については，施設の損傷を伴わ ない要因であることから，波及的影響の観点で考慮すべき検討事項には当たら

ないと判断した。また，津波，火災及び溢水による影響については，3． 3 項に示すとおり別途影響評価を実施していることから，ここでは検討の対象外とす る。

以上のことから，波及的影響評価における検討事項（1）～4）について，地震に よる原子力発電所の被害情報から確認された発生要因を踏まえても，特に追加 すべき事項がないことが確認された。

第3．2．2－1 表 地震被害事例の要因と検討事象の整理

番号	波及的影響評価における検討事項		地震被害発生要因
（1）	設置地盤及び地震応答性状の相違等 に起因する不等沈下又は相対変位に よる影響	地盤の不等沈下による影響	I
		建屋間の相対変位による影響	II
（2）	上位クラス施設と下位クラス施設と の接続部における相互影響	接続部における相互影響	II，III
（3）	建屋内における下位クラス施設の損傷，転倒及び落下等による上位クラス施設への影響	施設の損傷，転倒及び落下等に よる影響	III，V
（4）	建屋外における下位クラス施設の損傷転倒及び落下等による上位クラス施設への影響	施設の損傷，転倒及び落下等に よる影響	I，III
		周辺斜面の崩壊による影響	IV

3.3 津波，火災及び溢水による影響評価

地震に起因する津波，火災及び溢水による安全機能又は重大事故等に対処する ために必要な機能を有する施設への影響については，それぞれ津波側，火災側及 び溢水側の説明書で影響評価を実施する。

津波の影響評価では，必要な津波防護対策（S クラス）を講じることにより，基準津波に対して施設の安全機能又は重大事故等に対処するために必要な機能 が損なわれるおそれがないことを評価している。火災の影響評価では，地震によ る損傷の有無に関わらず，可燃物を内包している機器•配管系の全てが火災源と なることを想定して施設の安全機能又は重大事故等に対処するために必要な機能への影響評価を実施している。また，溢水の影響評価では，水又は蒸気を内包 している下位クラスの機器•配管系について，基準地震動 Ss に対する耐震性を確認できないものが溢水源となることを想定して施設の安全機能又は重大事故等に対処するために必要な機能への影響評価を実施することから，地震に起因す る津波，火災及び溢水による波及的影響については，これらの影響評価に包絡さ れる。

3．4周辺斜面の崩壊による影響評価

上位クラス施設については，基準地震動 Ss による地震力により周辺斜面の崩壊の影響がないことが確認された場所に設置する。具体的には「原子力発電所耐震設計技術指針 JEAG4601－1987」，「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術」及び「宅地防災マニュアルの解説」を参考に，個々の斜面高さを踏 まえて対象斜面を抽出する。

上記に基づく対象斜面の抽出とその耐震安全性評価については，斜面の安定性 に関するヒアリングにて，上位クラス施設の機能に対して影響がないことを審査中である。また，上位クラス施設への波及的影響を及ぼすおそれのある下位クラ ス施設については，周辺斜面の崩壊による影響が無いことを確認した。確認方針，状況について添付資料3に示す。

3.5 液状化による影響評価

液状化による影響のうち不等沈下については，検討事項（1）に含まれるが，その他の被害想定として，浮き上がり及び側方流動による影響を確認する。

上位クラス施設への液状化による影響については，「液状化影響の検討方針」に基づき，各施設の設計において必要に応じて考慮する。

また，上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設に ついては，敷地内の地下水位を適切に反映した上で，基準地震動 Ss に対して浮 き上がり及び側方流動による変位によって，上位クラス施設への影響がないこと を6．4項で確認する。

4．上位クラス施設の確認
波及的影響評価を実施するに当たつて，防護対象となる上位クラス施設は以下の とおりとする。
（1）設計基準対象施設のらち，耐震 S クラス施設（津波防護施設，浸水防止設備及び津波監視設備を含む。）
（2）（1）の間接支持構造物である建物•構築物
（3）屋外重要土木構造物
（4）重大事故等対処施設のうち，常設耐震重要重大事故防止設備及び常設重大事故緩和設備
（5）（4）が設置される常設重大事故等対処施設（間接支持構造物である建物•構築物）

建屋外の上位クラス施設一覧を第4－1 表に，屋内の上位クラス施設一覧を第 4－2表に示す。表中では，原子炉建屋を R／B，制御建屋を C／B と表記する。また，設置場所に記載している番号は第6．3．1－1 図に示すエリア番号と対応している。

第 4－1 表 女川 2 号炉 建屋外上位クラス施設一覧表

整理 番号	屋外上位クラス施設	区分
0001	原子炉補機冷却海水ポンプ	Sクラス SA施設
0002	原子炉補機冷却海水系配管	Sクラス SA施設
0003	RSWポンプ吐出逆止弁	Sクラス SA施設
0004	RSWポンプ吐出弁	Sクラス SA施設
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設
0006	高圧炉心スプレイ補機冷却海水ポンプ	Sクラス SA施設
0007	高圧炉心スプレイ補機冷却海水系スト レーナ	Sクラス SA施設
0008	高圧炉心スプレイ補機冷却海水系配管	Sクラス SA施設
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設
0010	HPSWポンプ吐出弁	Sクラス SA施設
0011	非常用ガス処理系配管	Sクラス SA施設
0012	復水補給水系配管	SA施設
0013	原子炉補機冷却水系配管	Sクラス SA施設
0014	残留熱除去系配管	Sクラス SA施設
0015	原子炉格納容器フィルタベント系配管	SA施設
0016	ガスタービン発電設備燃料移送ポンプ	SA施設
0017	ガスタービン発電設備燃料移送系配管	SA施設
0018	復水貯蔵タンク	SA施設
0019	復水貯蔵タンク水位計器架台	Sクラス SA施設
0020	RSWポンプ出口圧力計器架台	Sクラス
0021	HPSWポンプ出口圧力計器架台	Sクラス
0022	排気筒	Sクラス SA施設
0023	防潮堤	Sクラス
0024	防潮壁	Sクラス
0025	逆流防止設備	Sクラス
0026	水密扉	Sクラス

整理番号	屋外上位クラス施設	区分
0027	浸水防止蓋	Sクラス
0028	逆止弁付ファンネル	Sクラス
0029	貫通部止水処置	Sクラス
0030	津波監視カメラ	Sクラス
0031	取水ピット水位計	Sクラス
0032	原子炉建屋	Sクラス 間接支持構造物 SA施設
0033	制御建屋	間接支持構造物
0034	海水ポンプ室	屋外重要土木構造物間接支持構造物 SA施設
0035	軽油タンク室	屋外重要土木構造物間接支持構造物
0036	復水貯蔵タンク基礎	SA施設間接支持構造物
0037	軽油タンク連絡ダクト	屋外重要土木構造物間接支持構造物
0038	排気筒連絡ダクト	屋外重要土木構造物間接支持構造物
0039	原子炉機器泠却海水配管ダクト	屋外重要土木構造物間接支持構造物
0040	緊急用電気品建屋	SA施設間接支持構造物
0041	ガスタービン発電設備軽油タンク室	SA施設間接支持構造物
0042	緊急時対策建屋	SA施設間接支持構造物
0043	取水口	屋外重要土木構造物 SA施設
0044	取水路	屋外重要土木構造物 SA施設
0045	3 号炬海水熱交換器建屋	間接支持構造物
0046	復水貯蔵タンク外部注水入口弁	SA施設
0047	トランシーバ屋外アンテナ	SA施設
0048	衛星電話屋外アンテナ	SA施設
0049	無線通信装置	SA施設
0050	取放水路流路縮小工	Sクラス
0051	浸水防止壁	Sクラス

第 4－2表 女川 2 号炉 建屋内上位クラス施設一覧表（ $1 / 7$ ）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置建屋	設置场所	整理号	屋内上位クラス施設（機器•配管）	区分	設置建屋	設置场所
E001	称料集合体	sクラス	R／B	PCV内	E046	ほう酸水注入系ポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－206
E002	原子炉压力容器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	PCV内	E047	ほう酸水注入系拧蔵タンク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	R－206
E003	妒心支持構造物	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E048	ほう酸水注入系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－
E004	原子炉压力容器支持構造物	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E049	放射性ドレン移送系配管	sクラス	R／B	－
E005	原子炉压力容器付属偁造物	Sクラス	R／B	PCV内	E050	サプレッションブール水睹蔵系配管	sクラス	R／B	－
E006	原子炉压力容器内部構造物	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E051	然料プール洽却浄化系ポンプ	SA施設	R／B	R－105
E007	使用洨燃料ブール	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－301	E052	鿭料プール洽却浄化系熱交换器	SA施設	R／B	R－105
E008	使用洨燃料拧蔵ラック	sクラス	R／B	R－301	E053	然料プール浍却浄化系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－
E009	制御棒•破損燃料拧蔵ラック	Sクラス	R／B	R－301	E054	換気空詡補機常用洽却水系配管	sクラス	R／B	－
E010	原子炉再循襄ポンプ	sクラス	R／B	PCV内	E055	換匈空評補機非常用冷却水系配管	sクラス	R／B	－
E011	原子炉再循噮系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	E056	復水補紛水系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－
E012	主蒸気逃がし安全升逃がし升機能用ア キュムレータ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E057	高圧窒素がス供給系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E013	主蒸気逃がし安全弁自動減圧機能用ア キュムレータ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E058	所内用庣縮空気系配管	sクラス	R／B	－
E014	主蒸気第一阿霍异用アキュムレータ	Sクラス	R／B	PCV内	E059	計装用圧縮空気系配管	sクラス	R／B	－
E015	主蒸気第二阿霍弁用アキュムレータ	Sクラス	R／B	R－B104	E060	サンブリンク配管	sクラス	R／B	－
E016	主蒸気系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E061	高圧窒素ガス供給系窒素ガスボンベラッ ク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	$\begin{gathered} \mathrm{R}-110, \\ 111 \end{gathered}$
E017	復水給水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E062	中央制御室送風機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	$\begin{gathered} \hline \text { C-B201, } \\ \text { B202 } \\ \hline \end{gathered}$
E018	残留熱除去系熱交换器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－104	E063	中央制御室排風機	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	C／B	$\begin{array}{\|c\|} \hline \text { C-B201, } \\ \text { B202 } \\ \hline \end{array}$
E019	残留熱除去系ポンプ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－B304， B305，B307	E064	中央制御室再循噮逆風機	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E020	残留熱除去系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E065	中央制御室再循澴フイルタ装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施喑 } \\ & \hline \end{aligned}$	C／B	C－B201
E021	戥留熱除去系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E066	ドライウェル	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E022	高压炉心スプレイ系ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B306	E067	ドライウェルベント開口部	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内
E023	高压炉心スプレイ系ストレーナ	$\begin{array}{\|c} \hline \text { Sクラス } \\ \text { SA施設 } \end{array}$	R／B	PCV内	E068	サプレッションチェンバ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV
E024	高圧妒心スプレイ系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E069	ボックスサポート	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B302
E025	低压炉心スプレイ系ポンプ	sクラス SA施設	R／B	R－B303	E070	機器般出入用ハッチ	sクラス SA施設	R／B	PCV
E026	低压炉心スプレイ系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E071	逃がし安全弁缎出入口	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	PCV
E027	低圧炉心スプレイ系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E072	制御椦取詯機構般出入口	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E028		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307	E073	所員用エアロック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E029	原子炉隔催時冷却系ポンプ駆動用タービ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307	E074	原子炉格納容器配管貫通部	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E030		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E075	原子炉格納容器電気配線貫通部	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E031	原子炉補機冾却水系熱交換器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$	E076	ダウンカマ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施险 } \end{aligned}$	R／B	PCV内
E032	原子炉補機洽却水ポンフ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$	E077	ベント管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E033	原子炉補機洽却水サージタンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－301	E078	ベント管ベローズ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV
E034	原子炬補機洽却水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E079	ベントヘッダ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内
E035	原子炉補機洽却海水系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$	E080	真空破填装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施喑 } \\ & \hline \end{aligned}$	R／B	PCV内
E036	原子炉補機冷却海水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	E081	サプレッションチェンバスプレイ管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E037	高圧炉ふスプレイ補機冷却水系熱交換器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B310	E082	ドライウェルスブレイ管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E038	高圧妒心スプレイ補機洽却水ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B310	E083	原子炉格納容器スタビライサ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E039	高圧炉心スプレイ補機冷却水サージタン ク	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－206	E084	原子炉格納容器綗気系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E040	高圧炉心スプレイ補機洽却水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E085	非常用カス处理系排風機	$\begin{gathered} \text { Sクラス } \\ \text { SA施謫 } \\ \hline \end{gathered}$	R／B	R－205
E041	高圧炉心スプレイ補機汾却海水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	E086	非常用力ス処理系空気乾燥装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施险 } \end{aligned}$	R／B	R－205
E042	原子炬冾却林浄化系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	E087	非常用かス処理系フイルタ装置	Sクラス SA施設	R／B	R－205
E043	制御棒輯動機構	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	E088	非常用が处理系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－
E044	水压制御ユニット	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \hline \text { R-B103, } \\ \text { B106 } \end{gathered}$	E089	可燃性力ス濃度制御系再結合装置ブロワ	sクラス	R／B	R－206
E045	制御楮敗動水圧系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	E090	可㷵性カス濃度制御系再結合装置	sクラス	R／B	R－206

第 4－2 表 女川 2 号炉 建屋内上位クラス施設一覧表（2／7）

$\begin{aligned} & \text { 䔩理 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置建屋	設置場所
E091	可燃性力ス濃度制御系配管	sクラス	R／B	－
E092	非常用ディーゼル発電設備ディーゼル機関	Sクラス SA施設	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E093	非常用デイーゼル発電設侟空気だめ	Sクラス SA施設	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E094	非常用ディーゼル発電設備然料デイタン	Sクラス SA施設	R／B	R－203
E095	非常用ディーゼル発電設備ディーゼル発電機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E096	非常用ディーゼル発電設備清水塡張タン ク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\underset{\text { R203 }}{\substack{\text { R201, }}}$
E097	非常用ディーぜル発電設備清水加熱器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110, } \end{gathered}$
E098	非常用ディーゼル發電設倍洞滑油加熱器	$\begin{aligned} & \hline \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \mathrm{R}-\mathrm{B} 108, \\ \text { B110 } \end{gathered}$
E099	非常用ディーゼル発電設備清水加熱器ポ ンブ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E100	非常用ディーゼル発電設備阔滑油ブライ ミングポンブ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E101	非常用ディーゼル発電設備湢滑油サンブ タンク	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111, \end{gathered}$
${ }^{1} 102$	非常用ディーぜル發電設備㳹滑油洽却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \\ \hline \end{gathered}$
E103	非常用ディーゼル発電設備泪滑油フィル夕	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E104	非常用ディーゼル発電設備燃料油フィル夕	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-109, } \\ 111 \end{gathered}$
E105	非常用ディーゼル発電設備然料移送ポン プ	$\begin{aligned} & \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$	軽油タンク室	D0－B102
E106	非常用ディーゼル発電設備燃料移送系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R / B 軽油タンク室	－
E107	高圧炉心スブレイ系ディーゼル発電設備 ディーゼル機関	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E108	高圧炬心スブレイ系ディーゼル発電設備空気だめ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E109	高圧炬心スブレイ系ディーゼル発電設備燃料デイタンク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－203
E110	高圧炬心スブレイ系ディーゼル発電設備 ディーゼル発電機	$\begin{aligned} & \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E111	高圧炉心スブレイ系ディーゼル発電設備清水偐張タンク	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－M202
E112	高圧炉心スブレイ系ディーゼル発電設備清水加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E113	高圧炉心スブレイ系ディーゼル発電設備润滑油加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E114	高圧炬心スブレイ系ディーゼル発電設備清水加熱器ポンブ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E115	高圧炬心スブレイ系ディーゼル発電設備泪滑油プライミングポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E116	高圧炉心スブレイ系ディーゼル発電設備润滑油洽却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E117	高圧炬心スブレイ系ディーゼル発電設備燃料油フィルタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E118	高圧炬心スブレイ系ディーゼル発電設備然料移送ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	軽油タンク室	D0－B102
E119	高圧炉心スブレイ系ディーゼル発電設備発電機軸受潤滑油泠却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E120	高压炉心スブレイ系ディーゼル発電設備燃料移送系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B 軽油タンク室	－
E121	軽油タンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	軽油タンク室	D0－B101
E122	SGTS室空誠機	sクラス	R／B	R－205
E123	FCS 室空絧機	sクラス	R／B	R－206
E124	CMMS窒空誠機	sクラス	R／B	R－205
E125	FPCポンフ室空詷機	sクラス	R／B	R－105
E126	LPCSポンプ室空钼機	sクラス	R／B	R－B203
E127	HPCSポンプ室空誯機	sクラス	R／B	R－B206
E128	RHRポンプ室空讕機	sクラス	R／B	$\begin{array}{\|c\|} \hline \mathrm{R}-\mathrm{B} 304, \\ \text { B305, B307 } \\ \hline \end{array}$
E129	D／G室非常用給気ケーシンク	sクラス	R／B	R－303
E130	换気空脸㭪機非常用洽却水系洽水ボンブ	sクラス	R／B	R－202
E131	換気空詮補機非常用洽却水系洽涑機	sクラス	R／B	R－202
E132	原子炉補機（A）宔送風機	sクラス	R／B	R－203
E133	原子炬補機（A）室給気ケーシング	sクラス	R／B	R－203
E134	原子炉補機（HPCS）室送風機	sクラス	R／B	R－203
E135	原子炉補機（HPCS）室排風機	sクラス	R／B	R－203

$\begin{aligned} & \text { 䔩理号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置建屋	設置場所
E136	原子炻補機（HPCS）室給気ケーシンク	Sクラス	R／B	R－203
E137	原子炬補機（B）室送風機	Sクラス	R／B	R－203
E138	原子炬補機（B）室給気ケーシング	Sクラス	R／B	R－203
E139	D／G（ A ）室非常用送風機	sクラス	R／B	R－203
E140	D／G（HPCS）室非常用送風機	Sクラス	R／B	R－203
E141	D／G（B）室非常用送風機	Sクラス	R／B	R－203
E142	原子炬補機（ A ）室排風機	Sクラス	R／B	R－M203
E143	原子炬補機（B）室排風機	sクラス	R／B	R－M201
E144	RCWポンブ（ A ）室空調機	Sクラス	R／B	R－B308
E145	RCWポンプ（ B ）室空䛿機	Sクラス	R／B	R－B309
E146	中央制御室給気ケーシンク	Sクラス	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E147	計測制御電源室給気ケーシンク	Sクラス	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E148	計測制御電源 (A) 室送風機	Sクラス	C／B	C－B201
E149	訃測制御電源 (A) 室排風機	sクラス	C／B	C－B201
E150	計測制御電源 (B) 室送風機	Sクラス	C／B	C－B202
E151	計測制御電源 (B) 室排風機	Sクラス	C／B	C－B202
E152	中央制御室換気空墭系ダクト	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	C／B	－
E153	計測制御電源（A）室換気空調系ダット	Sクラス	C／B	－
E154	計涪制御電源（ B ）室換気空調系ダクト	Sクラス	C／B	－
E155	スキマサージタンク	SA 施設	R／B	R－301
E156	高圧代替注水系ポンブ	SA施設	R／B	R－B207
E157	高圧代替注水系配管	SA 施設	R／B	－
E158	代替高圧墪素がス供給系配管	SA施設	R／B	－
E159	復水移送ポンブ	SA施設	R／B	R－B207
E160	原子炉格納容器フィルタベント系フィル夕装置	SA施設	R／B	R－106
E161	原子炬格納容器フィルタバント系フィル 夕装置出口側圧力開放板	SA 施設	R／B	R－106
E162	原子炬格納容器フィルタバント系配管	SA施設	R／B	－
${ }^{1} 163$	静的能媒式水素再結合装置	SA施設	R／B	R－301
E164	ガスタービン発電機	SA施設	$\underset{\substack{\text { 緊急用電気荎 }}}{\text { 品 }}$	E－101
E165	カススタービン発電設储軽油タンク	SA 施設	$\begin{array}{\|l\|l\|} \hline \text { ガスタービン発電 } \\ \text { 設備軽油タン咥 } \\ \hline \end{array}$	E0－B101
E166	カスタービン発電設備燃料移送ポンプ	SA 施設	$\begin{array}{\|l\|l\|} \hline \text { ガスタービン発電 } \\ \text { 設備軽油タンク室 } \\ \hline \end{array}$	E0－B101
E167	ガスタービン発電設備燃料移送系配管	SA施設		－
E168	中央制御室しゃへい壁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	c－301
E169	中央制御室待避所しやへい	SA施設	C／B	c－301
E170	中央制御室待避所加圧設備	SA施設	C／B	c－301
E171	緊急時対策所しゃへい	SA施設	緊急時対策建屋	TS－B203
E172	緊急時対策所非常用送風機	SA施設	緊急時対策建屋	TS－102
E173	緊急時対策所非常用フイルタ装置	SA施設	緊急時対策建屋	TS－102
E174	緊急時対策所加圧設備	SA施設	緊急時対策建屋	TS－B102
E175	緊急時対策所軽油タンク	SA施設	緊急時対策建屋	TS－106
E176	緊急時対策所燃料移送系配管	SA施設	緊急時対策建屋	－
E177	代替贋潣洽却ポンプ	SA施設	R／B	－
E178	原子炬建屋プローアウトバネル	SA施設	R／B	R－301

第 4－2 表 女川 2 号炉 建屋内上位クラス施設一覧表（3／7）

$\begin{aligned} & \text { 整理 } \\ & \text { 畄号 } \end{aligned}$	屋内上位クラス施設（弁）	区分	設置建屋	設置场所
V001	主蒸気逃が し 安全弁	sクラス SA施設	R／B	PCV内
v002	主蒸気第一隔駺弁	sクラス	R／B	PCV内
v003	主蒸気第二陽離弁	sクラス	R／B	R－B104
V004		sクラス	R／B	PCV内
v005	主蒸気ドレンライン第二隔鹳弁	sクラス	R／B	R－B104
v006	原子炬給水逆止弁	sクラス	R／B	R－B104
v007	FDD 第二隔離弁	sクラス	R／B	R－B104
v008	FDI第一隔能矣	sクラス	R／B	PCV内
V009	SLCタンク出口弁	Sクラス SA施設	R／B	R－206
V010	SLC注入電動弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－206
V011	RHRポンプ $/$／吸込弁	Sクラス SA施設	R／B	$\begin{array}{\|l\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$
V012	RHRポンブ吐出逆止弁	sクラス	R／B	$\begin{array}{\|l} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$
V013	RHR熱交换器バイパス交	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－104
V014	RHR LPCI注入隔雉弁	sクラス SA施設	R／B	$\underset{\substack{\text { R-MB101, } \\ \text { MB102 }}}{\text { N-MB10 }}$
V015	RHR LPCI注入試験可能逆止弁	sクラス	R／B	PCV内
V016	RHR熱交换器出口弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－104
V017	RHR格納容器スプレイ流量調節异	sクラス SA施設	R／B	R－105， 107
V018	RHR格納容器スプレイ限㕍弁	Sクラス SA施設	R／B	R－105， 107
V019	RHR S／Cスプレイ隔敞弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
vo20	RHR停止時洽却吸込第一隔虧交	sクラス SA施設	R／B	PCV内
V021	RHR停止時洽却吸込第二陽離尣	Sクラス SA施設	R／B	R－MB201
V022	RHRポンブ停止時冷却吸达弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B304, } \\ \text { B305 } \end{gathered}$
V023	RHR停止時冾却注入隔勧弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－MB201
v024	RHR停止時洽却試験可能逆止弁	sクラス	R／B	PCV内
V025	RHRーッドスプレイ注入帢崔弁	sクラス	R／B	R－105
v026	RHRーツドスプレイ注入逆止弁	sクラス	R／B	PCV内
v027	RHRポンプミニマムフロー逆止弁	sクラス	R／B	$\begin{array}{\|l\|l} \text { R-B304, } \\ \text { B305, B307 } \end{array}$
v028	RHRポンプミニマムフロー弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－MB201
vo29	LPCSポンブS／C吸込弁	sクラス	R／B	R－B303
v030	LPCSポンプ吐出逆止弁	sクラス	R／B	R－B303
v031	LPCS注入隔雌尣	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－MB103
V032	LPCS注入ライン試験可能逆止开	Sクラス	R／B	PCV内
v033	LPCSポンプミニマムフロー逆止弁	sクラス	R／B	R－B303
v034	LPCSポンプミニマムフロー弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
v035	HPCSポンプCST吸込弁	sクラス	R／B	R－B306
V036	HPCSポンプCST吸込逆止弁	Sクラス	R／B	R－B306
v037		$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－MB103
V038	HPCS注入ライン試験可能逆止弁	sクラス	R／B	PCV内
v039	HPCSポンプ $\mathrm{C} /$ 吸达弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B306
V040	HPCSポンプ $/$ C吸込逆止弁	Sクラス	R／B	R－B306
V041	HPCSポンプCST側ミニマムフロー第一弁	Sクラス	R／B	R－MB201
V042	HPCSポンプS／C俐ミニマムフロー弁	sクラス	R／B	R－MB201
V043	RCICポンプCST吸达弁	Sクラス	R／B	R－B307
V044	RCICポンプCST吸込逆止弁	sクラス	R／B	R－B307

$\begin{aligned} & \text { 䔩理号 } \end{aligned}$	屋内上位クラス施設（弁）	区分	設置建屋	設置場所
V045	RCIC注入弁	Sクラス SA施設	R／B	R－MB201
V046	RCIC注入ライン詞験可能逆止弁	Sクラス	R／B	R－MB201
V047	RCICポンプS／C吸込弁	sクラス	R／B	R－B307
V048	RCICポンプS／C吸达逆止弁	sクラス	R／B	R－B307
V049	RCICタービン入口蒸気ライン第一㟲催弁	sクラス	R／B	PCV内
v050	RCICタービン入口襎気ライン第二㟲崔亣	sクラス	R／B	R－105
v051	RCICタービン止め并	Sクラス SA施設	R／B	R－B307
v052	RCICタービン排気ライン逆止弃	sクラス	R／B	R－B202
v053	RCICタービン排気ライン隔䧿弁	sクラス	R／B	R－B202
V054	RCICポンプミニマムフロー逆止弁	Sクラス	R／B	R－B307
V055	RCICポンプミニマムフロー升	sクラス	R／B	R－B202
V056	RCIC冷却水ライン止め弁	Sクラス SA施設	R／B	R－B307
V057	RCIC洽却水ライン压力調整交	sクラス	R／B	R－B307
v058	RCIC 真空ポンプ吖出ライン逆止弁	sクラス	R／B	R－B202
V059	RCIC真空ポンプ吐出ライン谝離弁	sクラス	R／B	R－B202
V060	CUW入ロライン第一限雎弁	Sクラス	R／B	PCV内
V061		sクラス	R／B	R－MB201
V062	CuW注入ライン逆止并	sクラス	R／B	R－MB201
${ }^{\text {V063 }}$	FPC然料ブール再循噮逆止弁	Sクラス	R／B	R－105
V064	FPC然料プール注入逆止弁	sクラス	R／B	R－301
V065	D／W LCWサンプ第一陽䬶弁	Sクラス	R／B	PCV内
V066	D／W LCWサンプ第二限㯙交	sクラス	R／B	R－MB201
${ }^{2} 067$	D／W HCWサンプ第一㟲催并	Sクラス	R／B	PCV内
V068		Sクラス	R／B	R－MB201
V069	FPMUW然料プール注入弁	Sクラス	R／B	R－106
v070	HNCW供給ライン第二隔催弃	sクラス	R／B	R－B105
V071	HNCW戻りライン第一漏敞弁	Sクラス	R／B	PCV内
V072	HNCW戻りライン第二隔敞弁	Sクラス	R／B	R－B105
V073	中央制御室給気洽却コイル温度調穊异	Sクラス	R／B	C－B202
V074	HECW往還差压調節并	Sクラス	R／B	R－202
V075	計測制御電源室給気冷却コイル温度調節弁	Sクラス	R／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \\ \hline \end{gathered}$
V076	原子炉補機室給気洽却コイル温度調節交	sクラス	R／B	R－203
v077	RCWポンプ吐出逆止弁	Sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V078	RCW熱交換器冷却水出口弁	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V079	RCW恰却水供給温度熱交换器調節亣	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v080	RCW椧却水供給温度調節弁後弁	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V081	RCW洽却水供給温度ポンフ調節弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V082	RHRP熱交換器冷却水出口弁	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－104
V083	RCWサージタンク非常用補給水开	Sクラス	R／B	R－301
V084	非常用D／G浍却水出口弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	$\begin{gathered} \mathrm{R}-\mathrm{B} 108, \\ \mathrm{~B} 110 \\ \hline \end{gathered}$
V085	RCW常用洽却水緊急しゃ断弁	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V086	RCW常用冾却水供給側分離尣	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V087	RCW常用洽却水戻り側分離弁	Sクラス SA施設	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V088	RCW常用洽却水戻り侧逆止弁	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$

4 条一別紙2－15

第4－2表 女川 2 号炉 建屋内上位クラス施設一覧表（4／7）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（弁）	区分	設置建屋	設置場所
vo89	RCW供給㑬第二限靃弁	sクラス	R／B	R－MB201
v090	RCCM供給側第一㟲離逆止弁	sクラス	R／B	PCV内
v091		sクラス	R／B	PCV内
v092		sクラス	R／B	R－MB201
V093	原子炉補機洽却海水系ストレーナ旋回弁	Sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V094	RSWストレーナブロー弁	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v095	HPCWサージタンク非常用補給水异	sクラス	R／B	R－206
V096	HPIN非常用窒素かス入口弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	R－110， 111
V097	HPIN常用非常用窒素かス連絡弃	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－106， 107
v098	非常用がス処理系入口弃	sクラス	R／B	R－301
v099	非常用カス処理系空気敀燥装置入口弁	Sクラス	R／B	R－205
V100	非常用かス処理系フィルタ装置出口弁	sクラス	R／B	R－205
V101	パージ用空気供給例隔㬚弁	sクラス	R／B	R－B103
V102	D／Wパージ用入口隔離亣	Sクラス	R／B	R－MB201
V103		sクラス	R／B	R－MB201
V104		sクラス	R／B	R－MB201
V105		Sクラス	R／B	R－MB201
V106	禣給用窒素力゙ス供給側第二隔䧺亣	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
V107	D／W補給用窒素力八ス供給用第一隔䧺弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
V108		Sクラス	R／B	R－MB201
V109		sクラス	R／B	R－B103
V110	D／Wバント用出口陑離弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	R－107
V111	ベント用SGTS㑬隔雎亣	Sクラス	R／B	R－205
v112		sクラス	R／B	R－107
V113	S／Cベント用出口隔離异	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
V114	D／Wベント用出口隔轗亣バイパス弁	Sクラス	R／B	R－107
v115	S／Cベント用出口隔㒀尣バイパス弁	sクラス	R／B	R－MB201
V116	PCV耐厓強化ベント用連絡配管隔嶻弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
V117	FCS入口隔雎弁	sクラス	R／B	R－106， 107
V118		sクラス	R／B	R－MB201
V119	RCICタービン入口蒸気ドレンライン第一弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307
V120	RHRーッドスブレイライン洗浄流量調節弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB101
V121	RHR B系格納容器冷却ライン洗浄流量調節弁	SA施設	R／B	R－107
V122	原子炉再循閙ポンブ吐出弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内
V123	RHR柕験用調整弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
V124	CRD復水入口弁	SA施設	R／B	R－B211
V125	MUWCサンプリンク取出止め弁	SA施設	R／B	R－B207
V126	復水眝蔵タンク常用，非常用給水管連絡 ライン止め弁	SA施設	R／B	－
V127	FPMUWポンブ吸达弁	SA施設	R／B	－
V128	復水眝蔵タンク常用，非常用給水管連絡 ライン逆止弁	SA施設	R／B	－
V129	R／B 1F 緊急時搌䧲弁	SA施設	R／B	－
V130	緊急時原子炉北側外部注水入口弁	SA施設	R／B	－
V131	T／B 緊急時隔雎弁	SA施設	R／B	－
V132	緊急時原子炉束側外部注水入口弁	SA施設	R／B	－

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（弁）	区分	設置建屋	設置場所
V133	FCVSベントライン隔離弁	SA施設	R／B	－
V134	FCVS窒素供給ライン止め弁	SA施設	R／B	－
V135	FCVS側PSA窒素供給ライン元弁	SA施設	R／B	－
V136	PSA窒素供給ライン元弁	SA施設	R／B	－
V137	S／C側PSA窒素供給ライン第一隔離弁	SA施設	R／B	－
V138	FPC熱交換器入口弁	SA施設	R／B	R－105
V139	FPCろ過脱塩装置バイパス弁	SA施設	R／B	R－106
V140	FPCろ過脱塩装置出口弁	SA施設	R／B	R－106
V141	FPCろ過脱塩装置入口第一弁	SA施設	R／B	R－106
V142	FPCろ過脱塩装置入口第二弁	SA施設	R／B	R－106
V143	中央制御室換気空調系ダンパ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－

