添付資料1

女川原子力発電所 2 号炉における

「重要度分類審査指針」に基づく放射性物質の貯蔵又は閉じ込め機能並びに系統の抽出について

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
PS－1	その損傷又は故障により発生する事象によって， （a）炉心の著しい損傷又は （b）燃料の大量の破損を引 き起こす恐れのある構築物，系統及び機器	1）原子炉冷却材圧力 バウンダリ機能	原子炬冷却材圧力バウ ンダリを構成する機器•配管系（計装等の小口径配管•機器は除く。）	原子炉圧力容器		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				配管，弁			
				原子炉圧力容器バウンダリ隔離弁			
				制御棒駆動機構ハウジング			
				中性子束モニタハウジング			
		2）過剰反応度の印加防止機能	制御棒カップリング	制御棒カップリング		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				制御棒駆動機構カップリング			
		3）炉心形状の維持機能	炉心支持構造物（炉心シ ユラウド，シュラウドサ ポート，上部格子板，炉心支持板，制御棒案内管）燃料集合体（但し，燃料を除く。）	炉心シュラウド		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				シュラウドサポート			
				上部格子板			
				炉心支持板			
				燃料支持金具			
				制御棒案内管			
				制御棒駆動機構ハウジング			
				燃料集合体（上部タイプレート）			
				燃料集合体（下部タイプレート）			
				燃料集合体（スペーサ）			
				直接関連系 （燃料集合体）	チャンネルボックス		

＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料 2 に示す。

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
MS－1	1）異常状態発生時に原子炉を緊急に停止し，残留熱 を除去し，原子炉泠却材圧 カバウンダリの過圧を防止し，敷地周辺公衆への過度の放射線の影響を防止 する構築物，系統及び機器	1）原子炉の緊急停止機能	原子炉停止系の制御棒 による系（制御棒及び制御棒駆動系（スクラム機能））	制御棒		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				制御棒案内管			
				制御棒駆動機構			
				制御棒駆動機構カップリング			
				直接関連系 （原子炉停止系の制御棒による系）	水圧制御ユニット（スクラムパイロッ ト弁，スクラム弁，アキュムレータ，窒素容器，配管，弁）		
		2）未臨界維持機能	原子炉停止系（制御棒 による系，ほう酸水注入系）	制御棒		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				制御棒カップリング			
				直接関連系 （制御棒駆動水圧系）	制御棒駆動機構		
					制御棒駆動機構ハウジング		
				ほう酸水注入系（ポンプ，注入弁，タンク出口弁，貯蔵タンク， ポンプ吸达配管及び弁，注入配管及び弁）			
		3）原子炉冷却材圧力 バウンダリの過圧防止機能	逃がし安全弁（安全弁と しての開機能）	主蒸気逃がし安全弁（安全弁開機能）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
		4）原子炉停止後の除熱機能	残留熱を除去する系統 （（残留熱除去系（原子炉停止時冷却モード），原子炬隔離時冷却系，高圧炉心スプレイ系，逃が し安全弁（手動逃がし機能），自動減圧系（手動逃がし機能））	残留熱除去系（ポンプ，熱交換器，原子灲停止時冷却モード のルートとなる配管及び弁）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				直接関連系 （残留熱除去系）	熱交換器バイパス配管及び弁		
				原子炉隔離時冷却系（ポンプ，サプレッションチェンバ，夕 ービン，サプレッションチェンバから注水先までの配管，弁）			

＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
MS－1	1）異常状態発生時に原子炉を緊急に停止し，残留熱 を除去し，原子炉泠却材圧 カバウンダリの過圧を防止し，敷地周辺公衆への過度の放射線の影響を防止 する構築物，系統及び機器	5）炉心冷却機能	非常用炉心泠却系（低圧注水系，低圧炉心スプレ イ系，高圧炉心スプレイ系，自動減圧系）	残留熱除去系（低圧注水モード）（ポンプ，サプレッション チェンバ，サプレッションチェンバから注水先までの配管，弁（熱交換器バイパスライン含む），注水ヘッダ）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				直接関連系 （残留熱除去系（低圧注水モード））	ポンプミニマムフローラインの配管，弁		
					$\begin{aligned} & \text { サプレッションチェンバ内のストレ } \\ & \text { ーナ } \end{aligned}$		
				低圧炬心スプレイ系（ポンプ，サプレッションチェンバ，サ プレッションチェンバから注水先までの配管，弁，スプレイ ヘッダ）			
				直接関連系 （低圧炉心スプレ イ系）	ポンプミニマムフローラインの配管，弁		
					$\begin{aligned} & \text { サプレッションチェンバ内のストレ } \\ & \text { ーナ } \end{aligned}$		
				高圧炉心スプレイ系（ポンプ，サプレッションチェンバ，サプレッションチェンバからスプレイ先までの配管，弁，スプレイスパージャ）			
				直接関連系 （高圧炉心スプレ イ系）	ポンプミニマムフローラインの配管，弁		
					$\begin{aligned} & \text { サプレッションチェンバ内のストレ } \\ & \text { ーナ } \end{aligned}$		
					復水貯蔵タンク		
					ポンプの復水貯蔵タンクからの吸込弁		
					ポンプの復水貯蔵タンクからの吸込配管，弁		
				自動減圧系（主蒸気逃がし安全弁）			
				直接関連系 （自動減圧系（主蒸気逃がし安全弁））	原子炉圧力容器から主蒸気逃がし安全弁までの主蒸気配管		
					駆動用窒素源（アキュムレータ，アキ ュムレータから主蒸気逃がし安全弁 までの配管，弁）		

[^0]
＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
MS－1	2）安全上必須なその他の構築物，系統及び機器	2）安全上特に重要な関連機能	非常用所内電源系，制御室及びその遮蔽，非常用換気空調系，非常用補機冷却水系，直流電源系 （いずれも，MS－1関連の もの）	直接関連系 （高圧炬心スプレ イ補機冷却水系）	サージタンク	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				原子炉補機冷却海水系（ポンプ，配管，弁，ストレーナ（MS－1関連））			
				直接関連系 （原子炉補機泠却海水系）	ストレーナ (異物除去機能をつかさど る部分)		
					取水路（屋外トレンチ含む）		
				高圧炉心スプレイ補機冷却海水系（ポンプ，配管，弁，スト レーナ）			
				直接関連系 （高圧炉心スプレ イ補機泠却海水系）	ストレーナ（異物除去機能をつかさど る部分）		
					取水路（屋外トレンチ含む）		
				直流電源設備（蓄電池，蓄電池から非常用負荷までの配電設備及び電路（MS－1関連））			
				計測制御用電源設備（蓄電池から非常用計測制御装置までの配電設備及び電路（MS－1関連））			
PS－2	1）その損傷又は故障によ り発生する事象によって，炬心の著しい損傷又は燃料の大量の破損を直ちに引き起こす恐れはないが，敷地外への過度の放射性物質の放出の恐れのある構築物，系統，及び機器	1）原子炉冷却材を内蔵する機能（但し，原子炉冷却材圧力バウ ンダリから除外され ている計装等の小口径のもの及びバウン ダリに直接接続され ていないものは除 く。）	主蒸気系，原子炉冷却材浄化系（いずれも，格納容器隔離弁の外側のみ）	原子炉冷却材浄化系（原子炉冷却材圧力バウンダリ以外の部分）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				主蒸気系（原子炉冷却材圧力バウンダリ以外の部分）			
				原子炉隔離時冷却系（原子炉冷却材圧力バウンダリ以外の部分でタービン止め弁まで）			