第4－2表 女川 2 号炉 建屋内上位クラス施設一覧表（5／7）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（電気盤等）	区分	設置建屋	設置場所
B001	4600制御建屋モータコントロールセンタ	sクラス SA施設	C／B	C－B105
B002	125 V蕃電池	Sクラス SA施設	$\begin{aligned} & C / B \\ & R / B \end{aligned}$	$\begin{gathered} \text { C-B102, B106 } \\ \text { R-M202 } \end{gathered}$
B003	125V直流受電パワーセンタ	Sクラス SA施設	C／B	C－B105
B004	125 V 充電器槛	Sクラス SA施設	$\begin{aligned} & C / B \\ & R / B \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{B} 105 \\ & \mathrm{R}-\mathrm{B} 109 \end{aligned}$
B005	${ }^{125 V}$ V直流主母紗盤	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	$\begin{aligned} & \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \text { C-B105 } \\ & \text { R-B109 } \end{aligned}$
B006	${ }^{125 V}$ 直流分電艋	Sクラス SA施設	$\begin{aligned} & C / B \\ & R / B \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{B} 105 \\ & \mathrm{R}-\mathrm{B} 109 \end{aligned}$
B007	無停電交流電源用静止型無停電交流電源装置	sクラス	C／B	C－B105
B008	交流 120 V 無停電交流分電䲍	Sクラス	C／B	C－B105
B009	中央制御室用電源切替僌	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－B105
B010	中央制御室 $120 V$ 交流分電盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－B105
B011	重要估器監視用 125 V直流分電艋2	sクラス	C／B	C－301
B012	6．9kVメダ年	Sクラス SA施設	R／B	R－B107，B109
B013	460V゚ワーセンタ	Sクラス SA施設	R／B	R－B107，B109
B014	$\begin{array}{\|l} \hline 460 \mathrm{~V} \text { 原子炬建屋モータコントロールセン } \\ \text { 夕 } \end{array}$	$\begin{array}{\|l\|} \hline \text { Sクラス } \\ \text { SA施設 } \end{array}$	R／B	$\begin{gathered} \hline \text { R-B107, B110 } \\ \text { R-110,111 } \end{gathered}$
B015	125v直流RCICモータコントロールセンタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B102
${ }^{\text {B016 }}$	高圧炬ふスプレイ系120V交流分電艋2H	sクラス	R／B	R－B109
${ }^{\text {B017 }}$	原子炬洽却制御盤	sクラス	C／B	c－301
${ }^{\text {B018 }}$	原子炬制狏媻	Sクラス	C／B	c－301
B019	原子炬補機制御盤	Sクラス	C／B	c－301
B020	原子炬保護系盤	Sクラス	C／B	c－301
B021		Sクラス	C／B	c－301
B022	原子炬系プロセス㖕装盤	Sクラス	C／B	c－301
${ }^{\text {B023 }}$	残留熱除去系（A）－低圧炉心スプレイ系盤	Sクラス	C／B	c－301
B024	残留鵙除去系（ $(\mathrm{B} \cdot \mathrm{C})$ 盤	sクラス	C／B	c－301
B025	高圧炬心スプレイ系盤	Sクラス	C／B	c－301
${ }^{\text {B026 }}$	原子炬烈催時洽却系盤	Sクラス	C／B	c－301
B027	格納容器第一隌髉尣盤	Sクラス	C／B	c－301
B028	格納容器第二踞㕍升盤	sクラス	C／B	C－301
B029	自動减圧系盤	Sクラス	C／B	c－301
B030	FPC•FPMUW•SLC MUWC．MUWP•FW制御盤	sクラス	C／B	C－301
B031	トリップチャンネル盤	Sクラス	C／B	c－301
${ }^{\text {B032 }}$	FCS SGGTS盤	sクラス	C／B	C－301
${ }^{\text {B033 }}$	サブレッションプール水温度記録監視盤	sクラス	C／B	c－301
B034		sクラス	C／B	c－301
B035	所内補機制御媻	Sクラス	C／B	C－301
B036	タービン発電機制御盤	Sクラス	C／B	C－301
во37	所内電源制御媻	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－301
B038	非常用換気空鳄系䲍	Sクラス	C／B	C－301
в039	HPCS系非常用换気空譈系盤	sクラス	C／B	c－301
B040	RCW－RSW盤	Sクラス	C／B	C－301
${ }^{\text {B041 }}$	RCICタービン制御媻	Sクラス	C／B	C－B105
B042	漏えい検出系盤	sクラス	C／B	C－301
B043	計算機ハッフア補助リレー盤	Sクラス	C／B	c－301
B044	M／C補助継電器盤	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	C／B	c－301
B045	AN制御幋	Sクラス	C／B	C－301

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（電気盤等）	区分	設置建屋	設置場所
B046	中央制御室外原子炉停止装置盤	Sクラス	C／B	C－B103
B047	FCS SCR盤	Sクラス	R／B	R－B107，B109
B048	中央制御室端子盤	Sクラス	C／B	$\begin{gathered} \mathrm{C}-201,202, \\ 203 \end{gathered}$
B049	非常用ディーゼル発電機制御盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
B050	非常用ディーゼル発電機補機制御盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
B051	非常用ディーゼル発電機シリコン整流器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
B052	非常用ディーゼル発電機界硫調整器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
B053	非常用ディーゼル発電機自動電圧調整器盤	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
B054	非常用ディーゼル発電機 NGR盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B107，B109
B055	非常用ディーゼル発電機SCT盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B107，B109
B056	非常用ディーゼル発電機PPT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B107，B109
B057	非常用ディーゼル発電機 PT－CT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B107，B109
B058	高圧炬心スプレイ系ディーゼル発電機制御盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B059	高圧炬心スプレイ系ディーゼル発電機補機制御盤	$\begin{aligned} & \text { sクラ } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B060	高圧炉心スプレイ系ディーゼル発電機シ リコン整流器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B061	高圧炉心スブレイ系ディーゼル発電機界磁譋整器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B062	高圧炉心スプレイ系ディーゼル発電機自動電圧調整器盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B063	高圧炉ふスブレイ系ディーゼル発電機 NGR盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施砓 } \end{aligned}$	R／B	R－B109
B064	高圧炬心スブレイ系ディーゼル発電機 SCT盤	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B109
B065	高圧炬ふスプレイ系ディーゼル発電機 PPT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B109
B066	高圧炬心スブレイ系ディーゼル発電機 PT－CT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B109
B067	スクラム電磁弁ヒューズ盤	Sクラス	R／B	R－B103，B106
B068	PLRポンプ停止検出用不足電圧継電器盤	Sクラス	R／B	R－B208
B069	换気空調補機非常用椧却水系洽涑機制御盤	Sクラス	R／B	R－202
B070	HPCS交流分電盤2H用変圧器	Sクラス	R／B	R－B109
B071	動力変圧器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B109
B072	起動頒域モニタ・安全系ブロセス放射線 モニタ盤	Sクラス	C／B	C－301
B073	出力領域モニ夕盤	Sクラス	C／B	C－301
B074	出力領域モ二夕補助盤	Sクラス	C／B	C－301
B075	TIP制御盤	Sクラス	C／B	C－301
B076	格納容器内雰囲気モニタ盤	Sクラス	C／B	C－301
B077	SRNM前置増幅器盤	Sクラス	R／B	R－B103，B106
B078	安全系プロセス放射線モニタ多重伝送現場盤	Sクラス	C／B	C－201， 202
B079	RSS盤用変圧器	Sクラス	C／B	C－B105
B080	125V代替蓄電池	SA施設	C／B	C－204
B081	125V代替充電器盤	SA施設	C／B	C－B104
B082	ガスタービン発電機接䌊盤	SA施設	$\begin{gathered} \text { 緊急用電気品 } \\ \text { 建屋 } \\ \hline \end{gathered}$	E－B101

4 条一別紙2－17

第 4－2 表 女川 2 号炉 建屋内上位クラス施設一覧表（6／7）

整理番号	屋内上位クラス施設（計装）	区分	設置建屋	設置場所	整理番号	屋内上位クラス施設（計装）	区分	設置建屋	設置场所
1001	低圧炬ふスプレイ系計装ラック	sクラス SA施設	R／B	R－B203	1046	SLCポンブ湘滑油圧力	sクラス	R／B	R－206
1002	原子炉泠却材浄化系計装ラック	sクラス	R／B	R－B307	1047	スキマサージタンク水位	sクラス	R／B	R－205
1003	原子炬系（広域水位）計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \mathrm{R}-\mathrm{B} 103, \\ \text { B106 } \end{gathered}$	1048	RCWサージタンク水位	sクラス	R／B	R－301
1004	原子炉系（狄域水位）計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-105, } 106, \\ 107 \end{gathered}$	1049	RCWサージタンク降水管水位	sクラス	R／B	R－206
1005	ドライウェル圧カ計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205， 206	1050	HPCWサージタンク水位	sクラス	R／B	R－206
1006	ジェットポンプ計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B103，B106	1051	HPCWサージタンク降水管水位	sクラス	R／B	R－107
1007	高圧炬心スプレイ系計装ラック	$\begin{gathered} \text { Sクラス } \\ \text { SA施謫 } \\ \hline \end{gathered}$	R／B	R－B206	1052	RSWストレーナ差圧	sクラス	R／B	R－B308，B309
1008	主蒸気流星計装ラック	Sクラス	R／B	R－B103，B106	1053	SGTSトレイン出口流量	Sクラス	R／B	R－205
1009	RHR－RCICエルボメーダ計装ラック	sクラス	R／B	R－B103，B106	1054	フィルタ装置チャコールエアフィルタ入口温度	sクラス	R／B	R－205
1010	原子炬隔鲊時洽却系ポンブ㳯装ラック	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－B307	1055	フィルタ装置チャコールエアフィルタ温 \|度	sクラス	R／B	R－205
1011	原子炬隔䍜時洽却系タービン計装ラック	sクラス	R／B	R－B207	1056	$\begin{aligned} & \text { フィルタ装置チャコールエアフィルタ出 } \\ & \text { 口温度 } \end{aligned}$	sクラス	R／B	R－205
1012	残留熱除去系㖕装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \begin{array}{c} \text { R-B204, B207, } \\ B 307 \end{array} \\ \hline \end{gathered}$	1057	燃料デイタンク油面	sクラス	R／B	R－203
1013	RCW系統流量竍器架台	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B308，B309	1058	機関付清水ポンブ出口圧力	sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$
1014	RCW常用系入口流量㳯器架台	sクラス	R／B	R－B308	1059	機関出口デイーゼル洽却水温度	sクラス	R／B	$\begin{gathered} \text { R-109, } 110, \\ 111 \end{gathered}$
1015	HPCWポンブ竍器架台	sクラス	R／B	R－B310	1060	機関入口洞滑油圧力	sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$
1016	RCICタービン排気ダイアフラム圧力II系計器架台	sクラス	R／B	R－B207	1061	湘滑油プライミングポンプ入口温度	Sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110 \\ 111 \end{gathered}$
1017	CRDスクラム排出容器水位計器架台	Sクラス	R／B	R－B103，B106	1062	オイルパン油面	Sクラス	R／B	R－110
1018	$\mathrm{S} /$ C圧力， $\mathrm{S} / \mathrm{C}-\mathrm{R} / \mathrm{B}$ 差圧計器架台	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B103，B106	1063	D／G室温度	Sクラス	R／B	$\begin{array}{\|c\|} \hline \mathrm{R}-109,110 \\ 111 \end{array}$
1019	ほう酸水注入系㘼器架台	sクラス	R／B	R－206	1064	D／G速度	sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110 \\ 111 \\ \hline \end{gathered}$
1020	RCICタービン計器架台	sクラス	R／B	R－B307	1065	RCW鷁压	sクラス	R／B	R－B108，B110
1021	原子炉圧力	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \mathrm{R}-105,106, \\ 107 \end{gathered}$	1066	HPCW差压	Sクラス	R／B	R－110
1022	原子炬压力容器温度	SA 施媇	R／B	PCV内	1067	RCW珨却水供給温度	sクラス	R／B	R－B308，B309
1023	サブレッションプール水温度	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	1068	FCS入口カカス流量	Sクラス	R／B	R－206
1024	サブレッションプール水位	sクラス	R／B	R－B306	1069	FCSプロワ入口圧力	Sクラス	R／B	R－206
1025	压力抑制室水位	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	R－B303，B304	1070	FCSプロワ入口流量	sクラス	R／B	R－206
1026	原子炉建屋外気閣差圧	Sクラス	R／B	R－301， 302	1071	FCSブロワ入口温度	Sクラス	R／B	R－206
1027	CAMSサンブリングラック	Sクラス	R／B	R－205	1072	FCS加熱管内ガス温度	sクラス	R／B	R－206
1028	CAMS校正ラック	sクラス	R／B	R－205	1073	FCS加熱管出口ガス温度	sクラス	R／B	R－206
1029	CAMS	sクラス	R／B	R－205	1074	FCS加熟管表面温度	sクラス	R／B	R－206
1030	${ }^{\text {CAMS電磁弁 }}$	sクラス	R／B	R－205	1075	FCS再結合器表面温度	sクラス	R／B	R－206
1031	CAMS S／Cサンブルガス温度	sクラス	R／B	PCV内	1076	FCS洽却器出口ガス温度	Sクラス	R／B	R－206
1032	CAMS D／Wサンプルガス温度	sクラス	R／B	PCV内	1077	FCS除湿ヒータ用変王器	sクラス	R／B	R－206
1033	CAMS γ 線検出器D／W	Sクラス	R／B	PCV内	1078	HECW洽水往還差压	Sクラス	R／B	R－202
1034	CAMS γ 線検出器 S / C	sクラス	R／B	PCV内	1079	HECW洽水還温度	Sクラス	R／B	R－202
1035	格納容器内券囲気水素婊度	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内	1080	HECW洽凁機洽水出口流量	sクラス	R／B	R－202
1036	格納容器内券囲気酸素濃度	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	1081	原子炉補機室給気温度	Sクラス	R／B	R－203
1037	格納容器内筌囲気放射線モ二夕（D／W）	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	1082	RHHR熱交室漏えい検出（周囲温度）	sクラス	R／B	R－104
1038	格納容器内察囲気放射線モ二タ（ S / C ）	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内	1083	RHRポンブ室漏えい検出（周囲温度）	sクラス	R／B	R－B304，B305
1039	静的触媒式水素再結合装置動作監視装置	SA施設	R／B	R－301	1084	RHR熱交室漏えい検出（給気温度）	Sクラス	R／B	R－104
1040	RCICタービン蒸気加淢并電油変换器	sクラス	R／B	R－B307	1085	RHRポンプ室漏えい検出（紾気温度）	Sクラス	R／B	R－B304，B305
1041	RCICタービン業気加琙开開度	sクラス	R／B	R－B307	1086	RHR熱交室㴜えい検出（排気温度）	Sクラス	R／B	R－104
1042	RCICタービン回転数	Sクラス	R／B	R－B307	1087	RHRポンブ室漏えい検出（排気温度）	Sクラス	R／B	R－B304，B305
1043	RCICタービンメカニカルトリップ用	sクラス	R／B	R－B307	1088	RCIC機器室漏えい検出（周囲温度）	Sクラス	R／B	R－B307
1044	RCICタービン主蒸気止め升全閉表示用	sクラス	R／B	R－B307	1089	RCIC機器室漏えい検出（給気温度）	Sクラス	R／B	R－B307
1045	$\begin{aligned} & \text { RCIC非常トリップ装置\&非常調速機作動 } \\ & \text { 表示用 } \end{aligned}$	sクラス	R／B	R－B307	1090	RCIC機器室漏えい検出（排気温度）	sクラス	R／B	R－B307

4 条一別紙2－18

第 4－2 表 女川 2 号炉 建屋内上位クラス施設一覧表（7／7）

整理	屋内上位クラス施設（計装）	区分	設置建屋	設置場所
1091	計測制御電源室給気温度	Sクラス	C／B	C－B101
1092	中央制御室還気温度	sクラス	C／B	C－B201
1093	ブリアンプ収納箱	sクラス	C／B	C－201， 202
1094	高圧代替注水系ポンブ出口流量	SA 施設	R／B	R－B307
1095	残留熱除去系洗浄ライン流量	SA施設	R／B	R－107
1096	HPCSポンプ出口流量	Sクラス SA施設	R／B	R－B206
1097	LPCSポンプ出口流量	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B203
1098	RHRポンプ出口流量	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\underset{\substack{\text { R-B204, B207, } \\ B 307}}{ }$
1099	ほう酸水注入系ポンプ出口圧力	Sクラス	R／B	R－206
1100	原子炉格納容器下部注水流量	SA 施設	R／B	R－B103
1101	原子炉格納容器代替スプレイ流量	SA 施設	R／B	R－104， 107
1102	ドライウェル温度	sクラス SA施設	R／B	PCV内
1103	圧力抑制室内空気温度	Sクラス SA施設	R／B	PCV内
1104	原子炉格納容器下部水位	SA施設	R／B	PCV内
1105	ドライウェル水位	SA 施設	R／B	PCV内
1106	格納容器内水素濃度（D／W）	SA 施設	R／B	PCV内
I107	格納容器内水素濃度（S／C）	SA施設	R／B	PCV内
1108	起動領域モ二タ	sクラス SA施設	R／B	PCV内
I109	局部出力領域モ二夕	sクラス	R／B	PCV内
1110	フィルタ装置入口圧力（広带域）	SA施設	R／B	R－109
1111	フィルタ装置出口圧力（広带域）	SA施設	R／B	R－106
1112	フィルタ装置水位（広帯域）	SA 施設	R／B	R－B105
1113	フィルタ装置水温度	SA施設	R／B	R－106
1114	フィルタ装置出口水素濃度	SA 施設	R／B	R－206
1115	フィルタ装置出口放射線も二夕	SA施設	R／B	R－203
1116	残留熱除去系熱交換器泠却水入口流量	SA 施設	R／B	R－B103，B106
1117	原子炬建屋内水素濃度	SA施設	R／B	R－301
I118	使用済燃料プール水位／温度	SA施設	R／B	R－301
1119	使用済燃料プール上部空間放射線モ二夕 （高線量，低線量）	SA施設	R／B	R－301
1120	使用斎燃料プール監視カメラ	SA 施設	R／B	R－301
1121	差圧計	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301 } \\ \text { TS-B203 } \end{gathered}$
1122	トランシーバ	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301 } \\ \text { TS-B203 } \end{gathered}$
1123	衛星電話	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301 } \\ \text { TS-B203 } \end{gathered}$
1124	安全パラメータ表示システム（SPDS）	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301 } \\ \text { TS-B202 } \end{gathered}$
I125	統合原子力防災ネットワークに接続する通信連絡設備	SA施設	緊急時対策建屋	TS－105
1126	データ伝送設備	SA施設	C／B	TS－B202
1127	データ表示装置	SA 施設	C／B	c－301
1128	代替循閚浍却ポンプ出口流量	SA 施設	R／B	－
1129	高圧窒素カス供給系 ADS入口圧力	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－107
1130	衛星通信装置	SA 施設	緊急時対策建屋	TS－B203

5．下位クラス施設の抽出及び影響評価方法
3 項で整理した各検討事象を基に，上位クラス施設への波及的影響を及ぼすおそ れのある下位クラス施設の抽出及び評価フローを作成し，当該フローに基づき影響評価を実施する。

5.1 相対変位又は不等沈下による影響

（1）地盤の不等沈下による影響
第5．1－1図のフローに従い，上位クラス施設及びそれらの間接支持構造物で ある建物•構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラ ス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
地盤の不等沈下による下位クラス施設の傾きや倒壊を想定しても，上位ク ラス施設に衝突しない程度の十分な離隔距離をとつて配置されていること を確認し，離隔距離が十分でない下位クラス施設を抽出する。
b．耐震性の確認
a 項で抽出した下位クラス施設について，基準地震動 Ss に対して基礎地盤 が十分な支持性能を持つ岩盤に設置されていることの確認により，不等沈下 しないことを確認する。
c．不等沈下に伴う波及的影響の評価
b項で地盤の不等沈下のおそれが否定できない下位クラス施設については，傾きや倒壊を想定し，これらによる上位クラス施設への影響を確認し，上位 クラス施設の機能を損なわないことを確認する。
d．対策検討
c 項で上位クラス施設の機能を損なうおそれが否定できない下位クラス施設に対して，基礎地盤の補強や周辺の地盤改良等を行い，不等沈下による下位クラス施設の波及的影響を防止する。

第 5．1－1図 不等沈下による建屋外上位クラス施設へ影響を及ぼすおそれのある下位クラス施設の抽出及び評価フロー

（2）建屋間の相対変位による影響

第5．1－2 図のフローに従い，上位クラス施設及びそれらの間接支持構造物で ある建物•構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラ ス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
地震による建屋間の相対変位を想定しても上位クラス施設に衝突しない程度の十分な離隔距離をとって配置されていることを確認し，離隔距離が十分でない下位クラス施設を抽出する。
b．耐震性の確認
a 項で抽出した下位クラス施設について，基準地震動 Ss に対して建屋間の相対変位による上位クラス施設への衝突がないことを確認する。
c．相対変位に伴ら波及的影響の評価
b 項で衝突のおそれが否定できない下位クラス施設について，衝突部分の接触状況を碓認し，建屋全体又は局部評価を実施し，衝突に伴い，上位クラ ス施設の機能を損なうおそれがないことを確認する。
d．対策検討
c 項で上位クラス施設の機能を損なうおそれが否定できない下位クラス施設に対して，建屋の補強等を行い，建屋間の相対変位等による下位クラス施設の波及的影響を防止する。

第5．1－2図 相対変位による建屋外上位クラス施設へ影響を及ぼすおそれのある下位クラス施設の抽出及び評価フロー

5．2接続部における相互影響

第 5．2－8 図のフローに従い，上位クラス施設と接続する下位クラス施設を抽出 し，波及的影響を検討する。

a．接続部の抽出

上位クラス施設と下位クラス施設が接続する箇所を抽出する。ここで，電気設備，計測制御設備，格納容器貫通部，空気駆動弁（以下「A0 弁」という。）駆動用空気供給配管接続部及び弁グランド部漏えい検出配管接続部について は，以下のとおり設計上の配慮がなされているため抽出の対象外とする。
（a）電気設備
受電系統について，上位クラス施設と下位クラス施設は基本的に系統的に分離した設計としているが，第5．2－1， 2 図の受電系統概念図にあるように一部の受電系統においては上位クラス施設と下位クラス施設との接続がある。 このため，上位クラス施設と下位クラス施設と接続するパターンを下記のよ うに整理した。

第5．2－1 図 受電系統概念図
［パターン1］
第 5．2－1 図のパターン 1 に示すように上位クラスの電源盤と下位クラス施設が接続し，上位クラスの電源盤から下位クラス施設に給電する場合，上位クラスの電源盤と下位クラス施設は遮断器を介して接続されており，下位 クラス施設の故障が生じた場合においても，上位クラスの電源盤の遮断器が動作することで事故範囲を隔離し，上位クラスの電源盤の機能に影響を与え ない設計としている。

［パターン2］

第 5．2－1 図のパターン2のように上位クラス施設である非常用高圧母線 と下位クラス施設が接続し，下位クラス施設から非常用高圧母線に給電する場合，上位クラスの電源盤と下位クラス施設は遮断器を介して接続されてお り，下位クラス施設の故障が生じた場合には，上位クラスの電源盤の遮断器 が動作することにより事故範囲を隔離する。この際，非常用高圧母線が停電 するが非常用ディーゼル発電機が自動起動し，非常用高圧母線に給電するた め，上位クラス施設である非常用高圧母線が機能喪失しない設計としている。

［パターン3］

パターン 1 ， 2 以外に考えられる上位クラス施設と下位クラス施設が接続 する組合せとして，第5．2－2図のように下位クラスの電源盤から上位クラス施設に給電するパターンが挙げられる。この場合，下位クラスの電源盤の故障により上位クラス施設が機能喪失することとなるが，女川 2 号炉において は本パターンのような系統はない。

第 5．2－2 図 受電系統概念図（パターン 1,2 以外）

以上より，電気設備については，上位クラス施設に接続する下位クラス施設の故障が上位クラス施設に波及的影響を及ぼすおそれがない設計として いる。
（b）計測制御設備
計測制御設備について，非常用系（上位クラス施設）と常用系（下位クラ ス施設）は原則物理的に分離しているが，制御信号及び計装配管の一部に上位クラス施設と下位クラス施設との接続部がある。このため，上位クラス施設と下位クラス施設と接続するパターンを下記のように整理した。
i）制御信号
制御信号について，上位クラス施設と下位クラス施設との接続部として下記のパターンが考えられる。
（1）非常用系（上位クラス）から常用系（下位クラス）に伝送する
（2）常用系（下位クラス）から非常用系（上位クラス）に伝送する

このうち，（2）のパターンについては女川 2 号炉において存在しない。
（1）については，信号伝送における第5．2－3図の分離概念図に示すとおり， フォトカプラやリレー回路などの隔離装置を介することにより，電気的に分離されており，常用系（下位クラス）の故障が非常用系（上位クラス） に波及することがない設計としている。

リレー回路を用いた隔離装置の代表例

第5．2－3図 信号伝送における分離概念図
ii）計装配管
計装配管について，上位クラス施設と下位クラス施設との接続部として下記のパターンが考えられる。
（1）上位クラスの機器に下位クラスの計器の計装配管が接続されている
（2）下位クラスの機器に上位クラスの計器の計装配管が接続されている
（3）上位クラスの計器の常用時における計測のために，計装用圧縮空気系 （下位クラス）が接続されている

このうち，（2）については女川 2 号炉において存在しない。（1）については，上位クラスの計器と下位クラスの計器が接続されているパターンと上位 クラスの機器（原子炉圧力容器）の計測装置として下位クラスの機器が接続されているパターンがあるため，それぞれパターン（1）－1，①）-2 と分類し，（3）についてはパターン（3）と分類して下記のとおり整理した。
[パターン (1) - 1]

上位クラスと下位クラスの計装配管が接続部を有している場合，第 5．2－4 図に示すとおり，計装配管の耐震設計は上位クラスの設計に合わせ ているため波及的影響はない。

第5．2－4 図 計装配管の耐震設計概念図
[パターン (1) - 2]

原子炉圧力容器（上位クラス）に接続されている下位クラスの計器に ついては，第 5．2－5 図の原子炉圧力容器からの計装ライン構成概念図に示すとおり，過流量逆止弁の下流側は下位クラスの設計としている。た だし，原子炉圧力容器に接続されている計装配管には，原子炉格納容器内側に流量制限オリフィスを設けるとともに，原子炉格納容器外側には過流量逆止弁を設置しており，万一，下位クラス範囲で配管破断が発生 した場合でも，差圧大で瞬時に過流量逆止弁が閉となるため，原子炉冷却材圧力バウンダリは隔離される。

第5．2－5 図 原子炉圧力容器からの計装ライン構成概念図
[パターン (3)]

上位クラスの計器の常用時における測定のために，計測用圧縮空気系 （下位クラス）を使用している場合，第 5．2－6 図に示すとおり，計装用圧縮空気系の機能喪失時には逆止弁により計測用圧縮空気系との接続を隔離し，上位クラスのアキュムレータにより計測を継続するため，波及的影響はない。

第 5．2－6 図 計装用圧縮空気系と上位クラスの計器との接続概念図

以上より，計装設備については，上位クラス施設に接続する下位クラス施設の故障が上位クラス施設に波及的影響を及ぼすおそれがない設計として いる。
（c）格納容器貫通部
格納容器貫通部については，前後の隔離弁を含めて上位クラス施設として設計されており，接続する下位クラスの配管が破損した場合においても隔離弁の健全性は保たれ，格納容器バウンダリとしての貫通部の機能に波及的影響を及ぼすおそれがない設計としている。
（d）A0 弁駆動用空気供給配管接続部
上位クラスの配管に設置されるA0 弁駆動用の空気供給配管は，上位クラ ス施設として設計されてはいないが，仮に空気供給配管が破損した場合でも， A0 弁はフェイルセーフ側に動作するため，上位クラス施設の安全機能は喪失しないことから，抽出の対象外としている。なお，空気供給配管の供給側 で閉塞が発生したとしてもA0 弁はフェイルセーフ側に動作しないが，動作要求信号が発生すれば，三方弁から支障なく排気されることからA0弁の機能に影響を与えない。また，空気供給配管のA0 弁側についてはS クラスの A0 弁とあわせて動的機能維持を確認している範囲であるため閉塞しない。

－－－－－Sクラスとして動的機能維持を確認している範囲

第 5．2－7 図 A0 弁概念図
（e）弁グランド部漏えい検出配管接続部
上位クラスの配管に設置される弁のグランド部に接続される弁グランド部漏えい検出配管については，下位クラス施設であるが，仮に弁グランド部漏えい検出配管が破損した場合でも，上位クラス施設である弁の機能に影響 がないことから抽出の対象外としている。
b．影響評価対象の選定
a 項で抽出された機器，配管系を影響評価対象とする。
ただし，a 項で抽出した接続部のうち，上位クラス施設として設計された弁又はダンパにより常時隔離されているものは，接続する下位クラスの配管が破損した場合においても健全性は確保されるため評価対象外とする。
c．影響評価
b項で抽出した下位クラス施設について，下位クラス施設が損傷した場合又 は，系統隔離等に伴うプロセス変化により，上位クラス施設の過渡条件が設計

の想定範囲内であることを確認する。
なお，下位クラス配管の損傷形態として破損と閉塞が考えられるが，接続部 の影響評価においては破損について検討する。閉塞事象は配管が軸直交方向に大きな荷重を受けて折れ曲がり，流路を完全に遮断することで発生するが，地震荷重は交番荷重であることや材料のシェイクダウンを考慮すると，完全に閉塞が発生することは考え難い。また，周辺の下位クラス施設の損傷等の影響に よる閉塞については，周辺に損傷等により影響を及ぼす下位クラス施設がない ことを確認しており検討対象外となる。さらに下位クラス施設が建屋間を渡っ て敷設されている場合には，相対変位や不等沈下による損傷等も考えられるが，女川 2 号炉では，建屋間を渡る下位クラス施設については全てバウンダリ弁を介して上位クラス施設と隔離していることから検討対象外となる。したがって，下位クラス配管の損傷形態としては破損を考慮するものである。下位クラス配管の損傷形態の検討については，参考資料に詳細を示す。
d．耐震性の確認
c 項で設計の想定範囲を超えるものについて，基準地震動 Ss に対して，構造健全性が維持され内部流体の内包機能等の必要な機能を維持できることを確認する。
e．対策検討
d 項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設 について，基準地震動 Ss に対して健全性を維持できる構造への改造，接続部 から上位クラス施設の機器，配管側に同じく健全性を維持できる隔離弁の設置等により波及的影響を防止する。

第5．2－8図 上位クラス施設と接続する下位クラス施設の抽出及び評価フロー

5.3 建屋内における施設の損傷，転倒及び落下等による影響

第 5．3－1 図のフローに従い，建屋内の上位クラス施設の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討す る。
a．下位クラス施設の抽出
下位クラス施設の抽出に当たっては，下位クラス施設の損傷，転倒及び落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をとって配置 されていることを確認する。離隔距離が十分でない場合には，落下防止措置等 の対策を適切に実施していることを確認する。

また，上述の確認ができなかった下位クラス施設について，構造上の特徴，上位クラス施設との位置関係，重量等を踏まえて，損傷，転倒及び落下等を想定した場合の上位クラス施設への影響を評価し，上位クラス施設の機能を損な うおそれがないことを確認する。
b．耐震性の確認
a 項で損傷，転倒及び落下等を想定した場合に上位クラス施設の機能への影響が否定できない下位クラス施設について，基準地震動 Ss に対して，損傷，転倒及び落下等が生じないように，構造健全性が維持できることを確認する。
c．対策検討
b 項で構造健全性の維持を確認できなかった下位クラス施設について，基準地震動 Ss に対して健全性を維持できるような構造への改造，上位クラス施設 と下位クラス施設との間に衝撃に耐えうる緩衝体の設置，下位クラス施設の移設等により波及的影響を防止する。

＊フロー中の（1）～⑧の数字は第2．1－1図中の（1）～（8）に対応する。

第5．3－1図 損傷，転倒及び落下等により建屋内上位クラス施設へ影響を及ぼす おそれのある下位クラス施設の抽出及び評価フロー

5.4 建屋外における施設の損傷，転倒及び落下等による影響

第 5．4－1 図のフローに従い，建屋外の上位クラス施設の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討す る。
a．下位クラス施設の抽出
下位クラス施設の抽出に当たっては，施設の設置地盤及び周辺地盤の液状化 （浮き上がり及び側方流動）による影響を考慮した上で，下位クラス施設の損傷，転倒及び落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をとって配置されていることを確認する。離隔距離が十分でない場合には，落下防止措置等の対策を適切に実施していることを確認する。

また，上述の確認ができなかった下位クラス施設について，構造上の特徴，上位クラス施設との位置関係，重量等を踏まえて，損傷，転倒及び落下等を想定した場合の上位クラス施設への影響を評価し，上位クラス施設の機能を損な うおそれがないことを確認する。
b．耐震性の確認
a 項で損傷，転倒及び落下等を想定した場合に上位クラス施設の機能への影響が否定できない下位クラス施設について，地下水位を適切に設定した上で，基準地震動 Ss に対して，損傷，転倒及び落下等が生じないように，構造健全性が維持できることを確認する。
c．対策検討
b 項で構造健全性の維持を確認できなかった下位クラス施設について，基準地震動 Ss に対して健全性を維持できるような構造への改造，上位クラス施設 と下位クラス施設との間に衝撃に耐えうる緩衝体の設置，下位クラス施設の移設等により波及的影響を防止する。

第5．4－1 図 損傷，転倒及び落下等により建屋外上位クラス施設へ影響を及ぼす おそれのある下位クラス施設の抽出及び評価フロー

6．下位クラス施設の検討結果
5 項で示したフローに基づき，上位クラス施設へ波及的影響を及ぼすおそれのあ る下位クラス施設を抽出する。

6． 1 相対変位又は不等沈下による影響検討結果

6．1．1抽出手順
（1）地盤の不等沈下による影響
机上検討を基に，上位クラス施設及び上位クラス施設の間接支持構造物で ある建物•構築物に対して，地盤の不等沈下により波及的影響を及ぼすおそ れのある下位クラス施設を抽出する。
（2）建屋間の相対変位による影響
机上検討を基に，上位クラス施設及び上位クラス施設の間接支持構造物で ある建物に対して，建屋間の相対変位により波及的影響を及ぼすおそれのあ る下位クラス施設を抽出する。

6．1．2 下位クラス施設の抽出結果

第5．1－1 図及び第5．1－2図のフローの a に基づいて，波及的影響を及ぼすお それのある下位クラス施設を抽出した結果を第6．1．2－1図，第6．1．2－2図及び第6．1．2－1 表に示す。

6．1．3影響評価方針

6． 1.2 で抽出した波及的影響を及ぼすおそれのある下位クラス施設の評価結果又は評価方針を第6．1．3－1 表及び第6．1．3－2 表に示す。

上記方針に基づいた検討結果は工事計画認可申請書において確認し，必要に応じて不等沈下又は相対変位による影響を評価する。これは第5．1－1図及び第 5．1－2図のフローのc核当する。

第6．1．2－2 図 女川 2 号炉 相対変位又は不等沈下に係る建屋外上位クラス施設配置図（高台側）

第6．1．2－1 表 女川 2 号炉 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設

$\begin{aligned} & \text { 整理 } \end{aligned}$	屋外上位クラス施設	区分	波及的影響を及ばすおそれのある位クラス施設	波及的影響のおそれ （○：あり，×：なし）		備考
				不等沈下	相対変位	
0001	原子炬補機冷却海水ポンプ	Sクラス SA施設	－	\times	\times	
0002	原子炬補機冷却海水系配管	Sクラス SA施設	－	\times	\times	
0003	RSWポンプ吐出逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	－	\times	\times	
0004	RSWポンプ吐出弁	Sクラス SA施設	－	\times	\times	
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設	－	\times	\times	
0006	高圧炉心スプレイ補機冷却海水ポンプ	Sクラス SA施設	－	\times	\times	
0007	高圧炬心スプレイ補機冷却海水系スト レーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	－	\times	\times	
0008	高圧炉心スプレイ補機冷却海水系配管	Sクラス SA施設	－	\times	\times	
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設	－	\times	\times	
0010	HPSWポンプ吐出弁	Sクラス SA施設	－	\times	\times	
0011	非常用がス処理系配管	Sクラス SA施設	－	\times	\times	
0012	復水補給水系配管	SA施設	－	\times	\times	
0013	原子炬補機冷却水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	－	\times	\times	
0014	残留熱除去系配管	Sクラス SA施設	－	\times	\times	
0015	原子炉格納容器フィルタベント系配管	SA施設	－	\times	\times	
0016	ガスタービン発電設備燃料移送ポンプ	SA施設	－	\times	\times	
0017	ガスタービン発電設備燃料移送系配管	SA施設	－	\times	\times	
0018	復水貯蔵タンク	SA施設	－	\times	\times	
0019	復水貯蔵タンク水位計器架台	Sクラス SA施設	－	\times	\times	
0020	RSWポンプ出口圧力計器架台	Sクラス	－	\times	\times	
0021	HPSWポンプ出口圧力計器架台	Sクラス	－	\times	\times	
0022	排気筒	Sクラス SA施設	－	\times	\times	
0023	防潮堤	Sクラス	－	\times	\times	
0024	防潮壁	Sクラス	2号炬タービン建屋	\bigcirc	\times	
0025	逆流防止設備	Sクラス	2号炬タービン建屋	\bigcirc	\times	
0026	水密扉	Sクラス	－	\times	\times	

4 条一別紙2－40

第6．1．2－1 表 女川 2 号炉 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（2／2）

整理番号	屋外上位クラス施設	区分	波及的影響を及ぼすおそれのある $\begin{gathered}\text { 下位クラス施設 }\end{gathered}$	波及的影響のおうそれ （○：あり，×：なし）		備考
				不等沈下	相対変位	
0027	浸水防止蓋	Sクラス	－	\times	\times	
0028	逆止弁付ファンネル	Sクラス	－	\times	\times	
0029	貫通部止水処置	Sクラス	2号炉タービン建屋	\bigcirc	\times	
0030	津波監視カメラ	Sクラス	－	\times	\times	
0031	取水ピット水位計	Sクラス	－	\times	\times	
0032	原子炉建屋	Sクラス 間接支持構造物 SA施設	2号炬タービン建屋	\bigcirc	\bigcirc	
			2号炉制御建屋	\times	\bigcirc	
0033	制御建屋	間接支持構造物	2号炉タービン建屋	\bigcirc	\bigcirc	
			2号炉補助ボイラー建屋	\bigcirc	\bigcirc	
			1号炉制御建屋	\bigcirc	\bigcirc	
0034	海水ポンプ室	屋外重要土木構造物間接支持構造物 SA施設	－	\times	\times	
0035	軽油タンク室	屋外重要土木構造物間接支持構造物	－	\times	\times	
0036	復水貯蔵タンク基礎	SA施設間接支持構造物	－	\times	\times	
0037	軽油タンク連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	\times	
0038	排気筒連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	\times	
0039	原子炉機器泠却海水配管ダクト	屋外重要土木構造物間接支持構造物	－	\times	\times	
0040	緊急用電気品建屋	SA施設間接支持構造物	－	\times	\times	
0041	ガスタービン発電設備軽油タンク室	SA施設間接支持構造物	－	\times	\times	
0042	緊急時対策建屋	SA施設間接支持構造物	－	\times	\times	
0043	取水口	屋外重要土木構造物 SA施設	－	\times	\times	
0044	取水路	屋外重要土木構造物 SA施設	－	\times	\times	
0045	3 号炬海水熱交換器建屋	間接支持構造物	－	\times	\times	
0046	復水貯蔵タンク外部注水入口弁	SA施設	－	\times	\times	
0047	トランシーバ屋外アンテナ	SA施設	－	\times	\times	
0048	衛星電話屋外アンテナ	SA施設	－	\times	\times	
0049	無線通信装置	SA施設	－	\times	\times	
0050	取放水路流路縮小工	Sクラス	－	\times	\times	
0051	浸水防止壁	Sクラス	－	\times	\times	

4 条一別紙2－41
第6．1．3－1 表 女川 2 号炉 建屋外施設の評価結果（地盤の不等沈下による影響）

建屋外上位クラス 施設	波及的影響を及ぼすおそれの ある下位クラス施設		評価結果	備考

第6．1．3－2表 女川 2 号炉 建屋外施設の評価方針（相対変位による影響）

| 建屋外上位クラス
 施設 | 波及的影響を及ぼすおそれの
 ある下位クラス施設 | 評価方針 | 備考 |
| :---: | :--- | :--- | :--- | :--- |

[^1]
6． 2 接続部における相互影響検討結果

6．2．1 抽出手順

机上検討を基に，上位クラス施設と接続する下位クラス施設のうち，下位ク ラス施設の損傷又は隔離によるプロセス変化により，上位クラス施設に影響を及ぼすおそれがある下位クラス施設を抽出する。なお，S クラス施設等と重要 SA 施設との接続部は，第6．2．1－1 図の接続部例に示すとおり上位クラス同士の接続であることから，上位クラス施設と下位クラス施設との接続部として抽出 しない。

接続部については，系統図等により網羅的に確認が可能であり，プラント建設時及び改造工事の際は，施工に伴う確認，系統図作成時における現場確認，使用前検査，試運転等から接続部が設計図書どおりであることを確認している ことから，接続部の波及的影響については，机上検討により評価対象の抽出が可能である。

第6．2．1－1 図 S クラス施設等と重要 SA 施設の接続部例

6．2．2 接続部の抽出結果及び影響評価対象の選定結果
第5．2－8 図のフローの a 及び b に基づいて抽出された評価対象接続部につい て整理したものを第6．2．2－1 表に示す。

6．2．3 影響評価結果

6．2．2 項で抽出した上位クラス施設と下位クラス施設との接続部について，第5．2－8 図のフローの c に基づいて影響評価を行った結果を第6．2．3－1 表に示 す。

影響評価を行った結果，上位クラス施設と下位クラス施設との接続部が損傷 することによって，上位クラスの機能に影響を及ぼすおそれがないことを確認 した。

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（ $1 / 9$ ）

整理 番号	屋外上位クラス施設（機器•配管）	区分	設置場所		評価対象	接続配管等	備考
0001	原子炬補機冷却海水ポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\bigcirc	\bigcirc	グランドドレンライン	
0002	原子炬補機冷却海水系配管	Sクラス SA施設	屋外	\bigcirc	\times	万過水系ライン	逆止弁を介して接続され ている
					\times	鉄イオン供給ライン	$\begin{aligned} & \text { 逆止弁を介して接続され } \\ & \text { ている } \end{aligned}$
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
0003	RSWポンプ吐出逆止弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	屋外	\times	－		
0004	RSWポンプ吐出升	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\times	－		
0005	RSWポンプ吐出連絡管止め弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\times	－		
0006	高圧炬心スプレイ補機冷却海水ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\bigcirc	\bigcirc	グランドドレンライン	
0007	高圧炬心スプレイ補機冷却海水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\bigcirc	\times	3過水系ライン	$\begin{aligned} & \text { 逆止弁を介して接続され } \\ & \text { ている } \end{aligned}$
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
0008	高圧炉心スプレイ補機泠却海水系スト レーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\times	－		
0009	HPSWポンプ吐出逆止弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	屋外	\times	－		
0010	HPSWポンプ吐出弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	屋外	\times	－		
0011	非常用がス処理系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\times	－		
0012	復水補給水系配管	SA施設	屋外	\times	－		
0013	原子炬補機冷却水系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	屋外	\times	－		
0014	残留熱除去系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	屋外	\times	－		
0015	原子炉格納容器フィルタベント系配管	SA施設	屋外	\times	－		
0016	ガスタービン発電設備燃料移送ポンプ	SA施設	屋外	\times	－		
0017	ガスタービン発電設備燃料移送系配管	SA施設	屋外	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	タイライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
0018	復水貯蔵タンク	SA施設	屋外	\bigcirc	\bigcirc	オーバーフローライン	
					\bigcirc	復水補給水戻りライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（2／9）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置場所		評偠対象	接続配管等	備考
E001	燃料集合体	Sクラス	R／B	\times	－		
E002	原子炬圧力容器	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E003	炬心支持構造物	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E004	原子炉圧力容器支持構造物	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E005	原子炉圧力容器付属構造物	Sクラス	R／B	\times	－		
E006	原子炉圧力容器内部構造物	Sクラス	R／B	\times	－		
E007	使用济燃料プール	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E008	使用済燃料販蔵ラック	Sクラス	R／B	\times	－		
E009	制御棒•破損燃料貯蔵ラック	Sクラス	R／B	\times	－		
E010	原子炬再循環ポンプ	Sクラス	R／B	\bigcirc	\bigcirc	シールキャビティ圧力制御流量ライ	
					\times	$\begin{aligned} & \text { 涪ールキャビティパージ } \\ & \text { 水ライン } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 逆止并を介して接続され } \\ \text { ている } \end{array} \\ & \hline \end{aligned}$
E011	原子炉再循環系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	試料採取系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E012	主蒸気逃がし安全弁逃がし弁機能用ア キュムレータ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	\times	－		
E013	主蒸気逃がし安全弁自動減圧機能用ア キレータ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E014	主蒸気第一隔離弁用アキュムレータ	Sクラス	R／B	\times	－		
E015	主蒸気第二隔離弁用アキュムレータ	Sクラス	R／B	\times	－		
E016	主蒸気系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	主蒸気ライン	
					\bigcirc	主蒸気ドレンライン	
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	RPVベントライン	$\begin{aligned} & \begin{array}{l} \text { 通常閉の弁を介して接続 } \\ \text { されている } \end{array} \\ & \hline \end{aligned}$
					\times	RPVフランジ漏えい検出	通常閉の弁を介して接続 されている
E017	復水給水系配管	Sクラス SA施設	R／B	\bigcirc	\times	復水給水系ライン	逆止弁を介して接続され ている
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { きれている } \\ & \hline \end{aligned}$
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E018	残留熱除去系熱交換器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E019	残留熱除去系ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\bigcirc	ペデスタルドレンライン	
					\bigcirc	$\begin{aligned} & \hline \begin{array}{l} \text { メカニカルシールリーク } \\ \text { ドレンライン } \end{array} \\ & \hline \end{aligned}$	
E020	残留熱除去系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E021	残留熱除去系配管	Sクラス SA施設	R／B	\bigcirc	\times	復水補給水系ライン	通常閉の弁を介して接続 されている
					\times	燃料プール泠却浄化系ラ イン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	廃妻物処理系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	詞料採取系ライン	通常閉の亣を介して接続 されている
					\times	事故後サンプリングライ	通常閉の弁を化して接続
					\times	復水貯蔵タンクライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E022	高圧炉心スプレイ系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ペデスタルドレンライン	
					\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E023	高圧炬心スプレイ系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（3／9）

$\begin{aligned} & \text { 整理 } \\ & \hline ⿱ ⿱ ㇒ ⿻ 丷 木 ⿴ 囗 十 \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ (\text { 有 }: ~ \end{gathered}$	評価対象	接続配管等	備考
E024	高圧炬心スプレイ系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\times	復水貯蔵タンク戻りライ	通常閉の弁を介して接続 されている
					\times	燃料プール補給水テスト ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \hline \end{aligned}$
					\bigcirc	燃料プール補給水ライン	
					\times	復水補給水系ライン	逆止弁を介して接続され ている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストライン	$\begin{aligned} & \text { 通常閉の亣を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E025	低圧炬心スプレイ系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ペデスタルドレンライン	
					\bigcirc	$\begin{aligned} & \text { 㐅カニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E026	低圧炬心スプレイ系ストレーナ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E027	低圧炬心スプレイ系配管	Sクラス SA施設	R／B	\bigcirc	\times	復水貯蔵タンクライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { きれている } \end{aligned}$
					\times	復水補給水系ライン	通常閉の亣を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	テストライン	通常閉の弁を介して接続 されている
E028	原子炉隔離時冷却系ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\bigcirc	ブラケットドレンライン	
E029	原子炬隔離時冷却系ポンプ駆動用ター ビン	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E030	原子炬隔離時冷却系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	主復水器ライン	
					\times	復水補給水系ライン	通常閉の弁を介して接続 されている
					\times	復水貯蔵タンク戻りライ	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	建屋内開放ライン	$\begin{aligned} & \text { ラプチヤディスクを介し } \\ & \text { て接続されている } \\ & \hline \end{aligned}$
					\times	$\begin{aligned} & \text { ドレンライン, バントラ } \\ & \text { イン } \end{aligned}$	通常閉の亣または安全弁 （通常閉）を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている
E031	原子炉補機冷却水系熱交換器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E032	原子炉補機冷却水ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
					\bigcirc	$\begin{aligned} & \text { ベアリングブラケットド } \\ & \text { レンライン } \end{aligned}$	
E033	原子炬補機冷却水サージタンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\bigcirc	補給水ライン	
					\times	燃料プール補給水系ライ	通常閉の弁を介して接続
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	通常閉の弁を介して接続
E034	原子炬補機冷却水系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	常用系ライン	
					\bigcirc	燃料プール補給水ポンプ軸受洽却ライン	
					\times	燃料プール補給水系ライ	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	
					\times	試料採取系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { きれている } \end{aligned}$
E035	原子炉補機冷却海水系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E036	原子炉補機冷却海水系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, バントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	試料採取系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E037	$\begin{aligned} & \text { 高圧炉心スプレイ補機冷却水系熱交換 } \\ & \text { 器 } \end{aligned}$	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（4／9）

整理 番号	屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : } 0 \text {, 無 : } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E038	高圧炉心スプレイ補機冷却水ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \hline \text { メカニカルシールリーク } \\ & \text { ドレンライン } \\ & \hline \end{aligned}$	
					\bigcirc	$\begin{aligned} & \text { ベアリングブラクットド } \\ & \text { レンライン } \end{aligned}$	
E039	高圧炉心スプレイ補機泠却水サージタンク	Sクラス SA施設	R／B	\bigcirc	\times	補給水ライン	通常閉の弁を介して接続 されている
					\times	燃料プール補給水系ライ ン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
E040	高圧炉心スプレイ補機冷却水系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	防食剤添加タンクライン	通常閉の弁を介して接続 されている
E041	高圧炬心スプレイ補機冷却海水系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	試料採取系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E042	原子炉泠却材浄化系配管	Sクラス SA施設	R／B	\bigcirc	\times	万過脱塩装置ライン	逆止弁を介して接続され ている
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E043	制御棒駆動機構	Sクラス	R／B	\bigcirc	\bigcirc	制御棒引抜配管	
E044	水圧制御コニット	Sクラス	R／B	\times	－	制御棒駆動水圧系ライン	通常閉の弁および逆止弁 を介して接続されている
E045	制御棒駆動水圧系配管	Sクラス	R／B	\bigcirc	\times	ベントライン	通常閉の弁を介して接続 されている
E046	ほう酸水注入系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ポンプドレンライン	
E047	ほう酸水注入系貯蔵タンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	サンプリングライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E048	ほう酸水注入系配管	Sクラス SA施設	R／B	\bigcirc	\times	補給水ライン	通常閉の弁および逆止弁 を介して接続されている
					\times	補給水ライン（バイパ ス）	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストタンクライン	通常閉の弁を介して接続 されている
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E049	放射性ドレン移送系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E050	サプレッションプール水貯蔵系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E051	燃料プール泠却浄化系ポンプ	SA施設	R／B	\bigcirc	\bigcirc	ブラケットドレンライン	
E052	燃料プール泠却浄化系熱交換器	SA 施設	R／B	\times	－		
E053	燃料プール泠却浄化系配管	Sクラス	R／B	\bigcirc	\times	燃料プール補給水系ライ ン	通常閉の弁を介して接続 されている
					\times	残留熱除去系戻りライン	通常閉の弁を介して接続 されている
					\times	原子炉ウェル注水ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	原子炉ウェル戻りライン	逆止弁を介して接続され ている
					\times	ろ過脱塩装置ライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E054	換気空調補機常用泠却水系配管	Sクラス SA施設	R／B	\times	－		
E055	換気空調補機非常用泠却水系配管	Sクラス SA施設	R／B	\bigcirc	\times	冷媒回収ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	防食剤添加タンクライン	通常閉の弁を介して接続 されている

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（5／9）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ (\text { 有 : O, 無 : } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E056	復水補給水系配管	SA施設	R／B	\bigcirc	\bigcirc	制御棒駆動系給水ライン	
					\times	万過水系ライン	通常閉の弁および逆止弁 を介して接続されている
					\times	タービン建屋供給ライン	通常閉の弁を介して接続 されている
					\times	ECCS系封水ライン	通常閉の弁および逆止弁 を介して接続されている
					\times	除染用給水ライン	通常閉の弁を介して接続 されている
					\times	プール／原子炉ウェル水張りライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { スキマサージタンク補給 } \\ & \text { 水 } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	純水補給水系ライン	通常閉の弁を介して接続 されている
					\bigcirc	試料採取系ライン	
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E057	高圧窒素ガス供給系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	常用系ライン	
					\times	安全弁排気ライン	安全弁 (通常閉) を介し て接続されている
E058	所内用圧縮空気系配管	Sクラス SA施設	R／B	\times	－		
E059	計装用圧縮空気系配管	Sクラス SA施設	R／B	\times	－		
E060	サンプリング配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E061	高圧窒素ガス供給系窒素ガスボンベ ラック	Sクラス SA施設	R／B	\times	－		
E062	中央制御室送風機	Sクラス SA施設	C／B	\times	－		
E063	中央制御室排風機	Sクラス SA施設	C／B	\times	－		
E064	中央制御室再循環送風機	Sクラス SA施設	C／B	\times	－		
E065	中央制御室再循環フィルタ装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	C／B	\times	－		
E066	ドライウェル	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E067	ドライウェルベント開口部	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E068	サプレッションチェンバ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E069	ボックスサポート	Sクラス SA施設	R／B	\times	－		
E070	機器搬出入用ハッチ	Sクラス SA施設	R／B	\times	－		
E071	逃がし安全弁搬出入口	Sクラス SA施設	R／B	\times	－		
E072	制御棒駆動機構搬出入口	Sクラス SA施設	R／B	\times	－		
E073	所員用エアロック	Sクラス SA施設	R／B	\times	－		
E074	原子炉格納容器配管貫通部	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E075	原子炉格納容器電気配線貫通部	Sクラス SA施設	R／B	\times	－		
E076	ダウンカマ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E077	ベント管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E078	ベント管ベローズ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E079	ベントヘッダ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E080	真空破壊装置	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E081	サプレッションチェンバスプレイ管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E082	ドライウェルスプレイ管	Sクラス SA施設	R／B	\times	－		
E083	原子炉格納容器スタビライザ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（6／9）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{aligned} & \text { 下位クラスとの } \\ & \text { (接続 }{ }^{* 1} \end{aligned}$	評価対象	接続配管等	備考
E084	原子炉格納容器調気系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	窒素ガス供給ライン	
					\times	建屋空調系ライン	通常閉の弁を介して接続 されている
					\times	パージ用窒素供給ライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E085	非常用ガス処理系排風機	Sクラス	R／B	\times	－		
E086	非常用が下処理系空気乾燥装置	Sクラス	R／B	\bigcirc	\times	ドレンライン	逆止弁を介して接続され ている
E087	非常用ガス処理系フィルタ装置	Sクラス	R／B	\times	－		
E088	非常用が大処理系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\bigcirc	\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E089	可燃性ガス濃度制御系再結合装置ブロ \square	Sクラス	R／B	\times	－		
E090	可燃性ガス濃度制御系再結合装置	Sクラス	R／B	\times	－		
E091	可燃性ガス濃度制御系配管	Sクラス	R／B	\bigcirc	\times	復水補給水系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \hline \text { されている } \end{aligned}$
E092	非常用ディーゼル発電設備ディーゼル機関	Sクラス SA施設	R／B	\bigcirc	\bigcirc	吸気ライン	
					\bigcirc	排気ライン	
					\bigcirc	燃料油ドレンライン	
					\bigcirc	ミスト管	
					\bigcirc	泪滑油ドレンライン	
					\bigcirc	吸気ドレンライン	
					\bigcirc	洽却水ドレンライン	
					\times	洽却水ベントライン	
E093	非常用ディーゼル発電設備空気だめ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E094	非常用ディーゼル発電設備燃料デイタ ンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { 燃料油ドレンユニットラ } \\ & \text { イン } \end{aligned}$	
					\bigcirc	オーバーフローライン	
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\bigcirc	ミスト管	
E095	$\begin{array}{\|l\|} \hline \text { 非常用ディーゼル発電設備ディーゼル } \\ \hline \end{array}$	$\begin{aligned} & \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ & \hline \end{aligned}$	R／B	\times	－		
E096	非常用ディーゼル発電設備清水膨張夕 ンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E097	非常用ディーゼル発電設備清水加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E098	$\begin{array}{\|l\|} \hline \text { 非常用ディーゼル発電設備洞滑油加熱 } \\ \hline \end{array}$	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E099	非常用ディーゼル発電設備清水加熱器 ポンブ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { 㐅カニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E100	非常用ディーゼル発電設備涸滑油プラ イミングポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\bigcirc	ドレンライン	
E101	非常用ディーゼル発電設備園滑油サン プタンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	給油ライン	
					\bigcirc	ミスト管	
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E102	$\begin{array}{\|l\|} \hline \text { 非常用ディーゼル発電設備閪滑油泠却 } \\ \hline \end{array}$	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E103	非常用ディーゼル発電設備注滑油フィ ルタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\bigcirc	ドレンライン	

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（7／9）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ (\text { 有 }: ~ \end{gathered}$	評価対象	接続配管等	備考
E104	非常用ディーゼル発電設備燃料油フィ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E105	非常用ディーゼル発電設備燃料移送ポ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	軽油タンク室	\times	－		
E106	非常用ディーゼル発電設備燃料移送系配管	Sクラス SA施設	R／B 軽油タンク室	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	タイライン	通常閉の弁を介して接続 されている
E107	高圧灲心スプレイ系ディーゼル発電設備ディーゼル機関	Sクラス SA施設	R／B	\bigcirc	\bigcirc	吸気ライン	
					\bigcirc	排気ライン	
					\bigcirc	潤滑油補給ライン	
					\times	潤滑油ドレンライン	
					\bigcirc	燃料油ドレンライン	
					\bigcirc	ミスト管	
					\bigcirc	吸気ドレンライン	
					\bigcirc	泠却水ドレンライン	
					\times	泠却水ベントライン	
E108	高圧炬心スプレイ系ディーゼル発電設備空気だめ	$\begin{array}{\|c} \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	\times	－		
E109	高圧烼心スプレイ系ディーゼル発電設備燃料デイタンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	燃料油ドレンユニットラ イン	
					\bigcirc	オーバーフローライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
					\bigcirc	ミスト管	
E110	高圧炬心スプレイ系ディーゼル発電設備ディーゼル発電機	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E111	高圧炬心スプレイ系ディーゼル発電設備清水膨張タンク	sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
E112	高圧炬心スプレイ系ディーゼル発電設備清水加熱器	$\begin{array}{\|c} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{array}$	R／B	\times	－		
E113	高圧炬心スプレイ系ディーゼル発電設備泪滑油加熱器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E114	高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E115	高圧㶥心スプレイ系ディーゼル発電設備润滑油プライミングポンプ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\bigcirc	\bigcirc	ドレンライン	
E116	高圧炬心スプレイ系ディーゼル発電設備泪滑油洽却器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E117	高圧炬心スプレイ系ディーゼル発電設備燃料油フィルタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E118	高圧炉心スプレイ系ディーゼル発電設備発電機軸受潤滑油泠却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	\times	－		
E119	高圧炬ふスプレイ系ディーゼル発電設	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	軽油タンク室	\times	－		
E120	高圧炬心スプレイ系ディーゼル発電設備燃料移送系配管	Sクラス SA施設	R／B 軽油タンク室	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 通常閉の弁を介して接続 } \\ \text { されている } \end{array} \end{aligned}$
					\times	タイライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E121	軽油タンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	軽油タンク室	\bigcirc	\bigcirc	給油ライン	
					\bigcirc	ミスト管	
					\bigcirc	軽油タンク戻りライン	
E122	SGTS室空調機	Sクラス	R／B	\times	－		
E123	FCS室空調機	Sクラス	R／B	\times	－		
E124	CAMS室空調機	Sクラス	R／B	\times	－		
E125	FPCポンプ室空調機	Sクラス	R／B	\times	－		
E126	LPCSポンプ室空調機	Sクラス	R／B	\times	－		

4 条一別紙2－51

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（8／9）

$\begin{aligned} & \text { 䔩理号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置場所		評価対象	接続配管等	備考
E127	HPCSポンプ室空調機	Sクラス	R／B	\times	－		
E128	RHRポンプ室空調機	Sクラス	R／B	\times	－		
E129	D／G室非常用給気ケーシング	Sクラス	R／B	\times	－		
E130	換気空調補機非常用泠却水系泠水ポン	Sクラス	R／B	\times	－		
E131	換気空調補機非常用泠却水系洽凁機	Sクラス	R／B	\times	－		
E132	原子炉補機（ A ）室送風機	Sクラス	R／B	\times	－		
E133	原子炉補機（A）室給気ケーシング	Sクラス	R／B	\times	－		
E134	原子炉補機（HPCS）室送風機	Sクラス	R／B	\times	－		
E135	原子炉補機（HPCS）室排風機	Sクラス	R／B	\times	－		
E136	原子炉補機（HPCS）室給気ケーシング	Sクラス	R／B	\times	－		
E137	原子炉補機（ B ）室送風機	Sクラス	R／B	\times	－		
E138	原子炬補機（B）室給気ケーシング	Sクラス	R／B	\times	－		
E139	D／G（A）室非常用送風機	Sクラス	R／B	\times	－		
E140	D／G（HPCS）室非常用送風機	Sクラス	R／B	\times	－		
E141	D／G（B）室非常用送風機	Sクラス	R／B	\times	－		
E142	原子炉補機（A）室排風機	Sクラス	R／B	\times	－		
E143	原子炬補機（B）室排風機	Sクラス	R／B	\times	－		
E144	RCWポンプ（A）室空調機	Sクラス	R／B	\times	－		
E145	RCWポンプ（ B ）室空調機	Sクラス	R／B	\times	－		
E146	中央制御室給気ケーシング	Sクラス	C／B	\times	－		
E147	計測制御電源室給気ケーシング	Sクラス	C／B	\times	－		
E148	計測制御電源（A）室送風機	Sクラス	C／B	\times	－		
E149	計測制御電源 (A) 室排風機	Sクラス	C／B	\times	－		
E150	計測制御電源（ B ）室送風機	Sクラス	C／B	\times	－		
E151	計測制御電源（ ${ }^{\text {a }}$ 室排風機	Sクラス	C／B	\times	－		
E152	中央制御室換気空調系ダクト	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	C／B	\bigcirc	\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E153	計測制御電源（ A ）室換気空調系ダクト	Sクラス	C／B	\bigcirc	\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
E154	計測制御電源（B）室換気空調系ダクト	Sクラス	C／B	\bigcirc	\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E155	スキマサージタンク	SA施設	R／B	\times	－		
E156	高圧代替注水系ポンプ	SA施設	R／B	\times	－		
E157	高圧代替注水系配管	SA施設	R／B	\bigcirc	\times	蒸気ドレンライン	$\begin{aligned} & \text { 逆止弁を介して接続され } \\ & \text { ている } \end{aligned}$
					\bigcirc	主復水器ライン（蒸気）	
					\times	主復水器ライン（水）	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \hline \text { されている } \end{aligned}$
					\times	建屋内開放ライン	$\begin{aligned} & \text { ラプチャディスクを介し } \\ & \text { て接続されている } \end{aligned}$
					\bigcirc	燃料プール補給水系ライ ン	
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E158	代替高圧窒素がス供給系配管	SA施設	R／B	\bigcirc	\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E159	復水移送ポンプ	SA施設	R／B	\bigcirc	\bigcirc	グランドドレンライン	
E160	原子炉格納容器フィルタベント系フィ ル夕装置	SA施設	R／B	\times	\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E161	原子炬格納容器フィルタベント系フィ ルタ装置出口側圧力開放板	SA施設	R／B	\times	－		

4 条一別紙2－52

第6．2．2－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部一覧表（9／9）

整理 番号	屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : } 0 \text {, 無 : } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E162	原子炬格納容器フィルタベント系配管	SA施設	R／B	\bigcirc	\times	格納容器調気系補給用窒素供給ラ	通常閉の弁を介して接続 されている
					\times	純水補給水系ライン	逆止弁を介して接続され ている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E163	静的触媒式水素再結合装置	SA施設	R／B	\times	－		
E164	ガスタービン発電機	SA施設	緊急用電気品建屋	\times	－		
E165	ガスタービン発電設備軽油タンク	SA施設	ガスタービン発電設備軽油タンク室	\bigcirc	\bigcirc	給油ライン	
					\bigcirc	ミスト管	
					\bigcirc	軽油タンク戻りライン	
E166	ガスタービン発電設備燃料移送ポンプ	SA施設	ガスタービン発電設備軽油タンク室	\times	－		
E167	ガスタービン発電設備燃料移送系配管	SA施設	ガスタービン発電設備軽油タンク室緊急用電気品建屋	\times	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	軽油タンク戻りライン	通常閉の弁を介して接続 されている
E168	中央制御室遮蔽壁	Sクラス SA施設	C／B	\times	－		
E169	中央制御室待避所遮蔽	SA施設	C／B	\times	－		
E170	中央制御室待避所加圧設備	SA施設	C／B	\times	－		
E171	緊急時対策所遮蔽	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E172	緊急時対策所非常用送風機	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E173	緊急時対策所非常用フィルタ装置	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E174	緊急時対策所加圧設備	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E175	緊急時対策所軽油タンク	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E176	緊急時対策所燃料移送系配管	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E177	緊急時対策建屋非常用給排気配管	SA施設	緊急時対策建屋	\times	－		設置予定施設＊2
E178	代替循環泠却ポンプ	SA施設	R／B	\times	－		設置予定施設＊2
E179	原子炉建屋ブローアウトパネル	SA施設	R／B	\times	－		設置予定施設＊2

$\begin{array}{ll}* 1 & \mathrm{~S} ク ラ ス \text { 施設等と重要 } \mathrm{SA} \text { 施設との接続部は上位クラス同士であるため，上位クラス施設と下位クラス施設 } \\ * 2 \text { 接続部の波及的影響へ配慮をした設計として進める。また，設計完了後，再調査を行う。（添付資料 5）}\end{array}$
第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（ $1 / 10$ ）