[^1]| 重要度分類指針 | | | | 女川原子力発電所2号炉 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 分類 | 定義 | 機能 | 構築物，系統又は機器 | | 放射性物質貯蔵又は閉じ込めに必要な機能 | 火災による機能影響＊ |
| PS－2 | 1）その損傷又は故障によ り発生する事象によって，炉心の著しい損傷又は燃料の大量の破損を直ちに引き起こす恐れはないが，敷地外への過度の放射性物質の放出の恐れのある構築物，系統，及び機器 | 2）原子炉冷却材圧力 バウンダリに直接接続されていないもの であって，放射性物質 を貯蔵する機能 | 放射性廃棄物処理施設
 （放射能インベントリ の大きいもの），使用済燃料プール（使用済燃料貯蔵ラックを含む） | 放射性気体廃棄物処理系（活性炭式希ガスホールドアップ装置） | \bigcirc | （気体廃棄物処理系のうち，配管，手動弁，排ガス予熱器，排ガス再結合器，排ガス予熱器，排ガス乾燥器，排ガス復水器，活性炭式希ガスホールドアップ塔，排 ガス粒子フィルタは金属等の不燃性材料で構成する機械品であるため，火災による機能喪失は考えにく く，火災によって放射性物質を貯蔵する機能に影響が及ぶおそれはない。また，排ガス真空ポンプ吸込側の空気作動弁はフェイル・クローズ設計であり，火災に よって当該弁の電磁弁のケーブルが機能喪失すると電磁弁が無励磁となり当該弁が自動的に閉止する。万一，当該弁が誤作動した場合であっても，上流側に設置された活性炭式ホールドアップ塔によって放射性物質が除去されることから，単一の火災によって放射性物質が放出されることはない。上記以外の空気作動弁，電動弁については，火災による弁駆動部の機能喪失によって当該弁が開閉動作をしても，弁本体は金属等の不燃性材料で構成されており，火災による機能喪失は考えにくく，火災によって放射性物質を貯蔵する機能に影響が及ぶおそれはない。ただし，更なる放射性物質放出リスクの低減の観点から気体廃棄物処理系設備を設置する建屋を火災区域として設定し，火災 の発生防止対策，火災の感知•消火対策及び火災の影響軽減対策を実施する。） |
| | | | | 使用済燃料プール（使用済燃料貯蔵ラックを含む） | | （使用済燃料プール（使用済燃料ラックを含む），新燃料貯蔵庫はコンクリート・金属等の不燃性材料で構成する構造物であるため，火災による機能喪失は考え にくく，火災によって放射性物質を貯蔵する機能に影響が及ぶおそれはない） |
| | | 3）燃料を安全に取り扱う機能 | 燃料取扱設備 | 燃料交換機 | － | （放射性物質の貯蔵又は閉じ込めに係わらない機能） |
| | | | | 原子炉建屋クレーン | | |
| | | | | 直接関連系
 （燃料取扱設備） 原子炉ウェル | | |
| | 2）通常運転時及び運転時 の異常な過渡変化時に作動を要求されるものであ って，その故障により炉心泠却が損なわれる可能性 の高い構築物，系統及び機器 | 1）安全弁及び逃がし弁の吹き止まり機能 | 逃がし安全弁（吹き止ま り機能に関連する部分） | 主蒸気逃がし安全弁（吹き止まり機能） | － | （放射性物質の貯蔵又は閉じ込めに係わらない機能） |

[^2]| 重要度分類指針 | | | | 女川原子力発電所2号炉 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 分類 | 定義 | 機能 | 構築物，系統又は機器 | | | 放射性物質貯蔵又は閉じ込めに必要な機能 | 火災による機能影響＊ |
| MS－2 | 1）PS－2の構築物，系統及び機器の損傷又は故障によ り敷地周辺公衆に与える放射線の影響を十分小さ くするようにする構築物，系統及び機器 | 1）燃料プール水の補給機能 | 非常用補給水系 | 残留熱除去系（ポンプ，サプレッションチェンバ，サプレッ ションチェンバから燃料プールまでの配管，弁） | | \bigcirc | （火災によって残留熱除去系が機能喪失しても，使用済燃料プールの水位が遮へい水位まで低下するまで に時間的余裕があり，その間に電動弁の手動操作等に より機能を復旧することができることから，火災によ つて燃料プール水の補給機能に影響が及ぶおそれは ない） |
| | | | | 直接関連系
 （残留熱除去系） | ポンプミニマムフローラインの配管，弁 | | |
| | | | | | $\begin{aligned} & \text { サプレッションチェンバ内のストレー } \\ & \text { ナ } \end{aligned}$ | | |
| | | 2）放射性物質放出の防止機能 | 放射性気体廃棄物処理系の隔離弁，排気筒
 （非常用ガス処理系排気管の支持機能以外） | 気体廃重物処理系の隔離弁 | | \bigcirc | （放射性気体廃棄物処理系の隔離弁はフェイル・クロ ーズ設計であり，火災によって当該弁の電磁弁のケー ブルが機能喪失すると電磁升が無励磁となり当該弁 が自動的に閉止する。万一，当該弁が誤作動した場合 であっても，上流側に設置された活性炭式ホールドア ップ塔によって放射性物質が除去されることから，単一の火災によって放射性物質が放出されることはな い。ただし，更なる放射性物質放出リスクの低減の観点から気体廃重物処理系設備を設置する建屋を火災区域として設定し，火災の発生防止対策，火災の感知•消火対策及び火㷋の影響軽減対策を実施する。） |
| | | | | 排気筒 | | | （排気筒及び燃料プール入口逆止弁は金属等の不燃性材料で構成する機械品であるため，火災による機能喪失は考えにくく，火災によって放射性物質放出の防止機能に影響が及ぶおそれはない） |
| | | | | 燃料プール泠却浄化系の燃料プール注入逆止弁 | | | |
| | | | 燃料集合体落下事故時放射能放出を低減する系 | 原子炉建屋（原子炉建屋原子炉棟（ブローアウトパネル付 き）） | | \bigcirc | （燃料集合体の落下事故は，燃料集合体移動時は燃料交換機に燃料集合体を機械的にラッチさせて吊り上 げること，ラッチ部は不燃性材料で構成され火災によ る影響は受けないことから，火災により燃料集合体の落下事故は発生しない。よって，使用済燃料の落下事故時に要求される機能については，火災によって放射性物質の閉じ込め機能，放射線の遮へい及び放出低減機能に影響が及ぶおそれはない） |
| | | | | 直接関連系
 （原子炬建屋原子
 炉棟） | 原子炉棟給排気隔離弁 | | |
| | | | | 非常用ガス処理系（乾燥装置，排風機，フィルタ装置，原子炉建屋原子炉棟吸込口から排気筒までの配管，弁） | | | |
| | | | | 直接関連系
 （非常用ガス処理系） | 乾燥装置（乾燥機能部分） | | |

＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ达めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

重要度分類指針				女川原子力発電所2号炉		
分類	定義	機能		構築物，系統又は機器	放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
MS－2	2）異常状態への対応上特 に重要な構築物，系統及 び機器	1）事故時のプラント状態の把握機能	事故時監視計器の一部	【原子炉の停止状態】 - 中性子束（起動領域モニタ） - 原子炉スクラム用電磁接触器の状態 - 制御棒位置	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				【炉心冷却の状態】 - 原子炉水位（広帯域，燃料域） - 原子炉圧力		
				【放射能閉じ込めの状態】 - 原子炉格納容器圧力 - サプレッションプール水温度 - 格納容器内雰囲気モニタ（放射線レベル）		
				【低温停止への移行】 - 原子炉圧力 - 原子炉水位（広帯域）		
				【ドライウェルスプレイ】 - 原子炉水位（広帯域，燃料域） - 原子炉格納容器圧力		
				【サプレッションプール泠却】 - 原子炉水位（広帯域，燃料域） - サプレッションプール水温度		
				【可燃性ガス濃度制御系起動】 －格納容器内雾囲気モニタ（水素•酸素濃度）		
		2）異常状態の緩和機能	BWRには対象機能なし。	－	－	－
		3）制御室外からの安全停止機能	制御室外原子炉停止装置（安全停止に関連する もの）	中央制御室外原子炉停止装置	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）

＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
PS－3	1）異常状態の起因事象と なるものであってPS－1及 びPS－2以外の構築物，系統及び機器	1）原子炉冷却材保持機能（PS－1，2以外のも の）	原子炉冷却材圧力バウ ンダリから除外される計装等の小口径配管，弁	計装配管，弁		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				試料採取系配管，			
				ドレン配管，弁			
				ベント配管，弁			
		2）原子炉冷却材の循環機能	原子炉再循環系	原子炉再循環ポン ットポンプ（炉內	，配管，弁，ライザー管（炬内），ジェ	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
		3）放射性物質の貯蔵機能	サプレッションク゚ール水排水系，復水貯蔵多ク，放射性廃葉物処理施設（放射能イ ンベントリの小さいも の）注） 注）現状では，液体及び固体の放射性廃蓑物処理系が考えられる。	$\begin{aligned} & \text { サプレッションフ } \\ & \text { 蔵タンク) } \end{aligned}$	ール水貯蔵系（サプレッションプール水貯	\bigcirc	（サプレッションプール水貯蔵系，液体廃棄物処理系 の各機器は，金属等の不燃性材料で構成する機械品で あるため，火災による機能喪失は考えにくく，火災に よって放射性物質の貯蔵機能に影響が及ぶおそれは ない。また，各空気作動并はフェイル・クローズ設計 であり，火災によって当該升の電磁升のケーブルが機能喪失すると電磁弁が無励磁となり当該弁が自動的 に閉止する。万一，空気作動弁が誤作動した場合であ っても，移送先が復水貯蔵多りグあることから放射性物質が放出されることはなく，放射性物質を貯蔵する機能に影響が及ぶおそれはない。 固定廃重物処理系，復水貯蔵タンク，新燃料貯蔵庫，焼却炉建屋については，コンクリート・金属等の不燃性材料で構成する構造物であるため，火災による機能霛失は考えにくく，火災によって放射性物質の貯蔵機能に影響が及ぶおそれはない）
				復水貯蔵タンク			
				液体廃棄物処理 ンプルタンク, L	（HCW収集タンク，HCW調整タンク，HCWサ又集槽，LCWサンプル槽）		
				固体廃棄物処理濃縮廃液貯蔵タン廃棄物焼却設備，	（浄化系沈降分離槽，使用済樹脂貯蔵槽，固体廃妻物貯蔵所（ドラム缶），固体 イトバンカ設備，雑固体廃重物保管室）		
				新燃料貯蔵庫			
				新燃料貯蔵ラック			
		4）電源供給機能（非常用を除く）	タービン，発電機及びそ の励磁装置，復水系（復水器を含む），給水系，循環水系，送電線，変圧器，開閉所	$\begin{aligned} & \text { 発電機及びその厉 } \\ & \text { 直接関連系 } \\ & \text { (発櫺及び励 } \\ & \text { 磁装置) } \end{aligned}$	装置（発電機，励磁機）	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
					タービン発電機固定子巻線冷却水系		
					タービン発電機ガス系		
					タービン発電機密封油系		
					励磁装置		
				蒸気タービン（主タービン，主要弁，配管）			
				直接関連系 （蒸気タービン）	主蒸気系（主蒸気／駆動源）		
					タービン制御系		
					タービン潤滑油系		
				復水系（復水器，復水ポンプ，配管／弁）			
				直接関連系 （復水系）	復水器空気抽出系（蒸気式空気抽出系，配管／弁）		
＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。							