建屋外上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
原子炉補機冷却海水ポンプ	グランドドレンライン【C】	グランドドレンラインとは，ポンプのグランド部（軸封部）から排出 される少量の海水を排水するための，小口径のドレンラインであり， ポンプのバウンダリと直接接続しているものではない。したがって， グランドドレンラインが破損した場合でも，グランド部から排出する ごく少量の海水が，破損した部分から漏出するだけであり，グランド部を含む上位クラス機能（ポンプ機能）に直接影響を及ぼさないため，上位クラス施設へ影響を与えない。	－
高圧炉心スプレイ補機冷却海水ポンプ	グランドドレンライン【 C 】	原子炉補機冷却海水ポンプと同様に，グランドドレンラインが破損し た場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラ ス施設へ影響を与えない。	－
復水貯蔵タンク	オーバーフローライン【C】	オーバーフローラインは復水貯蔵タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	復水補給水戻りライン【C】	復水補給水戻りラインは復水貯蔵タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
原子炉再循環ポンプ	シールキャビティ圧力制御流量ライ ン【B】	原子炉再循環ポンプは地震スクラム後には動作機能要求がなく，原子炉圧力容器バウンダリとしての機能のみが要求される。シールキャビ ティ圧力制御流量ラインが破損した場合でも，原子炉圧力容器バウン ダリに影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（2／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【 】：耐震クラス	評価結果	備考
主蒸気系配管	主蒸気ライン【 B 】	主蒸気第二隔離弁の下流側で地震によって主蒸気系配管が破断した場合，破断口から泠却材が外部に流出する。しかし，泠却材の流出流量 は原子炉圧力容器ノズルに設置されている流量制限器により，破断し た配管の本数に係わらず定格主蒸気流量の 200% に制限される。その際 に，主蒸気流量大信号発生により主蒸気隔離弁が 5 秒で全閉し流出が停止する。流出流量 200% による事故解析は，設置許可の安全解析にお いて実施されており，水位低下によって炉心が露出しないことを確認 しているため，地震時に原子炉格納容器外で主蒸気系配管が破断した場合でもその影響が防止される設計となっている。	－
	主蒸気ドレンライン【C】	主蒸気ドレンライン第二隔離弁は主蒸気隔離弁の信号による同弁閉動作のインターロックを設置しているため，地震スクラム時には同弁で下位クラス側と隔離されることから，上位クラスの系統機能へ影響を与えない。	－
残留熱除去系ポンプ	ペデスタルドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（3／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
高圧炉心スプレイ系ポンプ	ペデスタルドレンライン【C】	原子炬補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
高圧炉心スプレイ系配管	燃料プール補給水ライン【B】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
低圧炉心スプレイ系ポンプ	ペデスタルドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
原子炉隔離時冷却系ポンプ	ブラケットドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
原子炉隔離時冷却系配管	主復水器ライン【B】	RCIC 系統運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラスの系統機能へ影響を及ぼさない。	－
原子炉補機冷却水ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
	ベアリングブラケットドレンライン 【С】	原子炉補機冷却海水ポンプと同様に，ベアリングブラケットドレンラ インが損傷した場合でも，上位クラス機能に直接影響を及ぼさないた め，上位クラス施設へ影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（4／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
原子炉補機冷却水サージタンク	補給水ライン【C】	補給水ラインは原子炉補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能 に影響を与えない。	－
	オーバーフローライン【 ${ }^{\text {a }}$ 】	オーバーフローラインは原子炬補機冷却水サージタンクの通常水位よ り上部に接続しており，損傷した場合でも，上位クラス施設（タンク） の機能に影響を与えない。	－
	大気開放ライン【C】	大気開放ラインは原子炉補機冷却水サージタンクの通常水位より上部 に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
原子炉補機冷却水系配管	常用系ライン【C】	下位クラスの損傷により系統水位が低下すると，系統水位低のインタ ーロックによって隔離弁が閉動作し，下位クラス側と隔離されるため上位クラスの系統機能へ影響を及ぼさない。	－
	燃料プール補給水ポンプ軸受泠却ラ イン 【B】	小口径配管のため，損傷しても影響は軽微であることから，上位クラ ス施設（原子炉補機冷却水系配管）への影響はない。	－
高圧炉心スプレイ補機冷却水ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
	ベアリングブラケットドレンライン ［C】	原子炉補機冷却海水ポンプと同様に，ベアリングブラケットドレンラ インが損傷した場合でも，上位クラス機能に直接影響を及ぼさないた め，上位クラス施設へ影響を与えない。	－
高圧炉心スプレイ補機泠却水サージタンク	オーバーフローライン【C】	オーバーフローラインは高圧炉心スプレイ補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	大気開放ライン【C】	大気開放ラインは高圧炬心スプレイ補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タ ンク）の機能に影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（5／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
制御棒駆動機構	制御棒引抜配管【B】	制御棒引抜配管は損傷した場合でも制御棒のスクラム機能に影響を及 ぼすものではない。かつ，原子炉圧力容器バウンダリ範囲でもないこ とから上位クラス施設（制御棒駆動機構）の機能に影響を与えない。	－
ほう酸水注入系ポンプ	$\begin{aligned} & \text { グランドパッキンリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，グランドパッキンリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
ほう酸水注入系貯蔵タンク	補給水ライン【C】	補給水ラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続 しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	オーバーフローライン【C】	オーバーフローラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	大気開放ライン【C】	大気開放ラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
燃料プール泠却浄化系ポンプ	ブラケットドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
復水補給水系配管	制御棒駆動系給水ライン【B】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
	試料採取系ライン【C】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
高圧窒素ガス供給系配管	常用系ライン【C】	下位クラスの損傷により常用系の圧力が低下すると，インターロック によって隔離升が閉動作し下位クラス側と隔離されるため上位クラス の系統機能へ影響を及ぼさない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（6／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
原子炉格納容器調気系配管	窒素ガス供給ライン【C】	下位クラスの損傷が発生した場合には，隔離弁を閉操作し隔離するこ とから，上位クラスの系統機能へ影響を及ぼさない。	－
非常用ディーゼル発電設備ディーゼル機関	吸気ライン【C】	当該配管が損傷した場合でもディーゼル機関への吸気は継続すること から，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	排気ライン【C】	当該配管が損傷した場合でもディーゼル機関の排気は継続することか ら，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	燃料油ドレンライン【く】	原子炬補機冷却海水ポンプと同様に，燃料油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	潤滑油ドレンライン【く】	原子炉補機冷却海水ポンプと同様に，潤滑油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	吸気ドレンライン【C】	原子炬補機冷却海水ポンプと同様に，吸気ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
	機関付清水ポンプシールリークドレ ンライン【C】	原子炉補機冷却海水ポンプと同様に，機関付清水ポンプシールリーク ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼ さないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（ $7 / 10$ ）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
非常用ディーゼル発電設備燃料デイタンク	燃料油ドレンユニットライン【C】	燃料油ドレンユニットラインは燃料デイタンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能 に影響を与えない。	－
	オーバーフローライン【 C 】	オーバーフローラインは燃料デイタンクの通常油面より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。	－
非常用ディーゼル発電設備清水膨張タンク	補給水ライン【C】	補給水ラインは清水膨張タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。	－
	オーバーフローライン【C】	オーバーフローラインは清水膨張タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	大気開放ライン【C】	大気開放ラインは清水膨張タンクの通常水位より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。	－
非常用ディーゼル発電設備清水加熱器ポン プ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設の機能に影響を与えない。	－
非常用ディーゼル発電設備润滑油プライミ ングポンプ	オイルパンドレンライン【C】	原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（8／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【 】：耐震クラス	評価結果	備考
非常用ディーゼル発電設備潤滑油サンプタ ンク	給油ライン【C】	給油ラインは潤滑油サンプタンクの通常油面より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損ならことはないた め，上位クラス施設（タンク）の機能に影響を与えない。	－
発電用ディーゼル発電設備潤滑油フィルタ	ドレンライン【C】	原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。	－
高圧灲心スプレイ系ディーゼル発電設備デ ィーゼル機関	吸気ライン【C】	当該配管が損傷した場合でもディーゼル機関への吸気は継続すること から，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	排気ライン【C】	当該配管が損傷した場合でもディーゼル機関の排気は継続することか ら，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	潤滑油補給ライン【C】	当該配管が損傷した場合でも，機関付潤滑油ポンプによってオイルパ ンからディーゼル機関へ潤滑油が補給されるため，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	燃料油ドレンライン【C】	原子炉補機冷却海水ポンプと同様に，燃料油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	吸気ドレンライン【C】	原子炬補機冷却海水ポンプと同様に，吸気ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（9／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
高圧炉心スプレイ系ディーゼル発電設備デ ィーゼル機関	機関付清水ポンプシールリークドレ ンライン【C】	原子炉補機冷却海水ポンプと同様に，泠却水ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
高圧灲心スプレイ系ディーゼル発電設備燃料デイタンク	燃料油ドレンユニットライン【C】	燃料ドレンユニットラインは燃料デイタンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	オーバーフローライン【C】	オーバーフローラインは燃料デイタンクの通常油面より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。	－
高圧灲心スプレイ系ディーゼル発電設備清水膨張タンク	補給水ライン【C】	```補給水ラインは清水膨張タンクの通常水位より上部に接続しており, 損傷した場合でも, 上位クラス施設(タンク)の機能に影響を与えな い。```	－
	オーバーフローライン【C】	オーバーフローラインは清水膨張タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	大気開放ライン【C】	大気開放ラインは清水膨張タンクの通常水位より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。	－
高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炬補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設（ポンプ）へ影響を与えない。	－
高圧炉心スプレイ系ディーゼル発電設備潤滑油プライミングポンプ	オイルパンドレンライン【C】	原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。	－

第6．2．3－1 表 女川 2 号炉 上位クラス施設と下位クラス施設との接続部の評価結果（10／10）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
軽油タンク	給油ライン【C】	給油ラインは軽油タンクの通常油面より上部に接続しており，損傷し た場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	ミスト管【C】	大気開放ラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	燃料油戻りライン【C】	燃料油戻りラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。	－
高圧代替注水系配管	主復水器ライン（蒸気）【 B 】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
	燃料プール補給水系ライン【B】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
復水移送ポンプ	グランドドレンライン【B】	原子炉補機冷却海水ポンプと同様に，グランドドレンラインが損傷し た場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラ ス施設へ影響を与えない。	－
ガスタービン発電設備軽油タンク	給油ライン【C】	給油ラインは軽油タンクの通常油面より上部に接続しており，損傷し た場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	ミスト管【C】	大気開放ラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	燃料油戻りライン【C】	燃料油戻りラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。	－

6． 3 建屋内における施設の損傷，転倒及び落下等による影響検討結果

6．3．1 抽出手順

机上検討及び現地調査を基に，建屋内上位クラス施設に対して，損傷，転倒及び落下等により影響を及ぼすおそれのある下位クラス施設を抽出する。

建屋内上位クラス施設の配置図を第6．3．1－1 図に示す（配置図上のエリア番号は第 4－2 表の設置場所に該当する）。原子炉建屋クレーンの位置関係概要図 を第6．3．1－2 図に，燃料交換機の位置関係概要図を第6．3．1－3図に，原子炉ウ ェルしゃへいプラグ及び原子炉しやへい壁の位置関係概要図を第6．3．1－4図に示す。

6．3．2 下位クラス施設の抽出結果
第5．3－1 図のフローの a に基づいて，上位クラス施設に波及的影響を及ぼす おそれのある下位クラス施設を抽出した結果を第6．3．2－1 表に示す。

6．3．3 耐震評価方針
6．3．2 項で抽出した建屋内下位クラス施設の評価方針について，第 6．3．3－1表に示す。

4 条一別紙2－65
枠囲みの内容は商業機密又は防護上の観点から公開できません。

4条一別紙2－66
66

4 条一別紙 2－67

4 条一別紙2－68

4 条一別紙2－69

4 条一別紙2－71

4 条一別紙2－72
（枠囲みの内容は商業機密又は防護上の観点から公開できません。

4 条一別紙 2－73

4 条一別紙 2－74

4 条一別紙2－75

4 条一別紙 2－76

4 条一別紙2－77

4 条一別紙 2－78

4 条一別紙 2－79

4 条一別紙2－80
80

4 条一別紙2－81
81

4 条一別紙 $2-82$

4 条一別紙 $2-83$

4 条一別紙 $2-85$
枠囲みの内容は商業機密又は防護上の観点から公開できません。

第 6．3．1－4 図 女川 2 号炉 原子炉ウェルしやへいプラグ及び原子炉しやへい壁位置関係概要図

4 条一別紙2－88
88

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（ $1 / 18$ ）

整理 番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O} \text { : 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
E001	燃料集合体	Sクラス	R／B	－	\times	＊ 1
E002	原子炉圧力容器	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	原子炉しゃへい壁	\bigcirc	＊2
E003	炉心支持構造物	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	＊ 1
E004	原子炉圧力容器支持構造物	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	＊ 3
E005	原子炉圧力容器付属構造物	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	＊ 3
E006	原子炉圧力容器内部構造物	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	＊ 1
E007	使用済燃料プール	Sクラス SA施設	R／B	原子炬建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E008	使用済燃料貯蔵ラック	Sクラス	R／B	原子炬建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E009	制御棒•破損燃料貯蔵ラック	Sクラス	R／B	原子炬建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E010	原子炉再循環ポンプ	Sクラス	R／B	－	\times	
E011	原子炉再循環系配管	Sクラス SA施設	R／B	－	\times	
E012	主蒸気逃がし安全弁逃がし弁機能用ア キュムレータ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E013	主蒸気逃がし安全弁自動減圧機能用ア キュムレータ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E014	主蒸気第一隔離弁用アキュムレータ	Sクラス	R／B	－	\times	
E015	主蒸気第二隔離弁用アキュムレータ	Sクラス	R／B	－	\times	
E016	主蒸気系配管	Sクラス SA施設	R／B	－	\times	
E017	復水給水系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E018	残留熱除去系熱交換器	Sクラス SA施設	R／B	－	\times	
E019	残留熱除去系ポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E020	残留熱除去系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E021	残留熱除去系配管	Sクラス SA施設	R／B	－	\times	
E022	高圧炉心スプレイ系ポンプ	Sクラス SA施設	R／B	－	\times	
E023	高圧炬心スプレイ系ストレーナ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E024	高圧炉心スプレイ系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E025	低圧炉心スプレイ系ポンプ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E026	低圧炬心スプレイ系ストレーナ	Sクラス SA施設	R／B	－	\times	
E027	低圧炉心スプレイ系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E028	原子炉隔離時冷却系ポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E029	原子炬隔離時冷却系ポンプ駆動用タービ ン	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E030	原子炉隔離時冷却系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E031	原子炉補機冷却水系熱交換器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E032	原子炉補機冷却水ポンプ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	

4 条一別紙2－89

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（2／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無）損傷•転倒•落下	備考
E033	原子炉補機冷却水サージタンク	Sクラス SA施設	R／B	－	\times	
E034	原子炉補機冷却水系配管	Sクラス SA施設	R／B	－	\times	
E035	原子炉補機冷却海水系ストレーナ	Sクラス SA施設	R／B	－	\times	
E036	原子炬補機冷却海水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E037	高圧炉心スプレイ補機泠却水系熱交換器	Sクラス SA施設	R／B	－	\times	
E038	高圧炉心スプレイ補機冷却水ポンプ	Sクラス SA施設	R／B	－	\times	
E039	高圧炉心スプレイ補機冷却水サージタン ク	Sクラス SA施設	R／B	－	\times	
E040	高圧炉心スプレイ補機冷却水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E041	高圧炉心スプレイ補機冷却海水系配管	Sクラス SA施設	R／B	－	\times	
E042	原子炉冷却材浄化系配管	Sクラス SA施設	R／B	－	\times	
E043	制御棒駆動機構	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	現場調査実施予定＊5
E044	水圧制御ユニット	Sクラス SA施設	R／B	－	\times	
E045	制御棒駆動水圧系配管	Sクラス SA施設	R／B	－	\times	
E046	ほう酸水注入系ポンプ	Sクラス SA施設	R／B	－	\times	
E047	ほう酸水注入系貯蔵タンク	Sクラス SA施設	R／B	－	\times	
E048	ほう酸水注入系配管	Sクラス SA施設	R／B	－	\times	
E049	放射性ドレン移送系配管	Sクラス	R／B	－	\times	
E050	サプレッションプール水貯蔵系配管	Sクラス	R／B	－	\times	
E051	燃料プール泠却浄化系ポンプ	SA施設	R／B	－	\times	現場調査実施予定＊5
E052	燃料プール泠却浄化系熱交換器	SA施設	R／B	－	\times	現場調査実施予定＊5
		Sクラス		原子炉建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E054	換気空調補機常用冷却水系配管	Sクラス	R／B	－	\times	
E055	換気空調補機非常用冷却水系配管	Sクラス	R／B	－	\times	
E056	復水補給水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E057	高圧窒素ガス供給系配管	Sクラス SA施設	R／B	－	\times	
E058	所内用圧縮空気系配管	Sクラス	R／B	－	\times	
E059	計装用圧縮空気系配管	Sクラス	R／B	－	\times	
E060	サンプリング配管	Sクラス	R／B	－	\times	現場調査実施予定＊5
E061	高圧窒素ガス供給系窒素ガスボンベラッ ク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E062	中央制御室送風機	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	－	\times	
E063	中央制御室排風機	Sクラス SA施設	C／B	－	\times	
E064	中央制御室再循環送風機	Sクラス SA施設	C／B	－	\times	
E065	中央制御室再循環フィルタ装置	Sクラス SA施設	C／B	－	\times	
E066	ドライウェル	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	$\begin{gathered} \text { 原子炉ウェルしやへいプラ } \\ \text { グ } \\ \hline \end{gathered}$	\bigcirc	＊2

4 条一別紙2－90

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（3／18）

整理 番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times \text { : 無) } \\ \hline \end{gathered}$	備考
					損傷•転倒•落下	
E067	ドライウェルベント開口部	Sクラス SA施設	R／B	－	\times	
E068	サプレッションチェンバ	Sクラス SA施設	R／B	－	\times	
E069	ボックスサポート	Sクラス SA施設	R／B	－	\times	
E070	機器搬出入用ハッチ	Sクラス SA施設	R／B	－	\times	
E071	逃がし安全弁搬出入口	Sクラス SA施設	R／B	－	\times	
E072	制御棒駆動機構搬出入口	Sクラス SA施設	R／B	－	\times	
E073	所員用エアロック	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E074	原子炉格納容器配管貫通部	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E075	原子炉格納容器電気配線貫通部	Sクラス SA施設	R／B	－	\times	
E076	ダウンカマ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E077	ベント管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E078	ベント管ベローズ	Sクラス SA施設	R／B	－	\times	
E079	ベントヘッダ	Sクラス SA施設	R／B	－	\times	
E080	真空破壊装置	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	現場調査実施予定＊5
E081	サプレッションチェンバスプレイ管	Sクラス SA施設	R／B	－	\times	
E082	ドライウェルスプレイ管	Sクラス SA施設	R／B	－	\times	
E083	原子炬格納容器スタビライザ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E084	原子炉格納容器調気系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E085	非常用がス処理系排風機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E086	非常用ガス処理系空気乾燥装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E087	非常用ガス処理系フィルタ装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E088	非常用がス処理系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E089	可燃性ガス濃度制御系再結合装置ブロワ	Sクラス	R／B	－	\times	
E090	可燃性ガス濃度制御系再結合装置	Sクラス	R／B	－	\times	
E091	可燃性ガス濃度制御系配管	Sクラス	R／B	－	\times	
E092	非常用ディーゼル発電設備ディーゼル機関	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	現場調查実施予定＊5
E093	非常用ディーゼル発電設備空気だめ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E094	非常用ディーゼル発電設備燃料デイタン ク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E095	非常用ディーゼル発電設備ディーゼル発電機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	現場調査実施予定 ${ }^{* 5}$
E096	非常用ディーゼル発電設備清水膨張タン ク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	現場調查実施予定＊5
E097	非常用ディーゼル発電設備清水加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E098	非常用ディーゼル発電設備潤滑油加熱器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E099	非常用ディーゼル発電設備清水加熱器ポ シプ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E100	非常用ディーゼル発電設備䦞滑油プライ ミングポンプ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E101	非常用ディーゼル発電設備潤滑油サンプ タンク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	

4 条一別紙2－91

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（4／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{array}{\|c\|} \hline \text { 波及的影響のおそれ } \\ (\text { ○: 有, } \times: \text { 無) } \\ \hline \text { 損傷•転倒•落下 } \end{array}$	備考
E102	非常用ディーゼル発電設備潤滑油泠却器	Sクラス SA施設	R／B	－	\times	
E103	非常用ディーゼル発電設備潤滑油フィル夕	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E104	非常用ディーゼル発電設備燃料油フィル夕	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E105	非常用ディーゼル発電設備燃料移送ポン プ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	軽油タンク室	－	\times	現場調査実施予定＊5
E106	非常用ディーゼル発電設備燃料移送系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B 軽油タンク室	－	\times	現場調查実施予定＊5
E107	高圧炉心スプレイ系ディーゼル発電設備 ディーゼル機関	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E108	高圧炉心スプレイ系ディーゼル発電設備空気だめ	Sクラス SA施設	R／B	－	\times	
E109	高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク	Sクラス SA施設	R／B	－	\times	
E110	高圧炬心スプレイ系ディーゼル発電設備 ディーゼル発電機	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E111	高圧灲心スプレイ系ディーゼル発電設備清水膨張タンク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E112	高圧炉心スプレイ系ディーゼル発電設備清水加熱器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E113	高圧炉心スプレイ系ディーゼル発電設備潤滑油加熱器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E114	高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E115	高圧炉心スプレイ系ディーゼル発電設備潤滑油プライミングポンプ	Sクラス SA施設	R／B	－	\times	
E116	高圧炉心スプレイ系ディーゼル発電設備潤滑油冷却器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E117	高圧炉心スプレイ系ディーゼル発電設備燃料油フィルタ	Sクラス SA施設	R／B	－	\times	
E118	高圧炉心スプレイ系ディーゼル発電設備発電機軸受潤滑油冷却器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E119	高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	軽油タンク室	－	\times	現場調査実施予定＊5
E120	高圧炉心スプレイ系ディーゼル発電設備燃料移送系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B 軽油タンク室	－	\times	現場調査実施予定＊5
E121	軽油タンク	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	軽油タンク室	－	\times	現場調査実施予定＊5
E122	SGTS室空調機	Sクラス	R／B	－	\times	
E123	FCS室空調機	Sクラス	R／B	－	\times	
E124	CAMS室空調機	Sクラス	R／B	－	\times	
E125	FPCポンプ室空調機	Sクラス	R／B	－	\times	
E126	LPCSポンプ室空調機	Sクラス	R／B	－	\times	
E127	HPCSポンプ室空調機	Sクラス	R／B	－	\times	
E128	RHRポンプ室空調機	Sクラス	R／B	－	\times	
E129	D／G室非常用給気ケーシング	Sクラス	R／B	－	\times	
E130	換気空調補機非常用冷却水系冷水ポンプ	Sクラス	R／B	－	\times	
E131	換気空調補機非常用冷却水系冷凍機	Sクラス	R／B	－	\times	
E132	原子炉補機（ A ）室送風機	Sクラス	R／B	－	\times	
E133	原子炉補機（A）室給気ケーシング	Sクラス	R／B	－	\times	
E134	原子炉補機（HPCS）室送風機	Sクラス	R／B	－	\times	
E135	原子炉補機（HPCS）室排風機	Sクラス	R／B	－	\times	
E136	原子炉補機（HPCS）室給気ケーシング	Sクラス	R／B	－	\times	

4 条一別紙2－92

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（5／18）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O} \text { : 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
E137	原子炬補機（ $\mathrm{B}^{\text {）室送風機 }}$	Sクラス	R／B	－	\times	
E138	原子炉補機（B）室給気ケーシング	Sクラス	R／B	－	\times	
E139	D／G（A）室非常用送風機	Sクラス	R／B	－	\times	
E140	D／G（HPCS）室非常用送風機	Sクラス	R／B	－	\times	
E141	D／G（B）室非常用送風機	Sクラス	R／B	－	\times	
E142	原子炉補機（ A ）室排風機	Sクラス	R／B	－	\times	
E143	原子炉補機（B）室排風機	Sクラス	R／B	－	\times	
E144	RCWポンプ（A）室空調機	Sクラス	R／B	－	\times	
E145	RCWポンプ（B）室空調機	Sクラス	R／B	－	\times	
E146	中央制御室給気ケーシング	Sクラス	C／B	－	\times	
E147	計測制御電源室給気ケーシング	Sクラス	C／B	－	\times	
E148	計測制御電源（A）室送風機	Sクラス	C／B	－	\times	
E149	計測制御電源（A）室排風機	Sクラス	C／B	－	\times	
E150	計測制御電源（B）室送風機	Sクラス	C／B	－	\times	
E151	計測制御電源（B）室排風機	Sクラス	C／B	－	\times	
E152	中央制御室換気空調系ダクト	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	－	\times	
E153	計測制御電源（A）室換気空調系ダクト	Sクラス	C／B	－	\times	
E154	計測制御電源（B）室換気空調系ダクト	Sクラス	C／B	－	\times	
				原子炬建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E156	高圧代替注水系ポンプ	SA施設	R／B	－	\times	
E157	高圧代替注水系配管	SA施設	R／B	－	\times	
E158	代替高圧窒素ガス供給系配管	SA施設	R／B	－	\times	
E159	復水移送ポンプ	SA施設	R／B	－	\times	
E160	原子炉格納容器フィルタベント系フィル 装置	SA施設	R／B	－	\times	設置予定施 設 ${ }^{*}{ }^{6}$
E161	原子炉格納容器フィルタベント系フィル 夕装置出口側圧力開放板	SA施設	R／B	－	\times	
E162	原子炉格納容器フィルタベント系配管	SA施設	R／B	－	\times	$\underset{\substack { \text { 設置予定施 } \\ \begin{subarray}{c}{\text { 設 }{ \text { 設置予定施 } \\ \begin{subarray} { c } { \text { 設 } } } \\{\hline} \\{\hline}\end{subarray}}{ }$
E163	静的触媒式水素再結合装置	SA施設	R／B	原子炉建屋クレーン	\bigcirc	
E164	ガスタービン発電機	SA施設	緊急用電気品	－	\times	
E165	ガスタービン発電設備軽油タンク	SA施設	ガスタービン発電設備軽油タンク室	－	\times	$\underset{\substack{\text { 設置予定施 } \\ \text { 設 } \\ \hline \\ \hline}}{ }$
E166	ガスタービン発電設備燃料移送ポンプ	SA施設	ガスタービン発電設備軽油タンク室	－	\times	
E167	ガスタービン発電設備燃料移送系配管	SA施設	ガスタービン発電設備軽油タンク室緊急用電気品建屋	－	\times	\|設置予定施
E168	中央制御室しやへい壁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	－	\times	
E169	中央制御室待避所しやへい	SA施設	C／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（6／18）

整理 番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ $(○:$ 有，$\times:$ 無）$\|$	備考
E170	中央制御室待避所加圧設備	SA施設	C／B	－	\times	設置予定施設＊${ }^{*}$
E171	緊急時対策所しやへい	SA施設	緊急時対策建屋	－	\times	
E172	緊急時対策建屋非常用送風機	SA施設	緊急時対策建屋	－	\times	設置予定施設＊${ }^{*}$
E173	緊急時対策建屋非常用フィルタ装置	SA施設	緊急時対策建屋	－	\times	設置予定施設＊${ }^{*}$
E174	緊急時対策所加圧設備	SA施設	緊急時対策建屋	－	\times	
E175	緊急時対策所軽油タンク	SA施設	緊急時対策建屋	－	\times	設置予定施設 ${ }^{*}{ }^{6}$
E176	緊急時対策所燃料移送系配管	SA施設	緊急時対策建屋	－	\times	設置予定施設＊${ }^{*}$
E177	代替循環冷却ポンプ	SA施設	R／B	－	\times	$\begin{aligned} & \hline \text { 設置予定施 } \\ & \text { 設*6 } \end{aligned}$
E178	原子炉建屋ブローアウトパネル	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（7／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O} \text { : 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
V001	主蒸気逃がし安全弁	Sクラス SA施設	R／B	－	\times	
V002	主蒸気第一隔離弁	Sクラス	R／B	－	\times	
V003	主蒸気第二隔離弁	Sクラス	R／B	－	\times	
V004	主蒸気ドレンライン第一隔離弁	Sクラス	R／B	－	\times	
V005	主蒸気ドレンライン第二隔離弁	Sクラス	R／B	－	\times	
V006	原子炉給水逆止弁	Sクラス	R／B	－	\times	
V007	FDW第二隔離弁	Sクラス	R／B	－	\times	
V008	FDW第一隔離弁	Sクラス	R／B	－	\times	
V009	SLCタンク出口弁	Sクラス SA施設	R／B	－	\times	
V010	SLC注入電動弁	Sクラス SA施設	R／B	－	\times	
V011	RHRポンプS／C吸込弁	Sクラス SA施設	R／B	－	\times	
V012	RHRポンプ吐出逆止弁	Sクラス	R／B	－	\times	
V013	RHR熱交換器バイパス升	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V014	RHR LPCI注入隔離弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V015	RHR LPCI注入試験可能逆止弁	Sクラス	R／B	－	\times	
V016	RHR熱交換器出口弁	Sクラス SA施設	R／B	－	\times	
V017	RHR格納容器スプレイ流量調節弁	Sクラス SA施設	R／B	－	\times	
V018	RHR格納容器スプレイ隔離弁	Sクラス SA施設	R／B	－	\times	
V019	RHR S／Cスプレイ隔離弁	Sクラス SA施設	R／B	－	\times	
V020	RHR停止時冷却吸込第一隔離弁	Sクラス SA施設	R／B	－	\times	
V021	RHR停止時冷却吸达第二隔離弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V022	RHRポンプ停止時冷却吸込弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V023	RHR停止時冷却注入隔離弁	Sクラス SA施設	R／B	－	\times	
V024	RHR停止時冷却試験可能逆止弁	Sクラス	R／B	－	\times	
V025	RHRヘッドスプレイ注入隔離弁	Sクラス	R／B	－	\times	
V026	RHRヘッドスプレイ注入逆止弁	Sクラス	R／B	－	\times	＊ 3
V027	RHRポンプミニマムフロー逆止弁	Sクラス	R／B	－	\times	
V028	RHRポンプミニマムフロー弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V029	LPCSポンプS／C吸込弁	Sクラス	R／B	－	\times	
V030	LPCSポンプ吐出逆止弁	Sクラス	R／B	－	\times	
V031	LPCS注入隔離弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V032	LPCS注入ライン試験可能逆止弁	Sクラス	R／B	－	\times	
V033	LPCSポンプミニマムフロー逆止弁	Sクラス	R／B	－	\times	
V034	LPCSポンプミニマムフロー弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（8／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\text { (: 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
v035	HPCSポンプCST吸込弁	Sクラス	R／B	－	\times	
V036	HPCSポンプCST吸込逆止升	Sクラス	R／B	－	\times	
V037	HPCS注入隔離弁	Sクラス SA施設	R／B	－	\times	
V038	HPCS注入ライン試験可能逆止弁	Sクラス	R／B	－	\times	
V039	HPCSポンプS／C吸込弁	Sクラス SA施設	R／B	－	\times	
V040	HPCSポンプS／C吸込逆止弁	Sクラス	R／B	－	\times	
V041	HPCSポンプCST側ミニマムフロー第一弁	Sクラス	R／B	－	\times	
V042	HPCSポンプS／C側ミニマムフロー弁	Sクラス	R／B	－	\times	
V043	RCICポンプCST吸込弁	Sクラス	R／B	－	\times	
V044	RCICポンプCST吸込逆止弁	Sクラス	R／B	－	\times	
V045	RCIC注入弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V046	RCIC注入ライン試験可能逆止弁	Sクラス	R／B	－	\times	
V047	RCICポンプS／C吸込弁	Sクラス	R／B	－	\times	
V048	RCICポンプS／C吸込逆止并	Sクラス	R／B	－	\times	
V049	RCICタービン入口蒸気ライン第一隔離升	Sクラス	R／B	－	\times	
V050	RCICタービン入口蒸気ライン第二隔離弁	Sクラス	R／B	－	\times	
V051	RCICタービン止め弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V052	RCICタービン排気ライン逆止升	Sクラス	R／B	－	\times	
V053	RCICタービン排気ライン隔離弁	Sクラス	R／B	－	\times	
V054	RCICポンプミニマムフロー逆止弁	Sクラス	R／B	－	\times	
V055	RCICポンプミニマムフロー弁	Sクラス	R／B	－	\times	
V056	RCIC冷却水ライン止め弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V057	RCIC冷却水ライン圧力調整异	Sクラス	R／B	－	\times	
V058	RCIC真空ポンプ吐出ライン逆止弁	Sクラス	R／B	－	\times	
V059	RCIC真空ポンプ吐出ライン隔離弁	Sクラス	R／B	－	\times	
V060	CUW入ロライン第一隔離弁	Sクラス	R／B	－	\times	
V061	CUW入ロライン第二隔離弁	Sクラス	R／B	－	\times	
V062	CUW注入ライン逆止弁	Sクラス	R／B	－	\times	
V063	FPC燃料プール再循環逆止弁	Sクラス	R／B	－	\times	
V064	FPC燃料プール注入逆止弁	Sクラス	R／B	$\frac{\text { 原子炉建屋クレーン }}{\text { 燃料交換機 }}$	\bigcirc	現場調查実
V065	D／W LCWサンプ第一隔離升	Sクラス	R／B	－	\times	
V066	D／W LCWサンプ第二隔離弁	Sクラス	R／B	－	\times	
V067	D／W HCWサンプ第一隔離弁	Sクラス	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（9／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times \text { : 無) } \end{gathered}$	備考
V068	D／W HCWサンプ第二隔離弁	Sクラス	R／B	－	\times	
V069	FPMUW燃料プール注入弁	Sクラス	R／B	－	\times	現場調查実 施予定＊5
V070	HNCW供給ライン第二隔離弁	Sクラス	R／B	－	\times	
V071	HNCW戻りライン第一隔離弁	Sクラス	R／B	－	\times	
V072	HNCW戻りライン第二隔離弁	Sクラス	R／B	－	\times	
V073	中央制御室給気泠却コイル温度調節弁	Sクラス	R／B	－	\times	
V074	HECW往還差圧調節弁	Sクラス	R／B	－	\times	
V075	$\begin{array}{\|l\|l} \hline \text { 計測制御電源室給気冷却コイル温度調節 } \\ \text { 并 } \end{array}$	Sクラス	R／B	－	\times	
V076	原子炉補機室給気冷却コイル温度調節弁	Sクラス	R／B	－	\times	
V077	RCWポンプ吐出逆止弁	Sクラス	R／B	－	\times	
V078	RCW熱交換器冷却水出口并	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V079	RCW椧却水供給温度熱交換器調節卉	Sクラス	R／B	－	\times	
V080	RCW椧却水供給温度調節弁後弁	Sクラス	R／B	－	\times	
V081	RCW泠却水供給温度ポンプ調節升	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V082	RHR熱交換器冷却水出口并	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V083	RCWサージタンク非常用補給水弁	Sクラス	R／B	原子炉建屋クレーン	\bigcirc	
V084	非常用D／G冷却水出口弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V085	RCW常用椧却水緊急しゃ断弁	Sクラス	R／B	－	\times	
V086	RCW常用冷却水供給側分離弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V087	RCW 常用泠却水戻り側分離弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V088	RCW常用泠却水戻り側逆止弁	Sクラス	R／B	－	\times	
V089	RCW供給側第二隔離弁	Sクラス	R／B	－	\times	
V090	RCW供給側第一隔離逆止弁	Sクラス	R／B	－	\times	
V091	RCW戻り側第一隔離弁	Sクラス	R／B	－	\times	
V092	RCW戻り側第二隔離弁	Sクラス	R／B	－	\times	
V093	原子炬補機冷却海水系ストレーナ旋回弁	Sクラス	R／B	－	\times	
V094	RSWストレーナブロー并	Sクラス	R／B	－	\times	
V095	HPCWサージタンク非常用補給水弁	Sクラス	R／B	－	\times	
V096	HPIN非常用窒素ガス入口弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V097	HPIN常用非常用窒素ガス連絡弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V098	非常用ガス処理系入口弁	Sクラス	R／B	原子炉建屋クレーン	\bigcirc	
V099	非常用ガス処理系空気乾燥装置入口并	Sクラス	R／B	－	\times	
V100	非常用ガス処理系フィルタ装置出口弁	Sクラス	R／B	－	\times	
V101	パージ用空気供給側隔離弁	Sクラス	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（10／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times \text { : 無) } \end{gathered}$	備考
V102	D／Wパージ用入口隔離升	Sクラス	R／B	－	\times	
V103	S／Cパージ用入口隔離弁	Sクラス	R／B	－	\times	
V104	格納容器外真空逃がし逆止隔離弁	Sクラス	R／B	－	\times	
V105	格納容器外真空逃がし隔離升	Sクラス	R／B	－	\times	
V106	補給用窒素ガス供給側第二隔離弁	Sクラス SA施設	R／B	－	\times	
V107	D／W補給用室素ガス供給用第一隔離弁	Sクラス SA施設	R／B	－	\times	
V108	S／C補給用窒素ガス供給用第一隔離弁	Sクラス	R／B	－	\times	
V109	パージ用窒素ガス供給側第二隔離弁	Sクラス	R／B	－	\times	
V110	D／Wベント用出口隔離弁	Sクラス SA施設	R／B	－	\times	
V111	ベント用SGTS側隔離弁	Sクラス	R／B	－	\times	
V112	ベント用HVAC側隔離弁	Sクラス	R／B	－	\times	
V113	S／Cベント用出口隔離弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V114	D／Wベント用出口隔離弁バイパス弁	Sクラス	R／B	－	\times	
V115	S／Cベント用出口隔離升バイパス弁	Sクラス	R／B	－	\times	
V116	PCV耐圧強化ベント用連絡配管隔離弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V117	FCS入口隔離弁	Sクラス	R／B	－	\times	
V118	FCS出口隔離弁	Sクラス	R／B	－	\times	
V119	RCICタービン入口蒸気ドレンライン第一弁	Sクラス SA施設	R／B	－	\times	
V120	RHRヘッドスプレイライン洗浄流量調節升	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V121	$\begin{aligned} & \text { RHR B系格納容器冷却ライン洗浄流量調節 } \\ & \text { 弁 } \end{aligned}$	SA施設	R／B	－	\times	$\begin{aligned} & \text { 現場調查実 } \\ & \text { 施予定*5* } \end{aligned}$
V122	原子炉再循環ポンプ吐出弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V123	RHR試験用調整弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V124	CRD復水入口异	SA施設	R／B	－	\times	$\begin{aligned} & \text { 現場調査実 } \\ & \text { 施予定* } \end{aligned}$
V125	MUWCサンプリング取出止め弁	SA施設	R／B	－	\times	現場調查実施予定＊5
V126	復水貯蔵タンク常用，非常用給水管連絡 ライン止め弁	SA施設	R／B	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { 設* } \\ \hline \end{array}$
V127	FPMUWポンプ吸込弁	SA施設	R／B	－	\times	現場調查実 施予定 ${ }^{*}{ }^{2}$
V128	復水貯蔵タンク常用，非常用給水管連絡 ライン逆止弁	SA施設	R／B	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { 設*6 } \end{array}$
V129	R／B 1F 緊急時隔離升	SA施設	R／B	－	\times	
V130	緊急時原子炉北側外部注水入口弁	SA施設	R／B	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { 設*6 } \\ \hline \end{array}$
V131	T／B 緊急時隔離弁	SA施設	R／B	－	\times	
V132	緊急時原子炉東側外部注水入口弁	SA施設	R／B	－	\times	
V133	FCVSベントライン隔離弁	SA施設	R／B	－	\times	
V134	FCVS窒素供給ライン止め弁	SA施設	R／B	－	\times	
V135	FCVS側PSA窒素供給ライン元弁	SA施設	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（11／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無）損傷•転倒•落下	備考
V136	PSA窒素供給ライン元弁	SA施設	R／B	－	\times	設置予定施 設*6
V137	S／C側PSA窒素供給ライン第一隔離弁	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
V138	FPC熱交換器入口弁	SA施設	R／B	－	\times	現場調査実施予定＊5
V139	FPCろ過脱塩装置バイパス弁	SA施設	R／B	－	\times	現場調查実施予定 ${ }^{* 5}$
V140	FPC万過脱塩装置出口弁	SA施設	R／B	－	\times	現場調查実施予定 ${ }^{* 5}$
V141	FPCろ過脱塩装置入口第一并	SA施設	R／B	－	\times	現場調查実 施予定＊${ }^{*}{ }^{2}$
V142	FPCろ過脱塩装置入口第二弁	SA施設	R／B	－	\times	現場調査実施予定＊5
V143	中央制御室換気空調系ダンパ	Sクラス SA施設	R／B	－	\times	現場調查実施予定＊5

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（12／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （ O ：有，\times ：無）損傷•転倒•落下	備考
B001	460V制御建屋モータコントロールセンタ	Sクラス	C／B	－	\times	
B002	125V蓄電池	Sクラス SA施設	$\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B003	125V直流受電パワーセンタ	Sクラス SA施設	C／B	－	\times	
B004	125V充電器盤	Sクラス SA施設	$\begin{aligned} & \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B005	125 V 直流主母線盤	Sクラス SA施設	$\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B006	125V直流分電盤	Sクラス SA施設	$\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B007	無停電交流電源用静止型無停電交流電源装置	Sクラス	C／B	－	\times	
B008	交流 120 V 無停電交流分電盤	Sクラス	C／B	－	\times	
B009	中央制御室用電源切替盤	Sクラス SA施設	C／B	－	\times	
B010	中央制御室 120 V 交流分電盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	C／B	－	\times	
B011	重要計器監視用 125 V 直流分電盤2	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B012	6． 9 kV メタクラ	Sクラス SA施設	R／B	－	\times	
B013	460Vパワーセンタ	Sクラス SA施設	R／B	－	\times	
B014	$460 V$ 原子炉建屋モータコントロールセン タ	Sクラス SA施設	R／B	－	\times	
B015	125V直流RCICモータコントロールセンタ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B016	高圧炬心スプレイ系 120 V 交流分電盤2H	Sクラス	R／B	－	\times	
B017	原子炬冷却制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B018	原子炉制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B019	原子炬補機制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B020	原子炬保護系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B021	原子炉保護系試験盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B022	原子炉系プロセス計装盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B023	残留熱除去系（A）•低圧炉心スプレイ系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B024	残留熱除去系（ $\mathrm{B} \cdot \mathrm{C}$ ）盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B025	高圧炉心スプレイ系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B026	原子炉隔離時冷却系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B027	格納容器第一隔離弃盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B028	格納容器第二隔離弃盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B029	自動減圧系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B030	FPC•FPMUW•SLC \cdot MUWC•MUWP•FW制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B031	トリップチャンネル盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B032	FCS－SGTS盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B033	サプレッションプール水温度記録監視盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（13／18）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （ $○$ ：有，\times ：無）損傷•転倒•落下	備考
B034	格納容器計装配管隔離弁盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B035	所内補機制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B036	タービン発電機制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B037	所内電源制御盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	中央制御室天井照明	\bigcirc	
B038	非常用換気空調系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B039	HPCS系非常用換気空調系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B040	RCW•RSW盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B041	RCICタービン制御盤	Sクラス	C／B	－	\times	
B042	漏えい検出系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B043	計算機バッファ補助リレー盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B044	M／C補助継電器盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	中央制御室天井照明	\bigcirc	
B045	AM制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B046	中央制御室外原子炉停止装置盤	Sクラス	C／B	－	\times	
B047	FCS SCR盤	Sクラス	R／B	－	\times	
B048	中央制御室端子盤	Sクラス	C／B	－	\times	
B049	非常用ディーゼル発電機制御盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
B050	非常用ディーゼル発電機補機制御盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
B051	非常用ディーゼル発電機シリコン整流器盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B052	非常用ディーゼル発電機界磁調整器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
B053	非常用ディーゼル発電機自動電圧調整器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B054	非常用ディーゼル発電機 NGR盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B055	非常用ディーゼル発電機 SCT盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
B056	非常用ディーゼル発電機 PPT盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B057	非常用ディーゼル発電機 PT－CT盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B058	高圧炉心スプレイ系ディーゼル発電機制御盤	Sクラス SA施設	R／B	－	\times	
B059	高圧灲心スプレイ系ディーゼル発電機補機制御盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B060	高圧炉心スプレイ系ディーゼル発電機シ リコン整流器盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B061	高圧炉心スプレイ系ディーゼル発電機界磁調整器盤	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B062	高圧炉心スプレイ系ディーゼル発電機自動電圧調整器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B063	高圧灲心スプレイ系ディーゼル発電機 NGR盤	Sクラス SA施設	R／B	－	\times	
B064	高圧炬心スプレイ系ディーゼル発電機 SCT盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B065	高圧炬心スプレイ系ディーゼル発電機 PPT盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B066	高圧灲心スプレイ系ディーゼル発電機 PT－CT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（14／18）

整理番号	屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無）損傷•転倒•落下	備考
B067	スクラム電磁弁ヒューズ盤	Sクラス	R／B	－	\times	
B068	PLRポンプ停止検出用不足電圧継電器盤	Sクラス	R／B	－	\times	
B069	換気空調補機非常用冷却水系泠凍機制御盤	Sクラス	R／B	－	\times	
B070	HPCS交流分電盤2H用変圧器	Sクラス	R／B	－	\times	
B071	動力変圧器	Sクラス SA施設	R／B	－	\times	
B072	起動領域モニタ・安全系プロセス放射線 モニタ盤	Sクラス	C／B	－	\times	
B073	出力領域モニタ盤	Sクラス	C／B	－	\times	
B074	出力領域モニタ補助盤	Sクラス	C／B	－	\times	
B075	TIP制御盤	Sクラス	C／B	－	\times	
B076	格納容器内雰囲気モニタ盤	Sクラス	C／B	－	\times	
B077	SRNM前置増幅器盤	Sクラス	R／B	－	\times	
B078	安全系プロセス放射線モニタ多重伝送現場盤	Sクラス	C／B	－	\times	
B079	RSS盤用変圧器	Sクラス	C／B	－	\times	
B080	125V代替蓄電池	SA施設	C／B	－	\times	
B081	125V代替充電器盤	SA施設	C／B	－	\times	設置予定施設＊${ }^{*}$
B082	ガスタービン発電機接続盤	SA施設	緊急用電気品建屋	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（15／18）

整理番号	屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ \text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \\ \hline \end{gathered}$	備考
1001	低圧炬心スプレイ系計装ラック	Sクラス SA施設	R／B	－	\times	
1002	原子炉冷却材浄化系計装ラック	Sクラス	R／B	－	\times	
1003	原子炉系（広域水位）計装ラック	Sクラス SA施設	R／B	－	\times	
1004	原子炉系（狭域水位）計装ラック	Sクラス SA施設	R／B	－	\times	
1005	ドライウェル圧力計装ラック	Sクラス SA施設	R／B	－	\times	
1006	ジェットポンプ計装ラック	Sクラス SA施設	R／B	－	\times	
1007	高圧炬心スプレイ系計装ラック	Sクラス SA施設	R／B	－	\times	
1008	主蒸気流量計装ラック	Sクラス	R／B	－	\times	
1009	RHR－RCICエルボメータ計装ラック	Sクラス	R／B	－	\times	
1010	原子炉隔離時冷却系ポンプ計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1011	原子炉隔離時冷却系タービン計装ラック	Sクラス	R／B	－	\times	
1012	残留熱除去系計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1013	RCW系統流量計器架台	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1014	RCW常用系入口流量計器架台	Sクラス	R／B	－	\times	
1015	HPCWポンプ計器架台	Sクラス	R／B	－	\times	
1016	RCICタービン排気ダイアフラム圧力 II 系計器架台	Sクラス	R／B	－	\times	
1017	CRDスクラム排出容器水位計器架台	Sクラス	R／B	－	\times	
1018	S／C圧力， $\mathrm{S} / \mathrm{C}-\mathrm{R} / \mathrm{B}$ 差圧計器架台	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1019	ほう酸水注入系計器架台	Sクラス	R／B	－	\times	
1020	RCICタービン計器架台	Sクラス	R／B	－	\times	
1021	原子炉圧力	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1022	原子炉圧力容器温度	SA施設	R／B	－	\times	
1023	サプレッションプール水温度	Sクラス SA施設	R／B	－	\times	
1024	サプレッションプール水位	Sクラス	R／B	－	\times	
1025	圧力抑制室水位	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1026	原子炉建屋外気間差圧	Sクラス	R／B	－	\times	
I027	CAMSサンプリングラック	Sクラス	R／B	－	\times	
1028	CAMS校正ラック	Sクラス	R／B	－	\times	
1029	CAMS ヒータ制御盤	Sクラス	R／B	－	\times	
1030	CAMS電磁升	Sクラス	R／B	－	\times	
1031	CAMS S／Cサンプルガス温度	Sクラス	R／B	－	\times	
1032	CAMS D／Wサンプルガス温度	Sクラス	R／B	－	\times	
1033	CAMS γ 線検出器D／W	Sクラス	R／B	－	\times	
1034	CAMS γ 線検出器S／C	Sクラス	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（16／18）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, ×: 無) } \end{gathered}$	備考
1035	格納容器内雰囲気水素濃度	Sクラス SA施設	R／B	－	\times	
1036	格納容器内雰囲気酸素濃度	Sクラス SA施設	R／B	－	\times	
1037	格納容器内雰囲気放射線モニタ（D／W）	Sクラス SA施設	R／B	－	\times	
1038	格納容器内雰囲気放射線モニタ（S／C）	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1039	静的触媒式水素再結合装置動作監視装置	SA施設	R／B	－	\times	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { 設置予定施 } \\ \text { 設* } \\ \hline \end{array} \\ \hline \end{array}$
I040	RCICタービン蒸気加減弁電油変換器	Sクラス	R／B	－	\times	
1041	RCICタービン蒸気加減弁開度	Sクラス	R／B	－	\times	
1042	RCICタービン回転数	Sクラス	R／B	－	\times	
1043	RCICタービンメカニカルトリップ用	Sクラス	R／B	－	\times	
1044	RCICタービン主蒸気止め弁全閉表示用	Sクラス	R／B	－	\times	
1045	RCIC非常トリップ装置\＆非常調速機作動表示用	Sクラス	R／B	－	\times	
1046	SLCポンプ潤滑油圧力	Sクラス	R／B	－	\times	
1047	スキマサージタンク水位	Sクラス	R／B	－	\times	
1048	RCWサージタンク水位	Sクラス	R／B	－	\times	
1049	RCWサージタンク降水管水位	Sクラス	R／B	－	\times	
1050	HPCWサージタンク水位	Sクラス	R／B	－	\times	
1051	HPCWサージタンク降水管水位	Sクラス	R／B	－	\times	
1052	RSWストレーナ差圧	Sクラス	R／B	－	\times	
1053	SGTSトレイン出口流量	Sクラス	R／B	－	\times	
1054	フィルタ装置チャコールエアフィルタ入口温度	Sクラス	R／B	－	\times	
1055	フィルタ装置チャコールエアフィルタ温度	Sクラス	R／B	－	\times	
1056	フィルタ装置チャコールエアフィルタ出口温度	Sクラス	R／B	－	\times	
1057	燃料デイタンク油面	Sクラス	R／B	－	\times	
1058	機関付清水ポンプ出口圧力	Sクラス	R／B	－	\times	
1059	機関出ロディーゼル泠却水温度	Sクラス	R／B	－	\times	
1060	機関入口潤滑油圧力	Sクラス	R／B	－	\times	
1061	潤滑油プライミングポンプ入口温度	Sクラス	R／B	－	\times	
1062	オイルパン油面	Sクラス	R／B	－	\times	
1063	D／G室温度	Sクラス	R／B	－	\times	
1064	D／G速度	Sクラス	R／B	－	\times	
I065	RCW差压	Sクラス	R／B	－	\times	
1066	HPCW差圧	Sクラス	R／B	－	\times	
1067	RCW冷却水供給温度	Sクラス	R／B	－	\times	
1068	FCS入口ガス流量	Sクラス	R／B	－	\times	

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（17／18）

整理番号	屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\text { (○: 有, } \times \text { : 無) } \end{gathered}$	備考
1069	FCSブロワ入口圧力	Sクラス	R／B	－	\times	
1070	FCSブロワ入口流量	Sクラス	R／B	－	\times	
1071	FCSブロワ入口温度	Sクラス	R／B	－	\times	
1072	FCS加熱管内ガス温度	Sクラス	R／B	－	\times	
1073	FCS加熱管出口ガス温度	Sクラス	R／B	－	\times	
1074	FCS加熱管表面温度	Sクラス	R／B	－	\times	
1075	FCS再結合器表面温度	Sクラス	R／B	－	\times	
1076	FCS泠却器出口ガス温度	Sクラス	R／B	－	\times	
1077	FCS除湿ヒータ用変圧器	Sクラス	R／B	－	\times	
1078	HECW冷水往還差圧	Sクラス	R／B	－	\times	
1079	HECW冷水還温度	Sクラス	R／B	－	\times	
1080	HECW冷涷機冷水出口流量	Sクラス	R／B	－	\times	
1081	原子炉補機室給気温度	Sクラス	R／B	－	\times	
1082	RHR熱交室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1083	RHRポンプ室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1084	RHR熱交室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1085	RHRポンプ室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1086	RHR熱交室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1087	RHRポンプ室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1088	RCIC機器室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1089	RCIC機器室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1090	RCIC機器室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1091	計測制御電源室給気温度	Sクラス	C／B	－	\times	
1092	中央制御室還気温度	Sクラス	C／B	－	\times	
1093	プリアンプ収納箱	Sクラス	C／B	－	\times	
1094	高圧代替注水系ポンプ出口流量	SA施設	R／B	－	\times	
1095	残留熱除去系洗浄ライン流量	SA施設	R／B	－	\times	
1096	HPCSポンプ出口流量	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1097	LPCSポンプ出口流量	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1098	RHRポンプ出口流量	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1099	ほう酸水注入系ポンプ出口圧力	Sクラス	R／B	ほう酸水注入系テスト タンク	\bigcirc	
I100	原子炉格納容器下部注水流量	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
I101	原子炉格納容器代替スプレイ流量	SA施設	R／B	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { \|設 } \\ \hline \end{array}$
I102	ドライウェル温度	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	設置予定施設＊${ }^{*}$

第6．3．2－1 表 女川 2 号炉 建屋内上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（18／18）

整理 番号	屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無）損傷•転倒•落下	備考
1103	圧力抑制室内空気温度	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1104	原子炉格納容器下部水位	SA施設	R／B	－	\times	
1105	ドライウェル水位	SA施設	R／B	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { 設 } \end{array}$
1106	格納容器内水素濃度（D／W）	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
1107	格納容器内水素濃度（S／C）	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
1108	起動領域モニタ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	＊ 1
I109	局部出力領域モニタ	Sクラス	R／B	－	\times	＊ 1
I110	フィルタ装置入口圧力（広帯域）	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
1111	フィルタ装置出口圧力（広帯域）	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
1112	フィルタ装置水位（広帯域）	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
1113	フィルタ装置水温度	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
1114	フィルタ装置出口水素濃度	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
I115	フィルタ装置出口放射線モニタ	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
I116	残留熱除去系熱交換器冷却水入口流量	SA施設	R／B	－	\times	
1117	原子炉建屋内水素濃度	SA施設	R／B	－	\times	
1118	使用済燃料プール水位／温度	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
I119	使用済燃料プール上部空間放射線モニタ （高線量，低線量）	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
I120	使用済燃料プール監視カメラ	SA施設	R／B	－	\times	設置予定施設＊${ }^{*}$
I121	差圧計	SA施設	C／B 緊急時対策建屋	－	\times	設置予定施設＊${ }^{*}$
I122	トランシーバ	SA施設	C／B 緊急時対策建屋	－	\times	$\begin{array}{\|l\|} \hline \left.\begin{array}{l} \text { 設置予定施 } \\ \text { 設 } * 6 \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$
I123	衛星電話	SA施設	C／B 緊急時対策建屋	－	\times	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設 } \\ \hline \end{array} \\ \hline \end{array}$
I124	安全パラメータ表示システム（SPDS）	SA施設	C／B 緊急時対策建屋	－	\times	
I125	統合原子力防災ネットワークに接続する通信連絡設備	SA施設	緊急時対策建屋	－	\times	設置予定施設＊${ }^{*}$
I126	データ伝送設備	SA施設	C／B	－	\times	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設 } \\ \hline \end{array} \\ \hline \end{array}$
1127	データ表示装置	SA施設	C／B	－	\times	設置予定施設＊${ }^{*}$
I128	代替循環冷却ポンプ出口流量	SA施設	R／B	－	\times	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設 } \\ \hline \end{array} \\ \hline \end{array}$
I129	高圧窒素ガス供給系 ADS入口圧力	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1130	衛星通信装置	SA施設	緊急時対策建屋	－	\times	$\underset{\substack{\text { 設置予定施 } \\ \text { 設 } \\ \text {＊}}}{ }$

＊1 機器の内部に設置された内部構造物のため机上検討のみ
＊2 大型施設のため小型の仮置物品や照明等の影響を受けないため机上検討のみ
＊3 狭暗部に設置される施設のため机上検討のみ
＊ 4 地下に設置される又はコンクリート埋設施設のため机上検討のみ
＊5 現地工事養生等の理由で調査が困難なため机上検討のみで評価，現地調査は別途実施
＊6 新規設備であり現在未設置のため机上検討のみで評価，現地調査は別途実施（添付資料5）
第6．3．3－1 表 女川 2 号炉 建屋内施設の損傷，転倒及び落下等の影響に対する評価方針（ $1 / 3$ ）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価方針	備考
原子炉圧力容器	原子炉しやへい壁	基準地震動 Ss に対する構造健全性評価により，原子炉しやへい壁が損傷及び転倒しないことを確認 する。	工認計算書対象
使用済燃料プール 使用済燃料貯蔵ラック 制御棒•破損燃料貯蔵ラック 燃料プール泠却浄化系配管 スキマサージタンク 静的触媒式水素再結合装置 FPC 燃料プール注入逆止弁 RCW サージタンク非常用補給水弁非常用ガス処理系入口弁	原子炉建屋クレーン	基準地震動 Ss に対する構造健全性評価により，原子炉建屋クレーンが転倒及び落下しないことを確認する。	工認計算書対象
使用済燃料プール 使用済燃料貯蔵ラック 制御棒•破損燃料貯蔵ラック 燃料プール冷却浄化系配管 スキマサージタンク FPC 燃料プール注入逆止弁	燃料交換機	基準地震動 Ss に対する構造健全性評価により，燃料交換機が転倒及び落下しないことを確認する。	工認計算書対象

第6．3．3－1 表 女川 2 号炉 建屋内施設の損傷，転倒及び落下等の影響に対する評価方針（2／3）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価方針	備考
ドライウェル	原子炉ウェルしゃへいプラグ	基準地震動 Ss に対する構造健全性評価により，原子炉ウェルしゃへいプラグが落下しないことを確認する。	工認計算書対象
重要計器監視用 $125 V$ 直流分電盤 2 原子炉冷却制御盤 原子炉制御盤 原子炉補機制御盤 原子炉保護系盤 原子炉保護系試験盤 原子炉系プロセス計装盤 残留熱除去系（A）•低圧炬心スプレイ系盤 残留熱除去系（B•C）盤高圧炉心スプレイ系盤原子炉隔離時冷却系盤格納容器第一隔離弁盤格納容器第二隔離弁盤自動減圧系盤 FPC•FPMUW•SLC•MUWC•MUWP•FW 制御盤 トリップチャンネル盤 FCS•SGTS 盤	中央制御室天井照明	基準地震動 Ss による構造健全性評価により，中央制御室天井照明が落下しないことを確認する。	工認計算書対象

第6．3．3－1 表 女川 2 号炉 建屋内施設の損傷，転倒及び落下等の影響に対する評価方針（3／3）

| 建屋内上位クラス施設 | 波及的影響を及ぼすおそれ
 のある位クラス施設 | 評価方針 |
| :--- | :--- | :--- | :--- |
| サプレッションプール水温度記録監視盤
 格納容器計装配管隔離弁盤
 所内補機制御盤
 タービン発電機制御盤
 所内電源制御盤
 非常用換気空調系盤
 HPCS 系非常用換気空調系盤
 RCW•RSW 盤 | | |
| 漏えい検出系盤 | | |
| 計算機バッファ補助リレー盤 | | |
| M／C 補助継電器盤 | | |
| AM 制御盤 | | |

6． 4 建屋外における施設の損傷，転倒及び落下等による影響検討結果

6．4．1 抽出手順

机上検討及び現地調査を基に，建屋外上位クラス施設及び建屋外上位クラス施設の間接支持構造物である建物•構築物に対して，損傷，転倒及び落下等に より影響を及ぼすおそれのある下位クラス施設を抽出する。

6．4．2 下位クラス施設の抽出結果

第5．4－1 図のフローの a に基づいて，波及的影響を及ぼすおそれのある下位 クラス施設を抽出した結果を第6．4．2－1 図，第6．4．2－2 図，第6．4．2－3 図及び第 6．4．2－1 表に示す。

なお，液状化による影響のうち側方流動については，0．P．＋14．8m 盤では地表面が傾斜していないことから，上位クラス施設へ影響を及ぼさない。また，高台側には下位クラス施設が存在せず，海側の下位クラス施設は前面護岸を除き，液状化対象層に接していない（岩盤やセメント改良土に囲まれている）ため，上位クラス施設へ影響を及ぼさない。前面護岸については，次項6．4．3におい て，評価方針を示す。その他の液状化の影響として浮き上がりについては，地下水位が確定次第に別途評価を実施する。

6． 4.3 耐震評価方針
6．4．2 項で抽出した建屋外下位クラス施設の評価方針について，第 6．4．3－1表に示す。
（

第6．4．2－2 図 女川 2 号炉 損傷，転倒及び落下等に係る建屋外上位クラス施設配置図（高台側）
枠囲みの内容は商業機密又は防護上の観点から公開できません。

第6．4．2－3 図 女川 2 号炉 損傷，転倒及び落下等に係る建屋外上位クラス施設配置図（海水ポンプ室）
4 条一別紙－113

113

第6．4．2－1 表 女川 2 号炉 建屋外上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（ $1 / 3$ ）

整理 番号	屋外上位クラス施設	区分	波及的影響を及ぼすおそれ のある下位クラス施設＊4	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\text { (○: 有, ×: 無) } \end{gathered}$	備考
0001	原子炉補機冷却海水ポンプ	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0002	原子炉補機冷却海水系配管	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0003	RSWポンプ吐出逆止弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0004	RSWポンプ吐出弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0006	高圧炉心スプレイ補機冷却海水ポンプ	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0007	高圧炉心スプレイ補機冷却海水系配管	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0008	高圧炉心スプレイ補機冷却海水系スト レーナ	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0010	HPSWポンプ吐出弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0011	非常用ガス処理系配管	Sクラス SA施設	－	\times	
0012	復水補給水系配管	SA施設	－	\times	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設** } \end{array} \\ \hline \end{array}$
0013	原子炉補機冷却水系配管	Sクラス SA施設	－	\times	
0014	残留熱除去系配管	Sクラス SA施設	－	\times	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設*1 } \end{array} \\ \hline \end{array}$
0015	原子炉格納容器フィルタベント系配管	SA施設	－	\times	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設 } \end{array} \\ \hline \end{array}$
0016	ガスタービン発電設備燃料移送ポンプ	SA施設	－	\times	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 設置予定施 } \\ \text { 設*1 } \end{array} \\ \hline \end{array}$
0017	ガスタービン発電設備燃料移送系配管	SA施設	－	\times	
0018	復水貯蔵タンク	SA施設	－	\times	
0019	復水貯蔵タンク水位計器架台	Sクラス SA施設	－	\times	
0020	RSWポンプ出口圧力計器架台	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	

第6．4．2－1 表 女川 2 号炉 建屋外上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（ $2 / 3$ ）

整理番号	屋外上位クラス施設	区分	波及的影響を及ぼすおそれ のある下位クラス施設＊	$\begin{gathered} \text { 波及的影響のおそれ } \\ (○: \text { 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
0021	HPSWポンプ出口圧力計器架台	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0022	排気筒	Sクラス SA施設	1号炉排気筒	\bigcirc	
0023	防潮堤	Sクラス	1号炉取水路	\bigcirc	
			2号炉放水路	\bigcirc	
			3 号炉取水路	\bigcirc	
			3 号炉放水路	\bigcirc	
			北側排水路	\bigcirc	
			南側排水路	\bigcirc	
0024	防潮壁	Sクラス	海水ポンプ室門型クレーン	\bigcirc	$\begin{aligned} & \text { 設置予定施 } \\ & \text { 設**1 } \end{aligned}$
			2号炉タービン建屋	\bigcirc	
			2号炉放水立坑	\bigcirc	
			3 号炉放水立坑	\bigcirc	
0025	逆流防止設備	Sクラス	2号炉タービン建屋	\bigcirc	
0026	水密扉	Sクラス	－	\times	
0027	浸水防止蓋	Sクラス	海水ポンプ室門型クレーン	\bigcirc	$\begin{aligned} & \text { 設置予定施 } \\ & \text { 設*1 } \end{aligned}$
0028	逆止弁付ファンネル	Sクラス	海水ポンプ室門型クレーン	\bigcirc	$\begin{aligned} & \text { 設置予定施 } \\ & \text { 設**1 } \end{aligned}$
			竜巻防護ネット	\bigcirc	
0029	貫通部止水処置	Sクラス	海水ポンプ室門型クレーン	\bigcirc	$\begin{aligned} & \text { 設置予定施 } \\ & \text { 設 } * * 1 \end{aligned}$
			竜巻防護ネット	\bigcirc	
			2号炉タービン建屋	\bigcirc	
0030	津波監視カメラ	Sクラス	－	\times	設置予定施設＊${ }^{*}$
0031	取水ピット水位計	Sクラス	海水ポンプ室門型クレーン	\bigcirc	$\begin{aligned} & \text { 設置予定施 } \\ & \text { 設 }{ }^{*}{ }^{* 1} \end{aligned}$
			竜巻防護ネット	\bigcirc	
0032	原子炉建屋	間接支持構造物 SA施設	2号炉タービン建屋	\bigcirc	
0033	制御建屋	間接支持構造物	2号炉タービン建屋	\bigcirc	
			2号炉補助ボイラー建屋	\bigcirc	
			1号炉制御建屋	\bigcirc	
0034	海水ポンプ室	屋外重要土木構造物間接支持構造物 SA施設	－	\times	
0035	軽油タンク室	屋外重要土木構造物間接支持構造物	－	\times	＊ 3

4 条一別紙2－115

第6．4．2－1 表 女川 2 号炉 建屋外上位クラス施設へ波及的影響（損傷，転倒及び落下等）を及ぼすおそれのある下位クラス施設（ $3 / 3$ ）

整理番号	屋外上位クラス施設	区分	波及的影響を及ぼすおそれ のある下位クラス施設＊4	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\text { (○:有, ×: 無) } \end{gathered}$	備考
0036	復水貯蔵タンク基礎	SA施設間接支持構造物	－	\times	＊ 3
0037	軽油タンク連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	＊ 3
0038	排気筒連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	＊ 3
0039	原子炉機器冷却海水配管ダクト	屋外重要土木構造物間接支持構造物	－	\times	＊ 3
0040	緊急用電気品建屋	SA施設間接支持構造物	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { 設 } \end{array}$
0041	ガスタービン発電設備軽油タンク室	SA施設間接支持構造物	－	\times	$\begin{array}{\|l\|l\|} \hline \text { 設置予定施 } \\ \text { 設*1 } \end{array}$
0042	緊急時対策建屋	SA施設間接支持構造物	－	\times	$\begin{array}{\|l\|l\|} \hline \text { 設置予定施 } \\ \text { 設 } \end{array}$
0043	取水口	屋外重要士木構造物 SA施設	前面護岸	\bigcirc	＊ 3
0044	取水路	屋外重要土木構造物 SA 施設	－	\times	＊ 3
0045	3 号炉海水熱交換器建屋	間接支持構造物	－	\times	現場調査実施予定＊2
0046	復水貯蔵タンク外部注水入口弁	SA施設	－	\times	現場調査実 施予定＊2
0047	トランシーバ屋外アンテナ	SA施設	－	\times	
0048	衛星電話屋外アンテナ	SA施設	－	\times	$\begin{array}{\|l\|l\|} \hline \text { 設置予定施 } \\ \text { 設*1 } \end{array}$
0049	無線通信装置	SA施設	－	\times	$\begin{array}{\|l\|} \hline \text { 設置予定施 } \\ \text { 設 } \\ \hline \end{array}$
0050	取放水路流路縮小工	Sクラス	－	\times	
0051	浸水防止壁	Sクラス	海水ポンプ室門型クレーン	\bigcirc	設置予定施設＊${ }^{*}$

＊1 新規設備であり現在未設置のため机上検討のみで評価，現地調査は別途実施（添付資料 5）
＊2 現地工事養生等の理由で調查が困難なため机上検討のみで評価，現地調査は別途実施
＊3 地下に設置される又はコンクリート埋設施設のため机上検討のみ
＊4 地盤の液状化（浮き上がり）による下位クラス施設への影響については，地下水位が確定後，別途評価を実施
第6．4．3－1 表 女川 2 号炉 建屋外施設の損傷，転倒及び落下等の影響に対する評価方針（ $1 / 5$ ）

| 建屋外上位クラス施設 | $\begin{array}{c}\text { 波及的影響を及ぼすおそれ } \\ \text { のある下位クラス施設 }\end{array}$ | | 評価方針 |
| :--- | :--- | :--- | :--- |$]$ 備考

第6．4．3－1 表 女川 2 号炉 建屋外施設の損傷，転倒及び落下等の影響に対する評価方針（2／5）

建屋外上位クラス施設	波及的影響を及ぼすおそれ のある下位クラス施設	評価方針	備考
原子炉補機冷却海水ポンプ原子炉補機冷却海水系配管 RSWポンプ吐出逆止弁 RSW ポンプ吐出弁 RSW ポンプ吐出連絡管止め弁 高圧炬心スプレイ補機冷却海水ポンプ高圧炉心スプレイ補機冷却海水系配管高圧炉心スプレイ補機冷却海水系スト レーナ HPSWポンプ吐出逆止弁 HPSW ポンプ吐出弁 RSW ポンプ出口圧力計器架台 HPSW ポンプ出口圧力計器架台 逆止弁付ファンネル 貫通部止水処置 取水ピット水位計	竜巻防護ネット	基準地震動 Ss に対する構造健全性評価により，竜巻防護ネットが損傷及び落下しないことを確認する。 また，竜巻防護ネット及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。	工認計算書対象添付資料 3 参照
防潮堤	1 号炉取水路	C_{H} 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保されていることから，損傷等による防潮堤へ の影響はない。	添付資料7参照

第 6．4．3－1 表 女川 2 号炉 建屋外施設の損傷，転倒及び落下等の影響に対する評価方針（3／5）

建屋外上位クラス施設	波及的影響を及ぼすおそれ のある下位クラス施設	評価方針	備考
防潮堤 防潮壁（2 号炉放水立坑）	2 号炉放水路	C_{H} 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保されていることから，損傷等による防潮堤及 び防潮壁への影響はない。	添付資料 7 参照
防潮堤	3 号炉取水路	基準地震動 Ss に対する構造健全性評価により， 3 号炉取水路が損傷しないことを確認する。	工認計算書対象
防潮堤 防潮壁（3 号炉放水立坑）	3 号炉放水路	CH_{H} 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保されていることから，損傷等による防潮堤及 び防瀚壁への影響はない。	添付資料 7 参照
防潮堤	北側排水路	基準地震動 Ss に対する構造健全性評価により，北側排水路が損傷しないことを確認する。	工認計算書対象
防潮堤	南側排水路	C_{M} 級の硬質な岩盤及び置換コンクリート （MMR）内に設置された排水路であり，防潮堤へ の影響はない。	－
防潮堤	アクセスルート（防潮堤の盛土堤防部と一体となっている部分）	防潮堤（盛土堤防）の耐震性を確認する際に，影響を確認する。	工認計算書対象