重要度分類指針				女川原子力発電所2号炉		
分類	定義	機能	構築物，系統又は機器		放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
PS－3	1）異常状態の起因事象と なるものであってPS－1及 びPS－2以外の構築物，系統及び機器	4）電源供給機能（非常用を除く）	タービン，発電機及びそ の励磁装置，復水系（復水器を含む），給水系，循環水系，送電線，変圧器，開閉所	給水系（電動機駆動原子炬給水ポンプ，タービン駆動原子炉給水ポンプ，給水加熱器，配管／弁）	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				$\underset{\text { 直接関連系 }}{(\text { 給水系）}}$ 駆動用蒸気		
				循環水系（循環水ポンプ，配管／弁）		
				直接閉連系 循環水系）		
				常用所内電源系（発電機又は外部電源系から所内負荷までの配電設備及び電路（MS－1関連以外））		
				直流電源設備（蓄電池，蓄電池から常用負荷までの配電設備及び電路（MS－1関連以外））		
				計装制御用電源設備（電源装置から常用計測制御装置までの配電設備及び電路（MS－1関連以外））		
				送電線		
				変圧器（所内変圧器，起動変圧器，電路）		
				直接関連系 \quad 油劣化防止装置		
				（変圧器） 冷却装置		
				開閉所（母線，遮断器，断路器，電路）		
		5）プラント計測•制御機能（安全保護機能を除く）	原子炉制御系，運転監視補助装置（制御棒価値ミ ニマイザ），原子炉核計装の一部，原子炉プラン トプロセス計装の一部	- 原子炉再循環流量制御系（ポンプトリップ機能） - 制御棒引抜監視装置（制御棒引抜阻止インターロック） - 選択制御棒挿入機構	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
		6）プラント運転補助機能	補助ボイラ設備，計装用圧縮空気系	補助ボイラ設備（補助ボイラ，給水タンク，給水ポンプ，配管／弁）	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				直接関連系 （補助ボイラ設備） 電気設備（変圧器）		
				加熱蒸気系及び戻り系（ポンプ，配管／弁）		
				計装用圧縮空気系（空気圧縮機，中間冷却器，配管，弁）		

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
PS－3	1）異常状態の起因事象と なるものであってPS－1及 びPS－2以外の構築物，系統及び機器	6）プラント運転補助機能	補助ボイラ設備，計装用圧縮空気系	直接関連系 （計装用圧縮空気設備）	後部冷却器	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
					気水分離器		
					空気貯蔵		
				原子炉補機冷却水系（MS－1）関連以外（配管／弁）			
				タービン補機冷却水系（タービン補機冷却水ポンプ，熱交換器，配管／卉）			
				直接関連系 （タービン補機冷却水系）	サージタンク		
				タービン補機冷却海水系（タービン補機冷却海水ポンプ，配管／弁，ストレーナ）			
				復水補給水系（復水移送ポンプ，配管／弁）			
				直接関連系 （復水補給水系）	復水貯蔵タンク		
	2）原子炉冷却材中放射性物質濃度を通常運転に支障のない程度に低く抑え る構築物系統及び機器	1）核分裂生成物の原子炉冷却材中の放散防止機能	燃料被覆管	燃料被覆管		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				上／下部端栓			
				タイロッド			
		2）原子炉冷却材の浄化機能	原子炉冷却材浄化系，復水浄化系	原子炉冷却材浄化系（再生熱交換器，非再生熱交換器，ポン プ，ろ過脱塩装置，配管，弁）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				復水浄化系（復水万過装置，復水脱塩装置，配管，卉）			
MS－3	1）運転時の異常な過渡変化があっても，MS－1，2とあ いまって事象を緩和する構築物，系統及び機器	1）原子炉圧力上昇の緩和機能	逃がし安全弁（逃がし弁機能），タービンバイパ下弁	主蒸気逃がし安全弁（逃がし卉機能）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				直接関連系 （主蒸気逃がし安全弁（逃がし弁機能））	原子炉圧力容器から主蒸気逃がし安全弁までの主蒸気配管		
					駆動用窒素源（アキュムレータ，ア キュムレータから主蒸気逃がし安全弁までの配管，弁）		