第6．4．3－1 表 女川 2 号炉 建屋外施設の損傷，転倒及び落下等の影響に対する評価方針（4／5）

建屋外上位クラス施設	波及的影響を及ぼすおそれ のある下位クラス施設	評価方針	備考
防潮壁 逆流防止設備 貫通部止水処置 原子炉建屋 制御建屋	2 号炉タービン建屋	基準地震動Ss に対する構造健全性評価により，ター ビン建屋が転倒しないことを確認する。 また， 2 号炉タービン建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持し ていることを確認した。	工認計算書対象添付資料 3 参照
制御建屋	2 号炬補助ボイラー建屋	基準地震動Ss に対する構造健全性評価により，2号炉補助ボイラー建屋が転倒しないことを確認する。 また， 2 号炉補助ボイラー建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを碓認した。	工認計算書対象添付資料 3 参照
制御建屋	1 号炉制御建屋	基準地震動Ss に対する構造健全性評価により， 1 号炉制御建屋が転倒しないことを確認する。 また， 1 号炉制御建屋及び上位クラス施設は周辺斜面 からの影響を受けない十分な離隔距離を保持してい ることを碓認した。	添付資料3参照
排気筒	1 号炉排気筒	基準地震動Ss に対する構造健全性評価により， 1 号炉排気筒が転倒しないことを確認する。 また，基準地震動 Ss に対する斜面の安定性評価によ り，斜面が崩壊しないことを確認した。	工認計算書対象添付資料 3 参照

第6．4．3－1 表 女川 2 号炉 建屋外施設の損傷，転倒及び落下等の影響に対する評価方針（5／5）

建屋外上位クラス施設	波及的影響を及ぼすおそれ のある下位クラス施設	評価方針	備考
取水口	前面護岸	取水口の側面（護岸背面）を地盤改良しているが，非改良部の土砂が流出しても取水口が閉塞しないこ とを確認した。 地盤改良（高圧噴射攪拌工法）は根入れされており，地震時の安定性が確保されている。 地盤改良（置換工）の地震時の安定性について確認 する。	工認計算書対象 添付資料 6 参照

波及的影響評価に係る現地調査の実施要領

波及的影響評価に係る現地調査を実施する際に策定した実施要領について，その内容抜粋を以下に示す。

1．目的
建屋内外の上位クラス施設への下位クラス施設の波及的影響の調査のため，現地調査を実施し，上位クラス施設周辺の下位クラス施設の位置，構造，影響防止措置等の状況を確認し，下位クラス施設による波及的影響の可能性について調査する。

2．実施方法

2.1 調査対象施設

以下に示す上位クラス施設を現地調査の対象とする。
（1）設計基準対象施設のうち，耐震 S クラス施設（津波防護施設，浸水防止設備及び津波監視設備を含む。）
（2）重大事故等対処施設のうち，常設耐震重要重大事故防止設備及び常設重大事故緩和設備

なお，狭暗部，内部構造物等機器の内部，コンクリート埋設，地下，高所，高線量区域及び水中については，現地調査が困難であるが，狭暗部（原子炉圧力容器支持構造物等）については，外部から閉ざされた区域にあり，元々Sクラス施設しかないこと，内部構造物等機器の内部（原子炉圧力容器内部構造物等）は全体が上位クラス施設であること，コンクリート埋設，地下については，周囲に波及的影響を及ぼすものはないことから，これらの箇所に設置されている上位クラ ス施設に対する波及的影響はないと判断する。

高所については，施設下方から周辺機器の位置関係を俯瞰的に見ることで波及的影響の有無を確認する。

水中については，対象上位クラス施設として使用済燃料プール，使用済燃料貯蔵ラック，制御棒•破損燃料貯蔵ラック等が該当するが，使用済燃料プール内に設置されている下位クラス施設は設計図書類で網羅的に確認できることから，現地調査では使用済燃料貯蔵プール等の上部を俯瞰的に見ることで波及的影響の有無を確認する。

ケーブルについては，各階の天井付近等の高所に設置することで下位クラス施設の損傷•転倒•落下による波及的影響を考慮した配置としていることから，高所のケーブルについて波及的影響はないと判断する。

2.2 現地調査にて確認する検討事象

別記2に記載された事項に基づく検討事象と現地調査による確認項目との対応表を以下に示す。

調査対象施設	建屋外施設		接続部 （建屋内外）	建屋内施設
検討事象	別記 2 （1）	別記 2 （4）	別記 2（2）	別記 23）
現地調査による確認項目	$\times^{* 1}$	\bigcirc	$\times{ }^{* 2}$	\bigcirc

＊1 不等沈下又は相対変位の観点として，上位クラス施設の建物•構築物と下位ク ラス施設の位置関係が机上検討で確認したとおりであることを現地で確認す る。
＊2 接続部については，系統図等により網羅的に確認可能であり，プラント建設時及び改造工事の際は，施工に伴う確認，系統図作成時における現場確認，使用前検査，試運転等から接続部が設計図書どおりであることを確認していること から，接続部の波及的影響については，机上検討により評価対象の抽出が可能 である。

3．調査要員

調査要員の要件は，以下のとおりとする。
（1）女川原子力発電所の耐震設計，構造設計又は機械•電気計装設計等に関する専門的な知識•技能及び経験を有する者。
（2）女川原子力発電所の保修業務等に従事し，施設の構造，機能及び特性等に関 する専門的な知識•技能及び経験を有する者。
上記（1）または（2）の要件に該当する者の複数名でチームを編成し，現地調査を実施する。

4．現地調査実施日
平成 26 年 2 月 18 日～平成28年6月17日

5．調査方法

5.1 調査手順

調査対象施設についての，別紙に例示する「プラントウォークダウン・チェッ クシート」に従い，周辺の下位クラス施設の位置，構造及び影響防止措置（落下防止措置，固縛措置等）等の状況から，波及的影響を及ぼすおそれの有無を確認する。なお，建屋内及び建屋外のチェックシートについては内容が同一で あることから建屋内チェックシートを代表として例示している。

5.2 確認項目及び判断基準

各確認項目に対する波及的影響のおそれの有無の判断基準を添付1－1 表に示 す。

なお，対象となる上位クラス施設に対して，下位クラス施設が明らかに影響を及ぼさない程度の大きさ，重量等である場合（小口径配管，照明器具等）は，影響なしと判断する。

添付 1－1 表 確認項目及び判断基準

確認項目	判断基準
○B，C クラス施設等との十分な離隔距離をとる等により，当該設備に与え る影響はない。	－周辺のB，Cクラス施設の転倒•落下を想定した場合にも，上位クラス施設に衝突 しないだけの離隔距離をとつて配置•保管されていること。 －影響の有無の判断にあたっては，上位ク ラス施設と B，Cクラス施設が 2 m の離隔を有していることを目安とするが，B，C ク ラス施設の設置高さや位置関係で状況が変化することから，調査メンバー 2 人以上で協議の上，判断すること。 －十分な離隔距離がとられていない下位ク ラス施設がある場合は，当該設備の設置状況や設備種類，設備重量等を勘案し調査メンバー 2 人以上で協議の上，判断す ること。また，本内容は所見に記録する。
○周辺に作業用ホイスト・レール，グ レーチング，手すりがある場合，落下防止措置等により，当該設備に与 える影響はない。	－作業用ホイスト・レール，グレーチング，手すり等については，離隔距離が十分で ない場合は，適切な落下防止措置等が講 じられていること。 －離隔距離をとつていても地震により移動 する可能性があるもの（チェーンブロッ ク等）は，移動の影響を防止する措置が講じられていること。
○周辺に仮置き機器がある場合，固縛措置等により，当該設備に与える影響はない。	－仮置き機器について，離隔距離が十分で ない場合は，固縛等により落下防止又は移動防止措置が講じられていること。
○上部に照明器具がある場合，落下防止措置等により，当該設備に与える影響はない。	－照明器具について，離隔距離が十分では ない場合は，適切な落下防止措置が講じ られていること。

女川 2 号機 プラントウォークダウン・チェックシート＜建屋内＞

実施日：平成 年 月 旦
実施者： \qquad

【施設情報】

機器名称： \qquad
機器 ID \qquad
建屋 \qquad
床EL
区画 \qquad
（記号の説明） $\mathrm{Y}: \mathrm{YES}, ~ N: N O, ~ H:$ 持ち帰り検討，N / A ：対象外

	波及的影響について	Y	N	H	N／A
1	建屋内における下位クラスの施設の損傷，転倒及び落下等によるSク ラス設備への影響はない。	\square	\square	\square	\square
1－1	B，Cクラス施設等との＋分な離隔路離を取る等により，当該設備に影響を与えない。	\square	\square	\square	\square
1－2	周辺に影響を及ぼし得る揚重機器，レール，グレーチング，手すり等 がある場合，転倒及び落下等により当該設備に影響を与えない。	\square	\square	\square	\square
1－3	周辺に仮置き機器（点検用資機材を含む）がある場合，固縛措置等に より，当該設備に影響を与えない。	\square	\square	\square	\square
1－4	上部に照明器具，天井•壁の簡易建築材がある場合，落下防止措置等 により，当該設備に影響を与えない。	\square	\square	\square	\square
1－5	その他（）	\square	\square	\square	\square

	Sクラス施設の健全性について	Y	N	H	N / A
1	対象機器と支持構造物との接合部付近に外見上の異常（ボルトの緩み， 腐食・き裂等）はない。	\square	\square	\square	\square

波及的影響評価に係る現地調査記録

女川2号機 プラントウォークダウン・チェックシート＜建屋内＞

実施日：平成 26年11月 5旦
実施者 ： \qquad
【施設情報】
機器名称：ほう酸水注入系ポンプ出口圧力
機器ID：C41－PTOO5
建屋 ：R／B
床EL 2 F
区画 \qquad

	波及的影響について	Y	N	H	N／A
1	建屋内における下位クラスの施設の損儫 転倒及ひ落下等によるsク ラス設備への影響1なない。	\square	\square	\square	\square
1－1	B，Cクラス施設等との十分な離隔距離を取る等により，当該設備に影響を与えない。	\square	\square	\square	\square
1－2	周辺に影響を及ぼし得る揚重機器，レール，グレーチング，手すり等 がある場合，転倒及び落下等により当該設備に影響を与えない。	\square	\square	\square	\square
1－3	周辺に仮置き機器（点検用資機材を含む）がある場合，固縛措置等に より，当該設備に影響を与えない。	\square	\square	\square	！
1－4	上部に照明器具，天井•壁の簡易建築材がある場合，落下防止措置等 により，当該設備に影響を与えない。	\square	\square	\square	\square
1－5	その他（	\square	\square	\square	\square

	Sクラス施設の健全性について	Y	N	H	N / A
1	対象機器と支持構造物との接合部付近に外見上の異常（ボルトの緩み， 腐食・き裂等）はない。	\square	\square	\square	\square

所見（機器周辺の状況についての記載）
（1）SLCテストタンク

原子力発電所における地震被害事例の要因整理（1／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因 I				下線は要因I相当箇所	
1	宮城県沖 （女川）	8•16宮城地震による女川原子力発電所全プラント停止について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響で以下の軽微な被害が発生した。 （a）女川1号炉 \cdot 主変圧器，起動用変圧器の避圧弁動作 －サイトバンカ建屋プールに水銀灯落下 （b）女川2号炉 －主変圧器，起動用変圧器，補助ボイラ一変圧器（A）（B）の避圧弁動作 （c）女川3号炉 - 原子炉建屋内見学者用ギャラリー室のガラスのひび - 主変圧器の避圧弁動作 （d）その他構内 - 環境放射能測定センターの希硫酸（5\％濃度）貯蔵施設が漏えいおよび苛性ソーダの一部滴下 - 建屋エレベータ停止 - 排気筒航空障害灯レンズカバー破損 - 構内道路アスファルト亀裂•波うち・段差発生	I，III，VI
2	中越沖 （柏崎）	HTr3B火災発生	3号炉	地震の影響により基礎面の沈下量に差が発生したため，ダクトがブッシング碍管に接触し，その㣫撃等で碍管が破損して変圧器内部の絶縁油が噴出した。絶縁油の噴出の後，約 $1,000^{\circ} \mathrm{C}$ 以上のア一ク放電が発生したため，漏油した絶縁油に引火したことによりニ次側接続母線部ダクト内で火災が発生した。	I
3	中越沖 （柏崎）	スタックへのダクト配管ズレ	1号炉	地震の影響によって主排気ダクト周辺及びダクト基礎部に地盤沈下が発生し，それに伴う相対変位によって，主排気ダクトにズレ （ベローズの変形）が生じた。	I
4		スタックへのダクト配管ズレ	2号炉		
5		スタックへのダクト配管ズレ	3号炉		
6		スタックへのダクト配管ズレ	4号炉		
7		スタックと主排気ダクトカバーのゆがみ確認	5号炉		
8	中越沖 （柏崎）	C／S B5F浸水及びMUWC全停	1号炉	地震による建屋周辺の地盤沈下等の要因により，地中埋設の消火配管に局所的に大きな変位が生じ機械式継手（ねじ込み式継手 やカップリング継手等）が損傷し漏水した。この漏水が原因で1号炉原子炉複合建屋（管理区域）地下5階（最地下階）全域にわたり深さ約 40 cm 浸水し，廃棄物処理系の電気品，計装品及びタンク類が水没した。水没が原因でMUWCが全停する他，制御盤において「制御電源喪失」警報が発生した。	I
9	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	軽油タンクB前の消火配管破断し水漏れ	1号炉	不等沈下により消火配管が破断し，漏水及び消火系設備の機能喪失に至った。なお，当該不等沈下は液状化による影響を否定で きない。	I
10	中越沖 （柏崎）	1S／B北側屋外消火配管が破断L漏水	その他		
11	中越沖 （柏崎）	消火設備4箇所配管損傷：漏水	その他		
12	中越沖 （柏崎）	軽油タンク前他屋外消火配管が破断し漏水	その他		
13	中越沖 （柏崎）	K3励磁用変圧器基礎ボルト切断•相非分割母線沈下有り	3号炉	地震により主変圧器およびExTr基礎ボルトが切断した。また，NPB基礎が地震の影響により沈下した。	I，III
14	中越沖 （柏崎）	500 kV 新新潟線2LLゃ断器付近のエアリーク	その他	地震により当該回線の現場操作盤の基礎が地盤沈下で傾斜したため，空気配管に応力がかかりコネクタ部より空気漏れが発生し た。	I
15	中越沖 （柏崎）	取水設備スクリーン洗浄ポンプA吐出フランジ連続滴下•配管サポート変形	5号炉	地震の影響によって地盤が変形し，当該設備の配管及びサポートの変形が発生した。	I

[^2]原子力発電所における地震被害事例の要因整理（2／19）

No．	対象地震 （発電所）	件名	号機	地震被害事象および発生要因の概要	地震被害発生要因
16	中越沖 （柏崎）	RW／B R／W 制御室制御盤各系制御電源喪失	RW設備	地震による建屋周辺の地盤沈下等の要因により，地中埋設の消火配管に局所的に大きな変位が生じ機械式継手（ねじ込み式継手 やカップリング継手等）が損傷し漏水した。この漏水が原因で1号機原子炉複合建屋（管理区域）地下5階（最地下階）全域にわたり深さ約 40 cm 浸水し，廃棄物処理系の電気品，計装品及びタンク類が水没した。水没が原因でMUWCが全停する他，制御盤において「制御電源喪失」警報が発生した。	I
17	中越沖 （柏崎）	1号機 変圧器防油堤の沈下•傾き，コンクリートの ひび割れ・はく離，目地部の開き	1号機	```変圧器防油堤に以下の損傷が確認された。 -1号機 変圧器防油堤の沈下•傾き, コンクリートのひび割れ・はく離, 目地部の開き - 2号機 変圧器防油堤の沈下, 横ずれ -3号機 変圧器防油堤のひび割れ, 段差発生 -4号機 変圧器防油堤の沈下, 大きな傾斜 (一部目地部の開き) - 5号機 変圧器防油堤底版部のひび割れ, 目地部の開き, 陥没 -7号機 変圧器防油堤の沈下, 外側への開き, 目地部のずれ・開き-段差発生```	I
18	中越沖 （柏崎）	2号機 変圧器防油堤の沈下，横ズレ	2号機		I
19	中越沖 （柏崎）	3号機 変圧器防油堤のひび割れ，段差	3号機		I
20	中越沖 （柏崎）	4号機 変圧器防油堤の沈下，大きな傾斜（一部目地部の開き）	4号機		I
21	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	5号機 変圧器防油堤のひび割れ	5号機		I
22	中越沖 （柏崎）	7号機 変圧器防油堤の沈下，外側への開き，目地部のズレ，目地部の開き，目地部の段差	7号機		I
23	駿河湾 （浜岡）	取水槽まわりの地盤沈下等	1号機	取水槽まわりに地盤沈下（ $30 \mathrm{~m} \times 20 \mathrm{~m}$ ，最大 15 cm 程度），隆起（ $35 \mathrm{~m} \times 15 \mathrm{~m}$ ，最大 20 cm 程度）および法面波打（ $30 \mathrm{~m} \times 5 \mathrm{~m}$ ，最大 10 cm 程度）が発生した。	I，IV
24	駿河湾 （浜岡）	道路および法面のひび割れ	その他	地震の影響により以下の事象が発生した。 （1） 5 号見晴台道路き裂 （2）片平山周辺よう壁目開き，道路き裂 （3）平場ヤード舗装他き裂 （4）5号放水ロモニタ室東側よう壁（ブロック積み）き裂 （5）固体廃棄物貯蔵庫（第2棟）周辺よう壁（ブロック積み）および道路のき裂 （6）発電所東側点検ヤード舗装き裂 （7）発電所東側海岸道路き裂	I，IV
25	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	御前崎漁港の当社専用岸壁に段差（ $40 \mathrm{~cm} \times 2 \mathrm{~cm}$ ，最大 3 cm 程度の段差）	その他	地震の影響により，御前崎港の専用岸壁に段差（ $40 \mathrm{~m} \times 2 \mathrm{~cm}$ ，最大 3 cm 程度の段差）が発生した。	I
26	（駿河湾 （浜岡）	タービン建屋の東側屋外エリアの地盤沈下	5号機	地震の影響により，タービン建屋の東側屋外エリアに地盤沈下（ $15 \mathrm{~m} \times 15 \mathrm{~m}, 10 \mathrm{~cm}$ 程度）が発生した。	I
27	東北地方太平洋沖地震 （東海第二）	ランドリーボイラ重油タンク油漏れ	－	地震の影響により，ランドリーボイラ重油タンク基礎が沈下したことで接続配管ユニオン部から重油が漏えいした。	I
よる警報発生等，施設の損傷を伴わない $\mathrm{I} \sim \mathrm{V}$ 以外の要因等）					

原子力発電所における地震被害事例の要因整理（3／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因 II				下線は要因II相当箇所	
28	$\begin{aligned} & \text { 中越冲 } \\ & \text { (柏崎 } \end{aligned}$	柏崎刏羽原子力発電所 1,3 号炉における排気筒 モニタサンプリングラインの損傷について	$\begin{aligned} & 1 \text { 号炉 } \\ & 3{ }_{3}{ }^{\circ} \mathrm{k} \end{aligned}$	－3号炉主排気筒放射線モ二タサンプリング配管において，塩害により配管が腐食し強度が低下していたところに，地震によるカが加 わり，吸这側配管に幅約 $4 \mathrm{~mm}($ 最大），長さ約 5 cm の損傷が1箇所発生した。 －1号炉主排気筒放射線モ二タサンプリング配管において，地震の影響でも二建屋と配管の相対位置がでしたことにより，放射能濃 度を測定した後の気体を主排気筒に戻す配管の接続部にズレが発生した。	II．III
29	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	固体廃棄物貯蔵庫 地下1階管理楝－第1棟接続部通路部付近漏水	その他		II，III
30	駿河湾 （浜岡）	補助建屋東側雨桶の亀裂	5号炉	地震による揺れ方の違いから，補助建屋と風除室屋上で固定されている補助建屋東側雨樋に亀裂（5䈯所）が生じた。	II
31	東北地方太平洋沖地震 （福島第二）	4号機主排気ダクトからの漏えいについて	4号炉	地震発生時に3，4号炉コントロール建屋と3，4号炉サービス建屋間に一時的なズレが生じたため，建屋境界部に設置された主排気ダ クトの支持脚溶接部へ局所的に大きな応力が発生しひびが生じた。	II

原子力発電所における地震被害事例の要因整理（4／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因III				下線は要因III相当箇所	
32	宮城県沖 （女川）	$8 \cdot 16$ 宮城地震による女川原子力発電所全プラント停止について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & 3 \text { 号炉 } \end{aligned}$	地震の影響で以下の軽微な被害が発生した。 （a）女川1号炉 - 主変圧器，起動用変圧器の避圧弁動作 - サイトバンカ建屋プールに水銀灯落下 （b）女川2号炉 －主変圧器，起動用変圧器，補助ボイラ一変圧器（A）（B）の避圧弁動作 （c）女川3号炉 - 原子炉建屋内見学者用ギャラリー室のガラスのひび - 主変圧器の避圧弁動作 （d）その他構内 - 環境放射能測定センターの希硫酸（5\％濃度）貯蔵施設が漏えいおよび苛性ソーダの一部滴下 - 建屋エレベータ停止 - 排気筒航空障害灯レンズカバー破損 - 構内道路アスファルト亀裂•波うち・段差発生	I，III，VI
33	能登半島沖 （志賀）	能登半島地震に伴う水銀灯の落下	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \end{aligned}$	1号炉タービン建屋運転階の水銀灯および2号炉原子炉建屋運転階の水銀灯が落下した。	III
34	能登半島沖 （志賀）	能登半島地震に伴う低圧タービン組み立て中の タービンロータの位置ずれ	2号炉	地震の影響で低圧タービンの動翼に微小な接触痕が複数発生した。	III
35	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	T／Bブローアウトパネル破損	2号炉		
36	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	R／Bブローアウトパネル破損	3号炉	地震の影響によりブローアウトパネルを固定する止め板が変形し外れたため，3号炉原子炉建屋のブローアウトパネルが外れた。ま た，3号炉および2号炉のタービン建屋についても，ブローアウトパネルが外れた。	III
37	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	T／B海側•山側ブローアウトパネル外れ・脱落	3号炉		
38	中越沖 （柏崎）	R／B使用済燃料プール内ワーキングテーブル燃料上に落下	4号炉		
39	中越沖 （柏崎）	R／B 使用済燃料プール内ワーキングテーブルが ラック上（燃料あり）に落下	7号炉	地震の影響により，4号炉および7号炉の使用済み燃料貯蔵プール内に取り付けられている水中作業台が外れ，使用済み燃料上に落下する事象が発生した。また，6号炉水中作業台が固定位置から外れ，ワイヤーにより支持されている状態となった。	III
40	中越沖 （柏崎）	6号炉 使用済み燃料プール内の水中作業台の固定位置からのはずれ	6号炉		
41	中越沖 （柏崎）	C／S B1FD／G－A北側付近「RW固化エリア」扉S1－15Dから漏水	1号炉	不等沈下に伴う屋外消火配管の損傷により発生した水が，電線管貫通孔より流入したことで非常用ディーゼル発電機（A）電気品室 に漏水した。	III
42	中越沖 （柏崎）	各サービス建屋退域モ二タ故障について	1号炉 2号炉 3号炉 4号炉 5号炉 6号炉 7号炉	地震の影響で，各サービス建屋退出モニタで検出器のズレ（検出器の飛び出し），駆動部故障が発生した。	III
43	中越沖 （柏崎）	固体廃棄物貯蔵庫内のドラム缶数百本が転倒し，内数十本のドラム缶の蓋が開いてることを確認	その他	地震の影響により固体廃㪰物貯蔵庫第二棟内において，ドラム缶100本程度が転倒し，内数本のドラム缶の蓋が開放する事象が発生した。	III

[^3]原子力発電所における地震被害事例の要因整理（5／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
44	中越沖 （柏崎）	R／Bオペフロ R／B天井クレーンユニバーサル ジョイントに破損確認	6号炉	走行車輪にブレーキが掛かった状態で，地震により強制的にクレーンの走行方向（東西方向）のカが発生したため，走行車輪と電動機の間に位置するユニバーサルジョイントに過大なトルクが発生し，クロスピンが破損する事象が発生した。	III
45	中越沖 （柏崎）	3号炉原子炉建屋地下2階SLC系注入ライン配管 （格納容器外側貫通部）板金保温へこみについて	3号炉	3号炉SLC系注入ライン配管（格納容器外側貫通部）の近傍に置いてあったISI用RPV模擬ノズルが，地震により移動し当該配管に接触したため，板金保温材にへこみが発生した。	III
46	中越沖 （柏崎）	7号原子炉ウェルライナーからの漏㳀について	7号炉	7号炉の原子炉ウェルライナーにつながる配管のレベル計内に水が溜まる事象が発生した。当該のウェルライナーには，溶接の溶け込み不足と考えられる未溶着部があり，さらには建設時に溶接余盛り部を平滑化するためにグラインダで除去していたため，残存板厚が薄くなっていた。そこへ地震によりスロットプラグが接触したため，過大な荷重がかかり貫通，漏えいした。	III，VI
47	中越沖 （柏崎）	3 号炉原子炉圧力容器遮へい体の地震による移動 について	3号炉	【N12C】スライド式プラグが保温材に接触した事象 スライド式プラグが正規位置にある状態で取付けられておらず，ストッパー機能が働かなかった。その結果，スライド式プラグが地震 によってRPV側へ移動後，ハの字状態に開いたことにより保温材に接触して保温材を変形させた。 （N12D】積上式プラグが水位計装配管に接触した事象 スライド式プラグのストッパーが取付けられておらず，N12Cと同様にストッパー機能が働いていなかったことによりスライド式プラグ が地震によりRPV側へ移動した。その結果，積上式プラグの押さえがなくなって，地震により積上式プラグが左側へ崩れ，水位計装配管への接触に至った。	III，VI
48	中越沖 （柏崎）	柏崎刈羽原子力発電所 1 ， 3 号炉における排気筒 モニタサンプリングラインの損傷について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 3号炉 } \end{aligned}$	－3号炉主排気筒放射線モニタサンプリング配管において，塩害により配管が腐食し強度が低下していたところに，地震による力が加 わり，吸込側配管に幅約 4 mm （最大），長さ約 5 cm の損傷が 1 箇所発生した。 －1号炉主排気筒放射線モニタサンプリング配管において，地震の影響でモニタ建屋と配管の相対位置がズレたことにより，放射能濃度を測定した後の気体を主排気筒に戻す配管の接続部にズレが発生した。	II，III
49	中越沖 （柏崎）	所内変圧器 1 A と相分離母線のずれによる基礎ボ ルトの切断	1号炉	地震による振動により所内変圧器1Aが摇動したため基礎ボルトが破断した。	III
50	中越沖 （柏崎）	励磁変圧器からの油漏れ及び基礎ベースからのズ レ	1号炉	地震による振動により，一次ブッシング碍子が破損し絶緑油が漏えいした。また同様に地震による振動により，基礎ベースから変圧器本体がずれる事象が発生した。	III
51	中越沖 （柏崎）	主変圧器基礎ボルト折損及びク一ラ一母管と本体間からの油リーク	2号炉	地震による振動により，主変圧器基礎ボルト折損およびク一ラ一母管と本体間が破損し油が流出した。	III
52	中越沖 （柏崎）	励磁用変圧器基礎部・バスダクト横ずれ	2号炉	地震による振動により，励磁用変圧器の基礎部およびバスダクトに横ずれが発生した。	III
53	中越沖 （柏崎）	K3励磁用変圧器基礎ボルト切断•相非分割母線沈下有り	3号炉	地震により，主変圧器およびExTr基礎ボルトが切断した。また，NPB基礎が地震の影響により沈下した。	I，III
54	中越沖 （柏崎）	No．43過水タンク配管破断	5号炉	地震の振動により，タンク配管の伸縮継手部が損傷し，No．43過水タンクより漏えいが発生した。	III
55	中越沖 （柏崎）	T／B復水器水室B1－B2連絡弁フランジ部漏え い・エキスパンション亀裂	4号炉	地震の振動により，復水器水室間に過大な変位が生じ，伸縮継手が損傷した。	III
56	中越沖 （柏崎）	500 kV 南新潟線2L黒相ブッシング油漏れによる南新潟線2L停止	その他	地震発生時に送電線引込架線が上下に振れたことで，ブッシング端子部に応力が発生し，フランジ面が変形したため漏油が発生し た。	III
57	中越沖 （柏崎）	Hx／B B1F FP－40ラインから漏水	2号炉	地震の振動により，熱交換器建屋の消火配管引き込み部ラバーブーツが損傷し，雨水の流入が発生した。	III
58	中越沖 （柏崎）	荒浜側避雷鉄塔の斜材が5本破断	その他	地震の振動により，避雷鉄塔の斜材が破断した。	III

原子力発電所における地震被害事例の要因整理（6／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
59	中越沖 （柏崎）	事務本館常用電源断，緊急時対策室電源等は非常用電源より供給	その他	地震の影響により，常用系の高圧受変電盤とチャンネルベースを止めているボルトが切断し，高圧受変電盤が移動したため常用系電源が断となり非常用電源に切替わった。	III
60	中越沖 （柏崎）	ヤード T／BサブドレンNo． 8 流入水油混入およ びK1～4 放水庭に微量の油膜確認について	1号炉	地震による振動で変圧器防油提が損傷したことにより，変圧器から漏洩した絶緑油が損傷部から土壌を経由してサブドレンに流入し た。	III
61	中越沖 （柏崎）	スクリーン起動不可	2号炉	地震により，ケーブルトレンチ内においてケーブルトレイが脱落した。この影響でケーブルが損傷し地絡したため，取水装置スクリーン洗浄ポンプが起動不可となった。	III
62	中越沖 （柏崎）	K1 S／B環境ミニコン県テレメータ等伝送不能	その他	地震時の振動により，中央処理装置とディスクアレイを繋ぐケーブルコネクタに接触不良が発生し，中央処理装置が停止（フリーズ）し たことから，県テレメータ，インターネットホームーページヘのデータ伝送処理ができなくなった。また，インターネット伝送に関しては，地震時に当システムインターネットサーバ，所内LANがいずれも停止したことから，公開WEBサーバまでの連㷪がとれず伝送され なかった。	III
63	$\begin{aligned} & \hline \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	重油タンク防油堤での目地の開き（貫通）	その他	地震の影響により，重油タンク防油堤に目地の開き（貫通）が発生した。	III
64	中越沖 （柏崎）	重油タンク用泡消火設備の現場盤損傷	その他	地震の影響により，重油タンク泡消火設備の現場盤（盤BOX）と支柱との接合部分に破断が発生した。	III
65	中越沖 （柏崎）	$A x / B \operatorname{B1F}$ 北西側壁面亀裂部より雨水漏えい	その他	地震の影響により，連絡通路が建屋と衝突したことでコンクリートが損傷し建屋の壁面に亀裂が生じた。また，この亀裂から雨水が流入した。	III
66	中越沖 （柏崎）	固体廃棄物貯蔵庫 地下1階管理棟－第1棟接続部通路部付近漏水	その他	地震により固体廃棄物貯蔵庫のエキスパンションとドレンピットが破損したため，固体廃棄物貯蔵庫の第1棟と管理棟の境界に湧水 （雨水）が発生した。	II，III
67	中越沖 （柏崎）	C／B 2F 中操天井の地震による脱落・ひび割れ・非常灯ずれ・点検口開放を確認について	7号炉	地震の振動により，7号炉中操において飾り照明の落下，天井化粧板の脱落・ひび，非常灯ズレ，点検口開放が発生した。	III
68	中越沖 （柏崎）	R／B オペフロ スタッドテンショナー除染パン内油漏 れ・油圧制御ホース切断について	4号炉	RPVヘッド着脱機に配置されている4つのスタッドテンショナーが地震により振られ，そのうちの1つのスタッドテンショナーと構造フ レームとの間に油圧ホースが挟まれ切断されたため，約200リットルの油圧作動用の油漏れが発生した。	III
69	中越沖 （柏崎）	R／B2F南東壁（SFP側）よりの水漏れ	7号炉	－原子炉建屋管理区域内2階のエレベータ付近の壁面（厚さ約 2 m の鉄筋コンクリート）の継ぎ目部に生じた微細なひび（幅約0．1mm程度，長さ約 3.5 m 程度）から，水のにじみが発生し水たまりが生じた。 －原子炬建屋3階北側の床面コンクリート継ぎ目部（約 1 cm ）にわずかな水のしみ出しが発生した。	프またはV
70	中越沖 （柏崎）	R／B3FISI試験片室前壁からの水漏れ	7号炉	「No． 46 7号原子炉ウェルライナーからの漏洩について」によるものか，使用済燃料プール等からの地震時スロッシングを起因とする溢水であるのか原因は特定できなかった。	프またはV
71	中越沖 （柏崎）	平均出力領域モニタ制御盤の電源装置の位置ず れについて	4号炉	中央制御室内にある平均出力領域モ二タおよび制御棒引抜監視装置の電源装置が，正規の位置から取り出し方向に数 cm ずれて いることを確認した。長期使用による板バネの経年変化により，板バネ押え力が低下したことに加え，地震により当該電源装置に加 わる地震水平力が，質量に比例して他の電源装置より大きく寄与したため，当該電源装置に位置ずれが生じた。	III
72	中越沖 （柏崎）	原子炉建屋 原子炉ウエルライニング面（ウエルカ バ一着座面）のすり傷について	7号炉	地震の影響により，原子炉ウェルカバーが動いたためウェルカバー着座面のほぼ全周にすり傷が確認された。	III
73	駿河湾 （浜岡）	原子炉建屋1階（放射線管理区域外）の扉の閉不能	1号炉	地震の影響により，当該扉を開閉した際，扉枠が干涉して閉止不可能となった。	III
74	駿河湾 （浜岡）	タービン建屋1階（放射線管理区域内）の扉金具の落下（1箇所）	1号炉	地震の影響により，ドアクローザー付属の温度ヒューズが破損した。	III
75	駿河湾 （浜岡）	タービン建屋2階（放射線管理区域内）コンクリート片（親指大）確認	2号炉	地震の影響により，タービン建屋側躯体とタービン建屋ペデスタル躯体間の境界部表面のコンクリートが損傷し，コンクリート片（親指大）が落下した。	III
よる警報発生等，施設の損傷を伴わない $\mathrm{I} \sim \mathrm{V}$ 以外の要因等）					

原子力発電所における地震被害事例の要因整理（7／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
76	駿河湾 （浜岡）	非常用ディーゼル発電機（A）排気消音器の吸音材 カバー固定金具の外れ	2号炉	地震の影響により，原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れた。	III
77	駿河湾 （浜岡）	源水タンクまわりの構内配電線電柱の支線外れ（1箇所）	その他	構内配電線電柱の支線と支線アンカ一を接続するターンバックルに，地震による応力が加わったことでターンバックルが破損し，支線 が外れた。	III
78	駿河湾 （浜岡）	275kV開閉所壁面の鉄骨耐火被覆材のひび割れ	その他	275kV開閉所壁面の鉄骨耐火被覆材に，地震の影響によるひび割れを確認した。	III
79	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \\ & \hline \end{aligned}$	275 kV 開閉所内の構内放送用スピーカーの脱落	その他	275 kV 開閉所内に設置してある構内放送用スピーカーが，地震の影響により脱落した。	III
80	駿河湾 （浜岡）	非常用ディーゼル発電機の排気消音器の吸音材カ バー固定金具の外れおよび台座シール材の劣化	3号炉	地震の影響により，原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れたっまた，非常用ディーゼル発電機（B）の排気消音器台座シール材に塩害環境腐食と地震の揺れによる影響での劣化を確認した。	III，VI
81	駿河湾 （浜岡）	タービン系配管の保温材のずれ	4号炉	地震の影響でタービン系配管の保温材にずれが発生した。	III
82	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \\ & \hline \end{aligned}$	低圧タービン軸の接触痕	4号炉	地震の影響により，低圧タービン（A）～（C）軸の6箇所に軸受油切り部との接触痕を確認した。	III
83	駿河湾 （浜岡）	組合せ中間弁（C）室内の間仕切板の脱落	4号炉	地震の影響により，組合せ中間弁（C）室内に取り付けてあった金属製の仕切板の一部（約 $20 \mathrm{~cm} \times$ 約 20 cm ）が脱落した。	III
84	駿河湾 （浜岡）	発電機励磁電源用バスダクト支持部材の接続板の亀裂	4号炉	地震の影響により，発電機励磁電源用バスダクトの支持部材とバスダクトをつなぐ接続板に亀裂（最大長さ約7mm）が発生した。	III
85	駿河湾 （浜岡）	空調ダクトからの空気の微少な漏れ	4号炉	地震の影響により，空調ダクト（フランジ部）からの空気の微少な漏れが発生した。	III
86	駿河湾 （浜岡）	発電機ブラシホルダの接触痕について	4号炉	地震の影響により，発電機ブラシホルダの一部に軽微な接触痕およびコレクタリング表面に茶色の変色が発生した。	III
87	駿河湾 （浜岡）	非常用ディーゼル発電機（A）排気消音器の吸音材 カバー固定金具等の外れ	4号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の摇れによる影響が原因である。	III，VI
88	駿河湾 （浜岡）	主タービンスラスト軸受摩耗トリップ警報点灯	5号炉	地震の発生によりタービンがトリップした。当該タービンの地震被害は以下のとおり。 - 中間軸受箱に過大なカが掛かり，中間軸受箱取付ボルトが損傷した。 - 中間軸受箱取付ボルトが損傷したことにより，中間軸受箱が上下に摇動し，中間軸受箱の軸方向固定キ一が傾くとともに，キ一溝 が変形した。 －中間軸受箱の揺動により，中間軸受箱内に設置されているスラスト軸受も摇動し，タービンロータの軸方向移動が発生したこと，お よび低圧内部車室のスラストキ一部の変形により，低圧内部車室がサポートライナー上を軸方向に移動し，動翼（回転体）とダイヤフラ ム（静止体）の接触およびロータと油切り等の接触が発生した。 －中間軸受箱の摇動およびタービンロータの軸方向移動により，スラスト保護装置が動作し，「主タービンスラスト軸受摩耗トリップ」信号によりタービントリップした。	III
89	駿河湾 （浜岡）	タービン建屋3階タービンスラスト装置まわりのデッ キプレート取り付け用ネジ折損	5号炉	地震の影響により，タービンスラスト保護装置まわりの作業床用デッキプレートの取り付け用ネジ（直径7mm） 24 本が折損した。	III
90	駿河湾 （浜岡）	発電機回転数検出装置の摺動痕	5号炉	地震の影響により，発電機回転数検出装置歯車と検出器が接触し検出器に接触痕が残った。	III

原子力発電所における地震被害事例の要因整理（8／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
91	駿河湾 （浜岡）	原子炉格納容器の機器搬入口遮へい扉の固定金具破損	5号炉	地震の影響により，原子炉格納容器の機器搬入口に設置している金属製遮へい扉の固定用金具アンカ一部（床面）が破損し，固定金具が $2 \sim 3 \mathrm{~cm}$ 程度の浮きが発生した。	III
92	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	No．3脱塩水タンク基礎部の防食テープの剥れ	5号炉	地震によりタンク端部が一時的に浮上り，一部の防食テ一プが剥離しタンク底板下部に潜り込む事象が発生した。	III
93	駿河湾 （浜岡）	タービン振動位相角計の損傷	5号炉	地震の揺れによりロータが振動位相角計の先端に接触したため，位相角計の先端が欠損した。	III
94	駿河湾 （浜岡）	原子炉建屋2階（放射線管理区域内）東側壁面の仕上げモルタルの剥がれと浮き（ $30 \mathrm{~cm} \times 5 \mathrm{~cm}$ 程度）	5号炉	原子炉建屋2階（放射線管理区域内）東側壁面の仕上げモルタルに地震の影響による剥がれと浮きが発生した。	III
95	駿河湾 （浜岡）	タービン建屋2階（放射線管理区域内）高圧第2ヒ一 タまわり床面に，配管貫通部に詰められていた仕上げモルタルの一部の剥がれ $(5 \mathrm{~cm} \times 5 \mathrm{~cm}$ 程度）	5号炉	地震の影響により，主タービン潤滑油配管とタービン建屋の貫通部の穴仕舞部の仕上げモルタルの表面に剥がれが発生した。	III
96	駿河湾 （浜岡）	化学分析室内の放射能測定装置の固定ボルトの浮き上がり	5号炉	地震の影響により，化学分析室内に設置している放射能測定装置（波高分析装置）の固定用アンカーボルトに浮き上がりが発生し た。	III
97	駿河湾 （浜岡）	発電機ブラシホルダ等の接触痕について	5号炉	地震の影響により，発電機ブラシホルダの一部に軽微な接触痕およびコレクタリング表面に茶色の変色が発生した。	III
98	駿河湾 （浜岡）	タービン建屋内の蛍光灯不点について	5号炉	地震によって，蛍光管とソケット部の接触不良が発生しタービン建屋（放射線管理区域内）の蛍光灯が約 30 灯不点となった。	III
99	駿河湾 （浜岡）	非常用ディーゼル発電機（B）排気消音器の吸音材 カバー固定金具等の外れ	5号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（B）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の揺れによる影響が原因である。	III，VI
100	駿河湾 （浜岡）	タービン建屋内でのビス（5個）の発見	5号炉	地震の影響により，照明器具用電線管つなぎ部固定用や配管保温材の外装板用のビスが落下した。	III
101	駿河湾 （浜岡）	変圧器消火配管建屋貫通部のシール材の一部損傷	5号炉	地震の影響により，屋外連絡ダクト貫通部付近の変圧器消火配管貫通部シ一ル材の一部が損傷し，フランジ部からの微少なリーク （1滴／2滴）が発生した。	III
102	駿河湾 （浜岡）	原子炉格納容器内の点検結果	5号炉	地震の影響による以下の痕跡を確認した。 - 主蒸気逃し安全弁排気管のバネ式支持構造物の動作（摺動痕） - 作業用ターンテーブルの車輪位置ずれ - 空調ダクト接続部の位置ずれ	III
103	駿河湾 （浜岡）	発電機固定子固定キーの隙間の拡大	5号炉	発電機固定子に地震の影響による以下の痕跡を確認した。 - 固定子底部の中央に插入されている固定キ一の両サイドの隙間が拡大 - ベースボルトの一部の塗装が剥離 - 固定キーに軽微な傷 - 発電機本体脚部およびベースにへこみ，段差の発生	III

原子力発電所における地震被害事例の要因整理（9／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
104	駿河湾 （浜岡）	タービン開放点検の結果	5号炉	地震の発生によりタービンがトリップした。当該タービンの地震被害は以下のとおり。 - 中間軸受箱に過大な力が掛かり，中間軸受箱取付ボルトが損傷した。 - 中間軸受箱取付ボルトが損傷したことにより，中間軸受箱が上下に摇動し，中間軸受箱の軸方向固定キ一が傾くとともに，キ一溝 が変形した。 －中間軸受箱の摇動により，中間軸受箱内に設置されているスラスト軸受も摇動し，タービンロータの軸方向移動が発生したこと，お よび低圧内部車室のスラストキ一部の変形により，低圧内部車室がサポートライナー上を軸方向に移動し，動翼（回転体）とダイヤフラ ム（静止体）の接触およびロータと油切り等の接触が発生した。 －中間軸受箱の摇動およびタービンロータの軸方向移動により，スラスト保護装置が動作し，「主タービンスラスト軸受摩耗トリップ」信号によりタービントリップした。	III
105	駿河湾 （浜岡）	主要変圧器上部グレーチングと相分離母線箱との接触痕	5号炉	主要変圧器用の相分離母線箱（以下，「IPB」という）3箇所に，地震の影響によってIPB点検用グレーチングの手すりボルト部分と接触し接触痕が残った。	III
106	駿河湾 （浜岡）	原子炉格納容器内作業用ターンテーブルの点検結果	5号炉	作業用ターンテーブルに地震の影響による以下の状況を確認した。 - 車輪力バーの一部割れ - 回転角検出装置の歯車レールから歯車の外れ	III
107	駿河湾 （浜岡）	原子炉機器冷却水系の配管支持構造物の摺動痕	5号炉	原子炉機器冷却水系の配管および支持構造物に，地震の影響による摺動痕（塗装の剥離）を15箇所確認した。	III
108	駿河湾 （浜岡）	タービン駆動給水ポンプデータベース部のライナー シム変形	5号炉	地震の影響によって，タービン駆動給水ポンプ（A）（B）ポンプのベース部に取り付けられているライナーシムに変形が発生した。	III
109	駿河湾 （浜岡）	原子炉建屋内の主蒸気系配管，給水系配管およ び配管支持構造物の点検結果	5号炉	主蒸気系配管と給水系配管について地震の影響による以下の状況を確認。 - 配管支持構造物 4 箇所について，配管自重受け部にわずかに隙間が発生 - 給水配管の壁貫通部2箇所について，養生用のラバーブーツと保温外装板に一部ずれが発生 - 主蒸気配管の配管ラグ2箇所に摺動痕を確認	III
110	駿河湾 （浜岡）	発電機シールリング油切りの摺動痕	5号炉	発電機軸の軸受部に地震の影響による以下の状況を磼認した。 - 第10軸受のシールリング油切りと発電機ロータに，接触と推定される摺動痕を確認。 - 第 9 軸受についても，第 10 軸受と同様，シールリング油切りと発電機ロータに軽微な摺動痕を確認。	III
111	東北地方太平洋沖地震 （女川）	タービン建屋地下 1 階高圧電源盤火災	1号炉	高圧電源盤（6－1A）内のしゃ断器（吊り下げ設置型）が，地震による振動で大きく摇れたため，当該しゃ断器の断路部が破損し，高圧電源盤内で周囲の構造物と接触して短絡等が生じ，これに伴い発生した火花により，高圧電源盤内のケーブルの絶緑被覆が溶け，発煙が発生した。	III
112	東北地方太平洋沖地震 （女川）	蒸気タービン中間軸受箱の浮き上がり	3号炉	地震の揺れにより，蒸気タ一ビン主軸が移動し中間軸受箱にカが加わったことで，タービン中間軸受箱に浮き上がりおよび締付けボ ルトの変形が発生した。	III
113	東北地方太平洋沖地震 （女川）	蒸気タービン中間軸受基礎部の損傷	2号炉	地震の摇れにより，蒸気タービン主軸が移動したことで中間軸受箱およびソールプレート（中間軸受箱を設置する平板）にカが加わ り，ソールプレートが動いたことで基礎部に損傷が発生した。	III
114	東北地方太平洋沖地震 （女川）	制御棒駆動系ハウジング支持金具サポートバーの ずれ	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響により，制御棒駆動機構ハウジングのハウジング支持金具（グリッド）に，1号炉で1力所，2号炉で2力所，3号炉で1力所 のずれが発生した。	III
115	東北地方太平洋沖地震 （女川）	起動用変圧器放熱器油漏れ	2号炉	地震の影響により，起動用変圧器放熱器に数ミリ程度のき裂が発生し絶縁油が漏れた。	III

原子力発電所における地震被害事例の要因整理（10／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
116	東北地方太平洋沖地震 （女川）	牡鹿1号線避雷器の損傷	その他	地震の影響により，牡鹿1号線避雷器の一部に損傷が発生した。	III
117	\qquad	使用済燃料プールにおけるゲート押さえの脱落	3号炉	地震の影響により，使用済燃料プールゲート（No．1およびNo．2）において，プールゲートを固定しているゲート押さえ金具計 4 個のうち 3個のスイングボルトが緩み外れた。	III
118	$\begin{gathered} \hline \text { 東北地方 } \\ \text { 太平洋沖地震 } \\ \text { (女川) } \\ \hline \end{gathered}$	使用済燃料キャスクピットにおけるゲート押さえの一部脱落	3号炉	地震の影響により，キャスクピツトゲートにおいて，ゲートを固定しているゲート押さえ金具2個のスイングボルトが緩み外れた。	III
119	\qquad	当社モニタリングステーション（4局）の停電および伝送回線停止に伴う欠測	その他	地震•津波の影響により，牡鹿半島周辺の配電設備および伝送回線が損壊したため，モニタリングステーション（4局）が欠測した。	III，VI
120	東北地方太平洋沖地震 （女川）	高圧電源盤しゃ断器の投入不可	1号炉	高圧電源盤内に設置しているしゃ断器が地震の振動により傾き，投入スイッチを入切するためのインターロックローラーが正常位置 から外れたため投入不可となった。	III
121	東北地方太平洋沖地震 （女川）	天井クレーン運転席鋼材等の損傷	2号炉	地震の影響により，原子炉建屋天井クレーンの運転席の鋼材溶接部の一部に損傷が発生した。	III
122	東北地方太平洋沖地震 （女川）	天井クレーン走行部等のすり傷	3号炉	原子炉建屋天井クレーン走行レール上の車輪が地震の影響で摇れたことにより，走行レールと走行車輪との接触面に局部的なすり傷が発生した。	III
123	$\begin{gathered} \text { 東北地方 } \\ \text { 太平洋沖地震 } \end{gathered}$ (女川)	燃料交換機制御室内の地上操作装置落下	3号炉	燃料交換機制御室内の地上操作装置が，地震の影響により机上から床面に落下し，端子部が破損した。	III
124	東北地方太平洋沖地震 （女川）	燃料交換機入出力装置の破損	1号炉	燃料交換機入出力装置盤内の表示装置およびキーボード（各運転状態表示，手順データの入力および編集作業）が地震の影響に よりラックから落下し故障した。	III
125	東北地方太平洋沖地震 （女川）	主蒸気逃し安全弁（C）リミットイイッチの接点不良	1号炉	地震の摇れにより，主蒸気逃がし安全弁（C）の位置検出スイッチが正規位置から下方へ僅かにズレたため，開閉ランプに表示不良 が発生した。	III
126	東北地方太平洋沖地震 （女川）	原子炉格納容器内遮へい扉 留め具の変形	$\begin{aligned} & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響により，2号炉原子炉格納容器内原子炉遮へい壁の開口部扉2箇所の留め具計3箇所に変形が発生した。また，3号炉原子炉格納容器内原子炉遮へい壁の開口部扉4箇所の留め具計5箇所に変形が発生した。地震の揺れにより留め具のバーとス テーが接触し，ステ一部が損傷したものである。	III
127	東北地方太平洋沖地震 （女川）	地下1階電動ステップバック遮へい扉の施錠装置 の破損	2号炉	地震の影響により，原子炉建屋地下1階に2台ある電動ステップバック遮へい扉の施錠装置が破損した。	III
128	東北地方太平洋沖地震 （女川）	モニタリングポスト（チャンネル6）信号変換器の故障に伴う指示不良	その他	地震の影響でモニタリングポストNo．6現地局舎内の測定装置から伝送装置間のケーブルコネクタのロック部分が破損し，ケーブル コネクタが緩んだため指示不良が発生した。	III
129	$\begin{gathered} \text { 東北地方 } \\ \text { 太平洋沖地震 } \end{gathered}$ （女川）	燃料交換機の配線ケーブルの脱線	3号炉	燃料交換機ブリッジ給電装置のうち，ケーブル支持具が地震の摇れによってガイドレールから脱落した。	III

[^4]原子力発電所における地震被害事例の要因整理（11／19）

No．	対象地震 （発䉓電所）	件名	号炬	地震被害事象および発生要因の概要	地震被害発生要因
130	東北地方太平洋沖地震 （女川）		その他	地震の影響により特鹿幹線2号線避雷器一部に損傷が発生した。	III
131	$\begin{array}{\|c} \hline \begin{array}{c} \text { 東北地方 } \\ \text { 太平洋沖地震 } \\ \text { (女川) } \end{array} \\ \hline \end{array}$	原子炉格納容器内遮へい扉留め具の外れ	1号炉	地震の摇れにより，原子炉格納容器内原子炉遮へい壁開口部扉と押さえ板が接触し，遮へい材カーテンの押さえ板が1箇所変形し た。	III
132	$\begin{array}{\|c} \hline \text { 東北地方 } \\ \text { 太平洋沖地震 } \\ \text { (女川) } \end{array}$	女川原子力発電所 1 号炉 原子炉建屋天井クレー ン走行部の損傷について	1号炉	地震の影響で原子炉建屋天井クレーンの軸受つば部が損傷し，その破片が軸受コロに挟まれた状態で走行したことにより，軸受に大きな荷重が付加されたことで軸受が損傷し，走行部内部の陌間から油受けに落下した。	III
133	$\begin{array}{\|c} \hline \text { 東北地方 } \\ \text { 太平洋沖地震 } \\ \text { (女川) } \end{array}$	補助ボイラー（A）蒸気だめ基礎部の損傷	2号炉	補助ボイラー（A）蒸気だめに地震による荷重が加わり，当該機器がわずかに移動したことで基礎部に損傷が発生した。	III
134	$\underset{\substack{\text { 太東北地方 } \\ \text {（女III）} \\ \text {（地）}}}{ }$	蒸気タービン中間軸受箱の基碍术ルト曲がり	2号炉	地震の摇れにより，蒸気タービン主軸が移動したことで中間軸受箱およびソールプレート（中間軸受箱を設置する平板）に力が加わ り，ソールプレートを固定している基礎术ルトに曲がりが生じた。	III
135	東北地方太平洋沖地震 （女川）	固体廃充物貯蔵所コンクリート壁の剥離	その他	固体廃童物貯蔵所の壁および天井は，伸縮継手により構造的に分離していたが，床には伸縮継手がなく，一体構造となっていたこ とから，壁および天井と床に地震による揺れ方の違いが生じ損傷した。また，床の損傷は基礎部にも及んでおり，この損傷が波及的 に拡大したことで壁にも損傷が発生した。	III
136	東北地方 太平洋中地震 （東海第二）	原子炉格納容器機器ハッチ遮へい扉止め金具破損	－	原子炉格納容器機器ハッチ遮へい扉の止め金具（スライド固定）が地震の影響で破損した。	III
137	東北地方太平洋沖地震 （東海第二）	格納容器雰囲気計測系サンプル昇圧ポフプロ異音	－	地震の影響により，格納容器雰囲気計測系2系列のうち，サンプル昇圧ポンプBについてモータとサンプルポンプに芯ずれが起こり暴音が発生した。	III
138	東北地方太平洋沖地震 （東海第二）	使用済燃料プールルゲート取付けボルトの位置ズ \llcorner	－	地震の影響により，使用斎然料ブール小ゲートの取付けボルトにずれが発生した。	III
139	$\begin{array}{\|c} \text { 東北地方 } \\ \text { 太平洋沖地震 } \\ \text { (東海第二) } \end{array}$	地震による水処理建屋構造村の損傷	－	地震の影響により，建物のブレース（筋交い）の多くが切断した。	III
140	$\begin{aligned} & \text { 東北地方 } \\ & \text { 太平棴地震 } \\ & \text { (東第二) } \end{aligned}$	津波による取水口電気室建屋の損傷	－	地震•津波により，取水口電気室の建具（窓，シャッター）に割れ・歪みが発生した。	III，VI
141	$\begin{array}{\|c} \text { 東北地方 } \\ \text { 太平洋沖地震 } \end{array}$	原子炉建屋天井クレーンの走行用車輪受部の一部損傷について	－	地震により，車輸軸受に亀裂等が発生し，その後，当該の天井クレーンを使用したことで，クレーンの自重により損傷に至った。	III

添付資料2
原子力発電所における地震被害事例の要因整理（12／19）

No．	$\begin{aligned} & \text { 対象地震 } \\ & \text { (発電所) } \end{aligned}$	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被客発生要因VV				下線は要因IV相当䈯所	
142	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \\ & \hline \end{aligned}$	土括て場一部崩落（北側斜面）等	その他	地震の振動により，土捨て場北側斜面の一部に崩落が発生した。	IV
143	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \\ & \hline \end{aligned}$	開閉所東側法面－部滑り出し	その他	地震の振動により，開閉所東側法面が一部滑り出し約 10 cm のひび割れが発生した。	IV
144	駿河湾 （浜岡）	取水槽まわりの地盤沈下等	1号炉	取水槽まわりに地盤沈下（ $30 \mathrm{~m} \times 20 \mathrm{~m}$ ，最大 15 cm 程度），隆起（ $35 \mathrm{~m} \times 15 \mathrm{~m}$ ，最大 20 cm 程度）および法面波打（ $30 \mathrm{~m} \times 5 \mathrm{~m}$ ，最大 10 cm 程度）が発生した。	I ，V．
145	駿河湾 （浜岡）	道路および法面のひび割れ	その他	地震の影響により以下の事象が発生した。 （1）5号見晴台道路き裂 （2）片平山周辺よう壁目開き，道路き裂 （3）平場ヤード舗装他き裂 （4）5号放水ロモニタ室東側よう壁（ブロック積み）き裂 （6）発電所東側点検ヤード舗装き裂 （7）発電所東側海岸道路き裂	I，즌

原子力発電所における地震被害事例の要因整理（13／19）

原子力発電所における地震被害事例の要因整理（14／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因VI				下線は要因VI相当箇所	
161	宮城県沖 （女川）	8•16宮城地震による女川原子力発電所全プラント停止について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響で以下の軽微な被害が発生した。 （a）女川1号炉 - 主変圧器，起動用変圧器の避圧弁動作 - サイトバンカ建屋プールに水銀灯落下 （b）女川2号炉 －主変圧器，起動用変圧器，補助ボイラ一変圧器（A）（B）の避圧弁動作 （c）女川3号炉 - 原子炉建屋内見学者用ギャラリー室のガラスのひび - 主変圧器の避圧弁動作 （d）その他構内 - 環境放射能測定センターの希硫酸（5\％濃度）貯蔵施設が漏えいおよび苛性ソーダの一部滴下 - 建屋エレベータ停止 - 排気筒航空障害灯レンズカバー破損 - 構内道路アスファルト亀裂•波うち・段差発生	I，III，VI
162	能登半島沖 （志賀）	能登半島地震観測データ波形記録の一部消失に ついて	1号炉	短時間に多くの余震を連続して収録したこと，収録装置内のICメモリーカード容量が少なかったことから，新たな余震記録によりデー タが上書きされたため，一部余震の記録が消失した。	VI
163	中越沖 （柏崎）	R／B3階，中3階の非管理区域への放射能含む水 の漏えい・海への放射能放出	6号炉	使用済燃料プール水が非管理区域へ流出した。事象のメカニズムは以下。 - 使用済燃料プール水が地震によるスロッシングによりR／B4Fフロア床面に溢れ出した。 - 溢れ出た水は床面に設置している燃料交換機給電ボックスヘ流入した。 - 密閉性が保たれているべきである給電ボックス内電線貫通部のシール部に，設計上の考慮不足あるいは施工不良により生じたと考えられる隙間ができていたため，隙間を通り電線管の中へ流入した。 - 当該電線管はR／B非管理区域へ通じていることから，電線管へ流入した水は非管理区域へと流出した。 - R／B3階（非管理区域）床面にたまった水は，同床面の排水口を通じて非放射性排水収集タンクに流入した後，排水ポンプにより， ポンプ出口配管の接続先である放水口を経由して海に放出された。	V，VI
164	中越沖 （柏崎）	地震記録装置データ上書き	その他	短時間に多くの余震が連続して発生したこと，地震時の通信回線が輻輳したため転送するのに時間がかかっていたことにより，新た な余震記録により本震記録が上書きされたため本震データが消失した。	VI
165	中越沖 （柏崎）	T／BRFP—T主油タンク（B）タンク室床に油たま り	2号炉	地震の影響により1号炉電源（M／C1SB－1）がトリップしたことで，同電源より受電している2号炉電源（M／C2B－1）が喪失した。 そのため，負荷であるRFP－T（B）油ブースターポンプの電源が喪失し，油清浄機への戻り油がなくなり，RFP－T（B）油タンクの油面 が上昇してオーバーフローした。	VI
166	中越沖 （柏崎）	6号炉R／Bより海に放出された放射線量の評価•通報連絡の遅延	6号炉	漏水の試料を分析室へ持ち込む際の識別が明確でなかったため，採取箇所と分析結果を分類することができず，放射能有の特定 が遅れ，加えて原子炉建屋非放射性ストームドレンサンプポンプの起動阻止が遅れたため，サンプに流入した放射能を含む水が発電所外に放出された。	VI
167	中越沖 （柏崎）	主排気筒の定期測定（1回／週）においてヨウ素及 び粒子状放射性物質（クロム51，コバルト60）の検出について	7号炉	原子炉の自動停止後の操作過程において，タービングランド蒸気排風機の手動停止操作が遅れたことで，復水器内に滞留していた放射性ヨウ素及び粒子状放射性物質が，タービングランド蒸気排風機により吸引され，排気筒を経て放出された。	VI

[^5]原子力発電所における地震被害事例の要因整理（15／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
168	中越沖 （柏崎）	7号原子炉ウェルライナーからの漏洩について	7号炉	7号炉の原子炉ウェルライナーにつながる配管のレベル計内に水が溜まる事象が発生した。当該のウエルライナーには，溶接の溶け込み不足と考えられる未溶着部があり，さらには建設時に溶接余盛り部を平滑化するためにグラインダで除去していたため，残存板厚が薄くなっていた。そこへ地震によりスロットプラグが接触したため，過大な荷重がかかり貫通，漏えいした。	III，VI
169	中越沖 （柏崎）	3 号炉原子炉圧力容器遮へい体の地震による移動 について	3号炉	【N12C】スライド式プラグが保温材に接触した事象 スライド式プラグが正規位置にある状態で取付けられておらず，ストッパー機能が働かなかった。その結果，スライド式プラグが地震 によってRPV側へ移動後，ハの字状態に開いたことにより保温材に接触して保温材を変形させた。 （N12D）積上式プラグが水位計装配管に接触した事象 スライド式プラグのストッパーが取付けられておらず，N12Cと同様にストッパー機能が働いていなかったことによりスライド式プラグ が地震によりRPV側へ移動した。その結果，積上式プラグの押さえがなくなって，地震により積上式プラグが左側へ崩れ，水位計装配管への接触に至った。	III，VI
170	中越沖 （柏崎）	低起動変圧器3SB「放圧装置動作」及び放圧装置油リーク	3号炉	地震により低起動変圧器3SB本体が摇れて，放圧装置が動作したため噴油した。	VI
171	中越沖 （柏崎）	低起動変圧器6SB放圧装置油リークによる低起動変圧器6SB停止	6号炉	地震により低起動変圧器6SB本体が摇れて，放圧弁が動作したため油がリークした。	VI
172	中越沖 （柏崎）	R／B1F北西側二重扉電源喪失のため内外開放中	1号炉	メカ式のリレーの誤動作によりM／C1SB－1が停止したこと，およびMCC1SA－1－1盤に建屋内に漏洩した水がかかり停止した ことにより二重扉電源が2系統停止したため，二重扉が動作不能となった。	VI
173	中越沖 （柏崎）	R／Bオペフロ 原子炉ウェル内バルクヘッド上に赤靴を確認	1号炉	原子炉ウェル内のバルクヘッド上においてC靴1個を発見した。ウェル開口部付近にあったC靴が，使用済燃料プール及び原子炉 ウェルから地震のスロッシングにより溢れた水が原子炉ウエルに戻る際に，その流れにさらわれ落下したものである。	V，VI
174	中越沖 （柏崎）	「6号炉の放射性物質の漏えいについて」における海に放出された放射能量の訂正について	6号炉	放水口を経由して海に放出された水の放射線量を算定する際の計算に誤りがあった。	VI
175	中越沖 （柏崎）	T／B B2F T／BHCWサクプ（B）•LPCP（A）～（C）室雨水流入	1号炉	1 号タービン建屋～海水熱交換器建屋•補助ボイラ建屋等で発生した漏水が当該トレンチ近傍のファンネルヘ大量に流入し，目詰ま りを起こしたことにより，このファンネルより設置高の低い高電導度廃液サンプから溢水した。	VI
176	中越沖 （柏崎）	T／BT／BB1F（管）南側壁上部 5 m （ヤードHTr奥ノンセグ室）より雨水流入	3号炉	タービン建屋に隣接したピットに水がたまり，電線管貫通部を通ってタービン建屋内に水が流入した。	VI
177	中越沖 （柏崎）	5号炉燃料取替機荷重異常発生に伴う自動除外	5号炉	1体の燃料集合体が正しい装荷位置である燃料支持金具から外れていることを確認した。これは，燃料装荷時の燃料交換機の設定座標が適切ではなかったこと，燃料集合体の下降速度が十分減速されていなかったことから燃料集合体の下部先端が燃料支持金具の外側に乗り上げた状態で装荷され，その後，地震により燃料支持金具からさらに外れたものである。	VI
178	駿河湾 （浜岡）	廃裹物減容処理建屋「復水バッチタンク水位高高」警報点灯	2号炉	地震により廃棄物減容処理建屋に設置している復水バッチタンク水位が変動し，一時的にタンクへの補給が必要な水位を検出し，補給水系統からタンクへの自動補給が行われたことにより水位が上昇したため，水位高高警報が点灯した。	VI
179	駿河湾 （浜岡）	原子炉建屋3階（放射線管理区域内）燃料プール冷却浄化系ポンプ室の放射線モ二タ指示の上昇	2号炉	地震の摇れにより，燃料集合体表面の放射性物質を含んだ鉄錆等がプール水に遊離したため，放射線モ二タの指示が上昇した。	VI

原子力発電所における地震被害事例の要因整理（16／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
180	駿河湾 （浜岡）	非常用ディーゼル発電機の排気消音器の吸音材力 バー固定金具の外れおよび台座シール材の劣化	3号炉	地震の影響により，原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れた。また，韭常用ディーゼル発電機（B）の排気消音器台座シール材に塩害環境腐食と地震の摇れによる影響での劣化を確認した。	III，VI
181	駿河湾 （浜岡）	非常用ディーゼル発電機（A）排気消音器の吸音材 カバー固定金具等の外れ	4号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の摇れによる影響が原因である。	III，VI
182	駿河湾 （浜岡）	補助変圧器過電流トリップ	5号炉	地震の振動でトリップ接点が接触したことにより，保護継電器が誤動作した。	VI
183	駿河湾 （浜岡）	制御棒駆動機構モータ制御ユニットの故障警報点灯について	5号炉	他事象の影響により，予備電源側供給となっていた計測制御系定電圧定周波数電源装置が，電源元である補助変圧器のトリップに より瞬時電圧低下となり，制御棒駆動機構モータ制御装置が一時停止したことで「RC\＆IS軽故障（モータ制御ユニット故障）」警報が点灯した。	VI
184	駿河湾 （浜岡）	原子炉建屋管理区域区分の変更	5号炉	燃料交換エリア床面の放射性物質の密度を測定したところ， $7 \mathrm{~Bq} / \mathrm{cm}^{2}$ であり，事業者管理値 $4 \mathrm{~Bq} / \mathrm{cm}^{2}$ を超過したため管理区分を変更した。原因は，原子炉建屋5階オペフロ高所に蓄積していた放射性物質が地震の揺れで落下し，原子炉建屋全体に拡散したため である。	VI
185	駿河湾 （浜岡）	計測制御系定電圧定周波数電源装置のインバー ター過電流による電源切替（通常 \rightarrow 予備）	5号炉	地震時に所内電源電圧が上昇したことにより，装置への交流入力電圧上昇が発生したため予備電源へ切り替った。	VI
186	駿河湾 （浜岡）	原子炉建屋5階（放射線管理区域内）燃料交換エリ ア換気放射線モ二タ指示の一時的な上昇	5号炉	地震の揺れにより燃料集合体表面の放射性物質を含んだ鉄錆等が，プール水に遊離しプール表面からの放射線線量率が上昇した ため，燃料交換エリア換気放射線モニタの警報が点灯した。	VI
187	駿河湾 （浜岡）	燃料プール水の放射能の上昇	5号炉	燃料プール水の放射能が通常値の50倍程度に上昇した。原因は他事象（No．188）と同様。	VI
188	駿河湾 （浜岡）	原子炉建屋3階（放射線管理区域内）燃料プール泠却浄化系ポンプ室の放射線モニタ指示の上昇	5号炉	燃料プール冷却浄化系ポンプ室の放射線モ二タの指示が上昇した。原因は他事象（No．188）と同様。	VI
189	騐河湾 （浜岡）	非常用ガス処理系（B）放射線モ二タ下限点灯	5号炉	地震発生時に補助変圧器トリップに伴う電圧の一時的な低下により，モ二タ指示値が一時的に低下したため下限が点灯した。	VI
190	駿河湾 （浜岡）	非常用ディーゼル発電機（B）排気消音器の吸音材 カバー固定金具等の外れ	5号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（B）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の摇れによる影響が原因である。	III，VI
191	東北地方太平洋沖地震 （女川）	原子炉補機冷却水系熱交換器（B）室，高圧炉心 スプレイ補機冷却水系熱交換器室および海水ポン プ室への浸水	2号炉	津波の影響により海水ポンプ室から海水が浸入し，RCW熱交換器（B）室，HPCW熱交換器室等が浸水した。その結果，RCWポン プ（B），（D）およびHPCWポンプが浸水の影響で自動停止し，続いて冷却水の供給がなくなったD／G（B），D／G（H）が自動停止 した。	VI
192	東北地方 太平洋沖地震 （女川）	屋外重油タンクの倒壊	1号炉	津波の影響により，1号炉補助ボイラ一用の重油貯蔵タンクの倒壊，重油移送ポンプの浸水，油の輸送管の損傷が発生した。	VI
193	東北地方太平洋沖地震 （女川）	非常用ディーゼル発電機（A）界磁回路の損傷	1号炉	非常用ディーゼル発電機（A）について以下の事象を確認した。 - メタクラ6－1Aで発生した火災の影響で同期検出継電器と接続している制御ケ一ブルが溶損し地絡が発生した。 - 地絡の影響でDG（A）しゃ断器が自動投入され界磁過電圧が発生した。 - この界磁過電圧によりバリスタおよび電線の損傷，ダイオードの短絡が発生した。	VI