重要度分類指針				女川原子力発電所2号炉			
分類	定義	機能	構築物，系統又は機器			放射性物質貯蔵又は閉じ込めに必要な機能	火災による機能影響＊
MS－3	1）運転時の異常な過渡変化があっても，MS－1，2とあ いまって事象を緩和する構築物，系統及び機器	1）原子炉圧力上昇の緩和機能	逃がし安全弁（逃がし弁機能），タービンバイパス弁	直接関連系 (タービンバイパス 弁）	原子炉圧力容器からタービンバイパ ス弁までの主蒸気配管 駆動用油圧源（アキュムレータ，ア キュムレータからタービンバイパス弁までの配管，弁）	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
		2）出力上昇の抑制機能	原子炉冷却材再循環系 （再循環ポンク゚トリップ機能），制御棒引抜監視装置		系（ポンプトリップ機能）	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
		3）原子炬冷却材の補給機能	制御棒駆動水圧系，原子炉隔離時冷却系	制御棒駆動水圧系（冷却材の補給）（ポンプ，復水貯蔵タン ク，復水貯蔵タンクから制御棒駆動機構までの配管及び弁）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				直接関連系 （制御棒駆動水圧系 （冷却材の補給））	ポンプサクションフィルタ	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
					ポンプミニマムフローラインの配管，弁		
				原子炬隔離時冷却系（冷却材の補給）（ポンプ，タービン，復水貯蔵タンク，復水貯蔵タンクから注入先までの配管，弁）		－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
				直接関連系 （原子炉隔離時冷却系（冷却材の補給））	タービンへの蒸気供給配管，弁	－	（放射性物質の貯蔵又は閉じ込めに係わらない機能）
					ポンプミニマムフローラインの配 管，弁		
					潤滑油冷却器及びその泠却器までの冷却水供給配管		
		4）原子炉冷却材の再循環流量低下の緩和機能	BWRには対象機能なし。	－		－	－
		5）タービントリップ	BWRには対象機能なし。	－		－	－

＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

添付資料 2

女川原子力発電所 2 号炉における
放射性物質の貯蔵又は閉じ込め機能を確保
するための機器リスト

女川原子力発電所 2 号灲における
放射性物質の貯蔵又は閉じ込め機能を確保するための機器リスト
※以下の対策を実施する設計とする。
（1）火炎防護に係る審査基準に基づく火炎防護対策
（2）消防法又は建築基準法に基づく火災防護対策

系統义は設備番号	系統义は設備名称	機種	機能	対策	備考
	気体廃貵物処理系	配管，排ガス予熱器，排ガス再結合器，排ガス復水器，排ガス予冷器，排ガス乾燥器，活性炭式希ガスホー ルドアップ塔，排ガスフィルタ	原子炉冷却材圧力 バウンダリに直接接続されていない ものであって，放射性物質を貯蔵す る機能	（1）	火災時における放射性物質の放出リスク低減の観点から，「火災防護に係る審査基準」 に基づく火災防護対策を実施する。
		空気作動弁			
		気体廃棄物処理系設備排気放射線 モニタ		（2）	設計基準事故時の異常状態監視に必要であ ることから，設備の重要度に応じた火災防護対策を行う。隣接した検出器を分離すること により，単一火災で同時に機能喪失しないよ う設計し，消防法等に準じて火災感知器及び消火器を設置する設計とする。
				（1）	火災発生時に放射線モニタ盤が機能喪失す ると気体廃棄物処理系の放射線監視機能が喪失する。このため，中央制御室の放射線モ ニタ盤については，火災の発生防止対策，火災の感知•消火対策及び火災の影響軽減対策 を実施する設計とする。
	使用済燃料プール	使用済燃料プール（使用済燃料貯蔵 ラックを含む。）		（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	サプレッションプ ール水貯蔵系	容器，配管	放射性物質の貯蔵機能	（2）	当該の系統の各機器は不燃材で構成されて おり，火災により放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	復水貯蔵タンク	容器		（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	液体廃棄物処理系 （LCW）	配管，収集槽，ろ