原子力発電所における地震被害事例の要因整理（17／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
194	東北地方太平洋沖地震 （女川）	$1,2,3$ 号炉放水ロモニターの津波による浸水および破損	1号炉 2号炉 3号炉	津波により建屋内に設置の測定・データ伝送設備が，水没•破損した。	VI
195	東北地方太平洋沖地震 （女川）	当社モニタリングステーション（4局）の停電および伝送回線停止に伴う欠測	その他	地震•津波の影響により，牡鹿半島周辺の配電設備および伝送回線が損壊したため，モニタリングステーション（4局）が欠測した。	III，VI
196	東北地方太平洋沖地震 （女川）	海水温度モニタリング装置の津波による破損に伴う全局欠測	その他	津波により，取放水口付近に設置している海水温度モ二タリング装置が水没したため，データ伝送設備が破損しデータが欠測した。	VI
197	東北地方太平洋沖地震 （女川）	母連しゃ断器の制御電源喜失	1号炉	火災が発生した高圧電源盤の制御電源回路の溶損による地絡や短絡の影響により，制御電源回路が接続されている当該しゃ断器用制御電源回路の電圧が変動したことで，リレーが動作し「制御電源喪失」警報が発生した。	VI
198	東北地方太平洋沖地震 （女川）	変圧器避圧弁の油面変動に伴う動作	1号炉	3月11日の地震で1号主変圧器3箇所，1号起動変圧器2箇所の避圧弁が動作した。また，4月7日の余震により，1号主変圧器2箇所， 1 号所内変圧器 1 箇所の避圧弁が動作した。避圧弁が動作した原因は，地震の摇れにより変圧器内の絶縁油の油面が変動し，内部圧力が上昇したことによる。	VI
199	東北地方太平洋沖地震 （女川）	高圧炉心スプレイ系圧力抑制室吸込弁 自動での全開動作不能	3号炉	地震の影響による圧力抑制室の一時的な水位変動により，「HPCS圧力抑制室水位高」警報が発生したため，本来であれば，高圧炉心スプレイ系圧力抑制室吸込弁（以下当該弁）が自動で全開となるが，開度 80% 偪動作が停止した。これは地震により当該弁の開閉指示を行うスイッチ等が誤動作したものである。	VI
200	東北地方太平洋沖地震 （女川）	ほう酸水貯蔵タンク水位指示回路不良	1号炉	1号炉高圧電源盤の火災に伴う地絡電流が，水位発信器内部の部品（基板）を経由して電源ヒューズを断線させたため電源が無くな り，ほう酸水貯蔵タンク水位指示計がダウンスケールした。	VI
201	東北地方太平洋沖地震 （女川）	125V直流主母線盤の地絡（計2件発見）	1号炉	以下の負荷において地絡が発生した。 1．BOPアナンシエータ盤 2．所内補機補助盤 3．原子炉アナンシエータ盤 4．CWPポンプ稼動翼制御 5．発電機変圧器保護（共通） 上記負荷は，いずれも火災により焼損したM／C6－1Aと配線接続されているため，火災により配線が地絡したもの。	VI
202	東北地方太平洋沖地震 （女川）	125V直流主母線盤の地絡	2号炉	以下の負荷について地絡警報が発生した。 1．原子炉補機冷却水系／原子炉補機冷却海水系（B）制御回路 2．非放射性ドレン移送系故障表示回路 3．除塵装置制御回路 4．放射性ドレン移送系サンプレベルスイッチ故障検出回路 1～3項は津波により設備が水没したことが原因である。4項については，地震に関係のない一過性の事象である。	VI
203	東北地方太平洋沖地震 （女川）	変圧器避圧弁の油面変動に伴う動作	3 号炉	3月11日の地震により主変圧器6箇所の避圧弁が動作した。また，4月7日の余震により，主変圧器4箇所，所内変圧器1箇所の避圧弁が動作した。避圧弁が動作した原因は，地震の揺れにより変圧器内の絶縁油の油面が変動し，内部圧力が上昇したため。	VI

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
204	東北地方太平洋沖地震 （女川）	燃料取替エリア放射線モニタ（A）記録計の指示不良	3号炉	燃料取替エリア放射線モニタ（A）指示値に一時的な変動が確認されたが，装置に異常はなかったため，当該記録計の指示不良で ある。	VI
205	東北地方太平洋沖地震 （女川）	125V直流主母線盤の地絡（計4件発見）	3号炉	以下の負荷において地絡警報が発生した。 1．高圧復水ポンプ（A）制御回路 2．高圧復水ポンプ（ B ）制御回路 3．除塵装置制御回路 1，2項の地絡は一過性の事象である。また，3項の地絡は除塵装置制御盤が津波により水没したことが原因である。	VI
206	東北地方太平洋沖地震 （女川）	変圧器避圧弁の油面変動に伴う動作（計7件発見）	2号炉	3月11日の地震により主変圧器4箇所，起動変圧器1箇所，所内変圧器1箇所，補助ボイラ一用変圧器2箇所の避圧弁が動作した。 また，4月7日の余震により主変圧器3箇所，起動変圧器1箇所，所内変圧器1箇所，補助ボイラ一用変圧器2箇所，励磁電源変圧器 1箇所の避圧弁が動作した。避圧弁が動作した原因は，地震の揺れにより変圧器内の絶縁油の油面が変動し，内部圧力が上昇し たため。	VI
207	東北地方太平洋沖地震 （東海第二）	非常用ディーゼル発電機2C用海水ポンプの自動停止について	－	取水口の南北に配置されている海水ポンプ槽のうち，北側のポンプ槽への津波による海水浸入のため，非常用ディーゼル発電機2 C用海水ポンプ電動機が水没し自動停止したことから，DG2Cが使用不能となった。	VI
208	東北地方太平洋沖地震 （東海第二）	$125 V$ 蓄電池2B室における溢水について	－	地震に伴う常用系電源の停電により開となった実験室サンプポンプシール水電磁弁から消火水が供給され続け当該サンプに流入し たこと，また，停電により当該サンプの制御電源が喪失したことからサンプ水位高信号が発信されなかったこと，さらに，当該ファンネ ルを閉止していたゴム栓が外れたことで，当該サンプとの僅かな水頭差によりサンプ内を満たした水がファンネル側に逆流したため， ドレンファンネルから床面へ溢水した。	VI
209	東北地方太平洋沖地震 （東海第二）	東海第二発電所 固体廃棄物貯蔵用サイトバンカ プール水飛散	－	廃棄物処理建屋固体廃棄物貯蔵用サイトバンカプール廻りにつ゚ール水が溢水した。	VI
210	東北地方太平洋沖地震 （東海第二）	D／W床及び機器ドレンサンプレベルスイツチの地絡	－	地震により原子炉自動停止および格納容器隔離をしている状況で，格納容器内の機器ドレンサンプおよび床ドレンサンプレベルス イッチが被水したため，当該サンプレベルスイッチ回路で地絡が発生した。	VI
211	東北地方太平洋沖地震 （東海第二）	T／B機器ドレンサンプBからの水漏れ	－	タービン建屋機器ドレンサンプ（B）電源が喪失した状態で，電源給水ポンプシール水が流入したことから，水漏れが発生した。	VI
212	東北地方太平洋沖地震 （東海第二）	主変圧器，起動変圧器（2A，2B）放圧管からの絶緑油漏えい	－	地震により主変圧器および起動変圧器（2A，2B）内の絶縁油の油面が変動したことから，放圧管より絶緑油が漏えいした。	VI
213	東北地方太平洋沖地震 （東海第二）	津波による屋外機器の被水（安重設備以外）	－	津波によりCWP潤滑水ポンプ等の，多数の屋外設備が被水した。	VI
214	東北地方太平洋沖地震 （東海第二）	津波による取水口電気室建屋の損傷	－	地震•津波により，取水口電気室の建具（窓，シャッター）に割れ・歪みが発生した。	III，VI
215	東北地方太平洋沖地震 （福島第二）	R／B LCWサンプのオーバーフロー	1号炉	LCWサンプからオーバーフローレ，サンプピツト内に漏えいした。	VI
216	東北地方太平洋沖地震 （福島第二）	R／B SDサンプのオーバーフロー	1号炉	SDサンプからオーバーフローし，原子炉建屋B2Fへ漏えいした。	VI

原子力発電所における地震被害事例の要因整理（19／19）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
217	東北地方太平洋沖地震 （福島第二）	R／B LCWサンプのオーバーフロー	2号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
218	東北地方太平洋沖地震 （福島第二）	T／B LCWサンプのオーバーフロー	2号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
219	東北地方太平洋沖地震 （福島第二）	R／B SDサンプのオーバーフロー	3号炉	SDサンプからオーバーフローし，原子炉建屋B2Fへ漏えいした。	VI
220	東北地方太平洋沖地震 （福島第二）	T／B LCWサンプのオーバーフロー	4号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
221	東北地方太平洋沖地震 （福島第二）	サイトバン力貯蔵プールのスロッシングによる溢水	－	地震によるスロッシングにより，放射性物質を含む使用済燃料プール水が溢水した。	VI
222	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	1号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
223	東北地方太平洋沖地震 （福島第二）	制御盤の浸水による機能喪失	1号炉	海水が制御盤の内部へ海水が浸水し機能喪失した。	VI
224	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	1号炉	各種ポンプのモーターの内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
225	東北地方太平洋沖地震 （福島第二）	ディーゼル発電機の浸水による機能喪失	1号炉	ディーゼル発電機や機関付属機器の内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
226	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能啔失	2号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
227	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	2号炉	各種ポンプのモーターの内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
228	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	3号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
229	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	3 号炉	各種ポンプのモーターの内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
230	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	4号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
231	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	4号炉	各種ポンプのモーターの内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI

周辺斜面の崩壊等による上位クラス施設への影響

1．周辺斜面からの離隔距離
「上位クラス施設」及び「上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設」について，周辺斜面の崩壊等による影響について検討した。なお，下位クラス施設については，「6．下位クラス施設の検討結果」に基づき抽出された施設とする。

上位クラス施設と周辺斜面との離隔距離を考慮して，耐震評価の対象とすべき斜面のスクリーニングを行う。離隔距離を考慮するに当たつては，「原子力発電所耐震設計技術指針 JEAG4601－1987」，「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術」及び「宅地防災マニュアルの解説」を参考とし，上位クラス施設と周辺斜面との離隔距離が，「斜面高さの 1.4 倍若しくは 50 m 」 又は「斜面高さの 2 倍（上限 50 m ）」が確保されていれば，評価対象斜面ではないと評価する。

添付 3－1 図に示す敷地平面図のとおり，「上位クラス施設」及び「上位クラス施設へ波及的影響を及ぼすおそれのある下位クラス施設」と周辺斜面には，十分な離隔が確保されており，敷地内には評価対象となる斜面はない。よって，周辺斜面の崩壊等により，上位クラス施設の安全機能が損なわれることはない。

添付 3－1 図 敷地平面図

2． 1 号炉排気筒下斜面の安定性評価
1 号炉排気筒下斜面の崩壊を仮定した場合，転倒時の影響範囲が排気筒まで到達 することから，基準地震動 S S に対する当該斜面の安定性を確認する。

評価対象とする斜面の断面位置を添付 3－2 図に，地質断面図を添付 3－3 図に示す。斜面の安定性については，基準地震動 Ss に基づく二次元有限要素法解析を行い，算定されるすべり安全率が 1.2 を上回ることを確認する。

添付 3－2 図 評価断面位置

添付3－3 図 地質断面図
枠囲みの内容は商業機密又は防護上の観点から公開できません。
4条一別紙2－添3－2

評価結果を添付 3－4 図に示す。すべり安全率は1．2以上を確保しており，斜面の安定性を確認した。

添付 3－4図 すべり安定性評価結果

上位クラス施設に隣接する下位クラス施設の支持地盤について

本資料では，女川原子力発電所 2 号炉において，上位クラス施設に隣接する下位ク ラス施設の支持地盤の状況について確認を行う。

発電所敷地内における下位クラス施設の配置を添付4－1図に，各下位クラス施設の接地状況を添付 4－2 図～添付 4－4 図に示す。

2 号炉タービン建屋については，添付 4－2 図及び添付 4－3 図より，MMRを介して 2 号炉原子炉建屋及び 2 号炉制御建屋と連続した岩盤に支持されていることを確認し た。

2 号炉補助ボイラー建屋については，添付 4－4 図により，MMRを介して 2 号炉制御建屋と連続した岩盤に支持されていることを確認した。

1 号炉制御建屋については，添付4－3図より，MMRを介して 2 号炉制御建屋と連続した岩盤に支持されていることを確認した。

添付 4－1 図 女川原子力発電所 建屋外下位クラス施設配置図

添付 4－2 図 タービン建屋の接地状況（第1図 断面（1）

添付 4－3 図 タービン建屋及び 1 号炉制御建屋の接地状況（第1図 断面（2））

添付 4－4 図 補助ボイラー建屋の接地状況（第1図 断面（3））

設置予定施設及び撤去予定施設に対する波及的影響評価の考え方について
施設を設置する際に，既設下位クラス施設から受ける波及的影響及び既設上位クラ ス施設に与える波及的影響評価については，以下のとおり実施するものとする。また，撤去予定の施設に対する波及的影響評価の考え方についても以下に示す。

1．設置予定施設に対する波及的影響評価について
1.1 設置予定施設が上位クラス施設の場合

設置予定施設が上位クラス施設の場合には，当該施設に対して波及的影響を及 ぼすおそれのある下位クラス施設を抽出した上で，影響評価を実施する。抽出さ れた下位クラス施設については「5．下位クラス施設の抽出及び影響評価方法」に基づき，相対変位又は不等沈下による影響，接続部における影響，建屋内及び建屋外における損傷，転倒及び落下等による影響の観点から，設置予定施設が機能 を損なうおそれの有無を確認する。

その結果，設置予定施設が波及的影響により機能を損ならおそれがある場合に は，設置予定施設に対しての配置の見直し，構造変更等の設計の見直しを行う。設置予定施設の設計にて波及的影響を回避できない場合には，波及的影響を及ぼ すおそれのある下位クラス施設に対して，配置の見直しや耐震性の確保もしくは上位クラス施設への影響確認を行う。

1．2設置予定施設が下位クラス施設の場合

設置予定施設が下位クラス施設の場合には，1 項と同様の観点から当該施設が既設上位クラス施設に対して波及的影響を及ぼすおそれの有無を確認する。

その結果，波及的影響を及ぼすおそれのある施設については，配置の見直しや耐震性の確保もしくは上位クラス施設への影響確認を行う。

1．3設置予定の個別設備の対応方針

設置予定施設として以下を例示するが，波及的影響の対応方針としては上記方針に従って設計するものである。

1．3．1高圧代替注水系設備

高圧代替注水系設備は，上位クラス施設（重要 SA 施設）として設置するもの であり，上記 1 項に基づき当該施設周辺に設置されている下位クラス施設が波及的影響を及ぼすおそれのない設計とする。

1．3．2竜巻防護施設

竜巻防護施設は，下位クラス施設として設置する設備であり，周囲に上位ク ラス施設が設置されている場合には，2 項に基づき評価を行った上で必要に応

じて対策を実施する。

1．3．3 火災防護設備

火災防護設備は，下位クラス施設として設置する設備であり，周囲に上位ク ラス施設が設置されている場合においては 2 項に基づき評価を行った上で必要 に応じて対策を実施する。

2．撤去予定施設に対する波及的影響評価について
今後，撤去する予定の施設については，撤去計画が女川 2 号炉の再起動前までの場合には，撤去を前提として波及的影響評価を実施する。また，撤去計画が再起動後もしくは未確定の場合には，設置されている現在の状態を対象とした波及的影響評価を実施する。

3．設置予定施設及び撤去予定施設の方針確認について
1 項及び 2 項で示した，設置予定施設及び撤去予定施設の対応方針については，工事計画認可申請段階で状況を再確認し，確定状況に対する波及的影響の再評価を実施する。

原子炉補機冷却海水系通水機能への下位クラス施設の
波及的影響の検討について

1．評価方針

原子炉補機冷却海水系の通水機能が周辺の下位クラス施設の波及的影響によっ て損なわれることがないことについて，下位クラス施設の特徴や耐震性を考慮して検討を実施する。

なお，通水機能への波及的影響については，地震力による下位クラス施設の崩壊 や変形等により，通水断面を閉塞するような事象を想定する。

2．評価対象施設

原子炉補機冷却海水を通水する屋外重要土木構造物（取水口，取水路，海水ポン プ室，原子炬機器冷却海水配管ダクト）並びに海水ポンプ及び配管については，基準地震動 Ss による耐震性を確認していることから，取水口よりも海側の施設につ いて，通水機能に影響を及ぼす可能性のある施設を抽出する。

通水機能に影響を及ぼす可能性のある下位クラス施設の抽出及び評価フローを添付6－1 図に示す。

添付 6－1 図 通水機能に影響を及ぼす可能性のある下位クラス施設の抽出及び評価フロー

海側の下位クラス施設の配置図を添付 6－2 図に，評価対象施設のスクリーニング結果を添付6－1 表に示す。

このうち，東防波堤及び北防波堤については，標準断面図を添付6－3 図及び添付 6－4図にそれぞれ示すとおり，重量物から構成されており，取水口からの離隔も十分あることから，地震等により崩壊しても通水断面の閉塞は生じない。

カーテンウォールについては，取水口との位置関係を添付 6－5 図に，構造図を添付 6－6 図に示すとおり，土圧の影響がなく地震力の影響を受けにくい構造であり， かつ取水口と十分な離隔を有すること，カーテンウォールの構成部材（PC 版，鋼材等）は重量物であることから，カーテンウォールの部材損壊による通水断面の閉塞 は生じない。

取水口周辺の前面護岸はタイロッド式矢板護岸であるが，取水口の側面（護岸背面）は地盤改良（高圧噴射攪抖工法及び置換工）している。前面護岸の平面図を添付 6－7 図に，前面護岸の断面図を添付 6－8 図，添付 6－9 図及び添付 6－10 図に示す。

護岸の崩壊による通水断面の閉塞の可能性について，地盤改良体と土砂部につい て，それぞれ検討する。まず，地盤改良体については，基準地震動 S C に対する安定性評価により，地震時の安定性を確認する。

土砂部については，添付 6－8 図に示すとおり，取水口側面土砂部（1）と取水口側面土砂部（2）の 2 か所に未固結の土砂部が存在する。このうち，取水口側面土砂部（2）に ついては，重量の大きな捨て石が主体であり，崩壊したとしても，取水口までは土砂の高さ以上の水平離隔距離があるため，取水口まで土砂は到達せず，通水断面の閉塞は生じない。

取水口側面土砂部（1）については，土砂が鋼矢板の隙間から流出し取水口前面に堆積（約 $284 \mathrm{~m}^{3}$ ）すると仮定した場合，朔望平均干潮位（L．W．L）0．P．－ 0.14 m に対し て，堆積した土砂の天端は 0．P．－ 2.19 m となり，添付 6－11図に示すとおり通水断面 は確保できる。

添付6－2 図 海側の下位クラス施設配置図

添付6－1 表 評価対象施設のスクリーニング結果

施設	施設の特徴及び配置の観点からの評価	対象		
東防波堤，北防波堤	•構成部材が重量物であり，かつ取水口とは 十分な離隔を有する。	\times		
2,3 号炉取水口				
カーテンウォール				•構成部材が重量物であり，かつ取水口とは
:---				
十分な離隔を有する。	$\quad \times$			

添付6－3図 東防波堤標準断面図

添付6－4図 北防波堤標準断面図

添付 6－5 図 カーテンウォールと取水口の位置関係図（緃断面図）

（断面図）

（正面図）

添付 6－6 図 カーテンウォール構造図

添付6－7 図 前面護岸の平面図

地盤改良（高圧噴射攪拌工法）
図 地盤改良（置換工）
添付 6－9 図 前面護岸の断面図（B－B 断面）

添付 6－10 図 前面護岸の断面図（C－C 断面）

添付 6－11 図 取水口側面土砂堆積図

防潮堤•防潮壁への下位クラス施設の波及的影響の検討について

1．評価方針

防潮堤及び防潮壁へ波及的影響を及ぼすおそれのある下位クラス施設のうち， 6.4章にて，損傷等による影響なし（スクリーニング）とした施設について，設置状況及 び建屋外上位クラスである防潮堤•防潮壁との離隔の確認を行う。

2．評価対象施設
評価対象となる下位クラス施設を添付 7－1 表に示す。

添付 7－1 表 評価対象下位クラス施設

建屋外上位クラス	波及的影響を及ぼすおそれの ある下位クラス施設	下位クラス施設構造形式
防潮堤	1 号炉取水路	岩盤トンネル （鉄筋コンクリート造）
防潮堤 防潮壁（ 2 号炉放水立坑）	2 号炉放水路	岩盤トンネル （鉄筋コンクリート造）
防潮堤 防潮壁（ 3 号炉放水立坑）	3 号炉放水路	岩盤トンネル （鉄筋コンクリート造）

3．防潮堤及び防潮壁と下位クラス施設の離隔について
トンネル標準示方書（山岳工法編）•同解説（平成 8 年，土木学会）によると，添付 7－2 表のとおり道路トンネルの地山分類に応じた，掘削時の応力解放に伴う緩み高 さが示されている。岩盤トンネルである 1 号炉取水路， 2 • 3 号炉放水路は，山岳工法（NATM）により施工されていることから，上記トンネル標準示方書（山岳工法編）•同解説の地山分類を適用し，女川原子力発電所における岩盤分類（添付 7－3 表，添付 7－4表）に照らし合わせると，C C_{H} 級岩盤が地山分類「B」，C C 級岩盤が地山分類「C」 に該当する。
添付 7－2 表によると，地山分類「B」では，緩み高さが $1.5 \sim 3.0 \mathrm{~m}$ ，地山分類「C」 では，緩み高さが $2.0 \sim 4.0 \mathrm{~m}$ である。下位クラス施設の損傷により掘削時の応力解放と同様の事象が想定されるが，上記緩み高さ分の離隔を確保されている場合は，上方に設置されている防潮堤•防潮壁への波及的影響を及ぼすおそれはない。

添付 7－1 表で示した下位クラス施設は，$\left[\mathrm{C}_{\mathrm{H}}\right.$ 級及び C_{M} 級岩盤に設置されていること から，防潮堤及び防潮壁の離隔については，上記緩み高さを包絡して， 4.0 m 以上で あることを確認する。
添付 7－2 表 地山分類（トンネル標準示方書［山岳工法編］抜粋）

添付 7－3 表 女川原子力発電所の岩盤分類（ボーリングコアの岩級区分）

■ コアの風化度区分基準

区分	特徴
1	新鮮
2	かなり新鮮
3	中程度風化
4	かなり風化
5	強風化粘土状

－コア形状区分基準

区分	特徴		
A	長柱状	20 cm 以上のコア	
B	短柱状	$5 \sim 20 \mathrm{~cm}$ のコア	
C	岩片状	$3 \sim 5 \mathrm{~cm}$ のコア	
D	細片状	3 cm 以下のコア	
E	土砂状，粘土状		

■ コアの岩級区分基準

		コアの風化度区分				
		1	2	3	4	5
$\begin{aligned} & \text { コ } \\ & \text { ア } \\ & \text { の } \\ & \text { 形 } \\ & \text { 状 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	A	B＇	$\mathrm{CH}^{\text {＇}}$	$\mathrm{Cm}_{\text {M }}{ }^{\text {，}}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	D＇
	B	CH^{\prime}	CH^{\prime}	$\mathrm{Cm}_{\mathrm{m}}{ }^{\text {，}}$	$\mathrm{C}_{\mathrm{L}}{ }^{\text {＇}}$	D＇
	C	$\mathrm{CH}^{\text {＇}}$	CH^{\prime}	$\mathrm{Cm}_{\mathrm{m}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	D＇
	D	$\mathrm{C}_{\mathrm{M}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{m}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}{ }^{\text {＇}}$	D＇
	E	－	－	－	$\mathrm{C}_{\mathrm{L}}{ }^{\text {＇}}$	D＇

添付 7－4 表 女川原子力発電所の岩盤分類（試掘坑内の岩級区分）

	砂岩及びひん岩	頁 岩
B＂級	- 全体的に新鮮で，暗灰色～暗青灰色を呈する。 - 割れ目間隔 20 cm 程度以上である。 - ハンマーの強打で割れ，澄んだ金属音を発する。	- 全体的に新鮮で，黒～暗灰色を呈する。 - 割れ目間隔 20 cm 程度以上である。 - ハンマーの強打で割れ，澄んだ金属音を発する。
$\mathrm{CH}^{\prime \prime}$ 級	－全体的にわずかに風化をうけ 暗灰～黄灰褐色を呈する。 岩芯が新鮮な青灰色部を含む。長石類が黄褐色に風化汚染されている。 - 割れ目間隔は，主として $5 \sim 20 \mathrm{~cm}$ 程度である。 - ハンマーの強打で割れ，やや濁った金属音を発する。	－割れ目沿いにわずかに風化汚染をうけ，黒～暗灰色を呈する。砂質ラミナ にわずかに褐色汚染が認められることがある。岩片角はナイフで削れる。 - 割れ目間隔は主として $5 \sim 20 \mathrm{~cm}$ 程度である。 - ハンマーの強打～中打で割れ，やや濁った金属音を発する。
$\mathrm{C}_{\text {M }}$ 級	－全体的に風化をうけ，淡黄褐～黄褐色を呈する。指先の摩擦で粒子 がほとんど分離しないものから，岩片を指圧で割れるものまである。 －割れ目間隔は，主として $3 \sim 10 \mathrm{~cm}$ 程度である。 －ハンマーの中打で割れ，濁った音を発する。	－風化による脱色化が認められ，割れ目沿いは褐色に風化し暗灰～褐灰色を呈する。岩片はナイフで容易に削れる。 - 割れ目間隔は主として $3 \sim 10 \mathrm{~cm}$ 程度である。 - ハンマーの中～軽打で割れ目沿いに剥離する。濁った音を発する。
C ${ }^{\text {＂}}$ 級	－全体的に強く風化をうけ，黄褐色～褐色を呈する。強い指圧で岩片を すりつぶすことができる。 －割れ目間隔は，主として 3 cm 程度以下，又は破硨部沿いに認めら れる割れ目の密集部。 －ハンマーの軽打で容易に岩片上となり，低い濁った音を発する。	－全体的に強く風化をうけ，灰褐色，又は，脱色して灰白色を呈する。表面が瓜で削れ，強い指圧で岩片状に割ることができる。 －割れ目間隔は主として 3 cm 程度以下，又は，破砕部沿いに認めら れる割れ目の密集部。 －ハンマーの軽打で容易に細片状となり，低い濁った音を発する。
D＂級	－全体的に著しく風化し，黄灰色～黄褐色を呈する。指圧で容易に岩片を すりつぶすことができる。 - 割れ目は不鮮明なものが多い。 - ハンマーの軽打でくぼみを生じ，著しく低い濁った音を発する。	- 全体的に著しく風化し，脱色して灰白色を呈する。 - 指圧で岩片をすりつぶすことができる。 - ハンマーの軽打でくぼみを生じ，著しく低い濁った音を発する。

—：第 3－1 表地山分類「B」との対応
：第 3－1 表地山分類「C」との対応

4．下位クラス施設の配置及び防潮堤•防潮壁との離隔について
下位クラスの施設の配置を添付 7－1図，防潮堤•防潮壁と下位クラス施設の離隔を添付7－5 表に示す。

添付 7－5 表より，防潮堤•防潮壁と下位クラス施設は， 4.0 m 以上の十分な離隔が確保されていることから，下位クラス施設の損傷に起因する岩盤の緩みによって，上位クラスである防潮堤•防潮壁への波及的影響を及ぼすおそれはない。

添付7－1図 評価対象下位クラス施設配置図

添付 7－5 表 防潮堤•防潮壁と下位クラス施設の離隔

番号 （第 4－1 図）	建屋外上位クラス	波及的影響を及ぼすおそれ のある下位クラス施設	上位クラスと 下位クラスの離隔
（1）	防潮堤	1 号炉取水路	約 $4.4 \sim 4.7 \mathrm{~m}$
（2）	防潮堤	2 号炉放水路	約 16.5 m
（3）	防潮壁 $(2$ 号炉放水立坑）	2 号炉放水路	約 20.6 m
（4）	防潮堤	3 号炉放水路	約 28.5 m
（5）	防潮壁（ 3 号炉放水立坑）	3 号炉放水路	約 17.9 m

下位クラス配管の損傷形態の検討について

1．概要

上位クラス施設と下位クラス施設の接続部における波及的影響の検討において は，下位クラス配管の損傷形態である破損と閉塞のらち，破損に対して検討するこ ととしている。

そこで，接続部の影響検討において，閉塞事象を検討対象外と判断するに至った検討内容について以下に示すものである。

2．閉塞事象に対する検討
2.1 閉塞事象の発生要因について

地震時の閉塞事象発生要因として以下の 2 ケースが考えられる。
①地震時慣性力によって，上位クラス施設と接続している下位クラス配管 （以下「対象下位クラス配管」という。）が軸直交方向に大きな荷重を受 けることによって大きく折れ曲がり流路を完全に遮断するケース
（2）地震時に対象下位クラス配管の周辺にある他の下位クラス施設が，損傷，転倒及び落下することによって，対象下位クラス配管に衝突し，対象下位クラス配管の流路を完全に遮断するケース
地震発生時に，これら 2 つの発生要因によって，閉塞が発生する可能性につい て検討した結果を 2.2 項に示す。
2.2 閉塞事象発生有無の検討について
2.1 項の発生要因 2 ケースに対して，地震時に実際に発生する可能性を以下の とおり検討した。
（1）地震時慣性力による閉塞
地震荷重は一定の方向に大きな荷重が負荷し続けるものではなく，荷重が負荷する方向を交互に変えながら発生する交番荷重であることから，弾性応答範囲を超えた場合，鋼製材料の履歴減衰による応答低減が期待できる。また，材料のシェイクダウン＊により地震時はおおむね弾性的な挙動となることを踏ま えると，配管が折れ曲がり完全閉塞するような状況は考え難い。

また，既往研究 ${ }^{11}$ において配管が有する安全余裕の検証として，配管の各種試験が実施されており，配管の損傷は応力が集中する箇所に発生する疲労き裂 が主たる損傷形態であり，閉塞による損傷は確認されていない。
＊：鋼製材料は降伏応力を超過する応力を受けた場合，塑性変形が発生するものの， その後は再び弾性的な挙動を繰り返す。この特性のことをシェイクダウンという。以下に設計建設規格に記載されているシェイクダウンの解説を引用する。

解説図 3112－1 降伏点を超える場合のひずみ履歴

（a）において，降伏点を超えるひずみ $\varepsilon_{1}\left(>\varepsilon_{y}\right)$ を生じる荷重をかけた後 $(0 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B})$ この荷重を減じていくと $\mathrm{B} \rightarrow \mathrm{C}$ に沿って変わる。このとき計算上の弾性応力は $S_{1}=E \varepsilon_{1}$ である。

ここでは二次応力について考えているので，荷重のかかり方としては，応力が 0 から S_{1} へ，そして S_{1} から 0 へと繰り返すのでなく，ひずみが 0 から ε_{1} ，そして ε_{1} から 0 へと繰返す。ひずみが ε_{1} から 0 へ戻った時，材料には $S_{1}-S_{y}$ の大きさの残留圧縮応力 が発生すことになる（C 点）。2回目以上の荷重に対しては，応力が引張りになる前に この残留圧縮応力を取り除くことになり，$S_{1}-S_{y}$ だけ弾性領域が増大したようになる。 もし，$S_{1}=2 S_{y}$ であるならば，弾性領域は $2 S_{y}$ となるが，それを超えると（b）における EF に示すように圧縮側に降伏してしまい，それ以降の全てのサイクルにおいては塑性 ひずみを生じる。従って， $2 S_{y}$ が弾性的挙動にシェイクダウンする二次応力の計算上の最大値となる。

この応力強さの限界を供用状態Aおよび供用状態Bについてのみに限定する理由は，疲労解析が必要であり，その前提条件として，一次応力と二次応力を加えて求めた応力強さの評価を行うためである。
供用状態Cおよび供用状態Dについては，発電設備の寿命中において，発生する回数 が非常に少なく，疲労破壊には顕著な影響を与えないため，あらかじめ疲労解析は不要 とされており，従って，一次応力と二次応力を加えて求めた応力強さの評価も必要なく なる。
（出典）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）
（2）周辺の下位クラス施設の影響による閉塞
机上検討で抽出した，上位クラス施設と隔離されずに接続されている下位ク ラス配管について，周辺の下位クラス施設の影響による閉塞事象の有無を確認 するため，現場調査を実施して影響を検討した。参考1－1表に対象となる配管 を示す。

参考1－1表 上位クラス施設と隔離されずに接続する下位クラス施設

対象設備	設置場所
非常用ディーゼル発電設備ディーゼル機関ミスト管＊	原子炉建屋
高圧炉心スプレイ系ディーゼル発電設備ディーゼル機 関ミスト管	原子炉建屋
燃料デイタンクミスト管	原子炉建屋
潤滑油サンプタンクミスト管＊	原子炉建屋

＊現地工事養生等があったことから，今後，詳細調査を追加実施する

現場調査の結果，調査対象の下位クラス配管に対して，周辺の下位クラス施設の損傷，転倒及び落下等によって波及的影響（閉塞）を及ぼすおそれがない ことを確認した。調査時の写真記録について参考 1－1 図に一例を示す。

3．まとめ
対象下位クラス配管について，地震時慣性力による閉塞と周辺の下位クラス施設 の影響による閉塞が発生する可能性を検討した結果，いずれの閉塞事象も発生しな いことが確認できた。したがって，上位クラス施設と接続する下位クラス配管の損傷形態としては破損に対して検討する。

4．参考文献
1）平成 15 年度 原子力発電施設耐震信頼性実証に関する報告書 配管終局強度 （平成 16 年 6 月（独）原子力安全基盤機構）

[^0]: ＊フロー中の（1）～（8）の数字は第5．1－1 図，第5．1－2図，第5．2－8図，第5．3－1 及び第5．4－1図中の（1）～（8）に対応する。

[^1]: ＊当該建屋は上位クラス施設であるが，2号炉原子炉建屋に近接していることを踏まえ相対変位の影響を確認する。

[^2]:

[^3]: 地震被害発生要因：I ：地震の不等沈下による損傷 II：建
 よる警報発生等，施設の損傷を伴わない I～V以隹の要）

[^4]:

[^5]:

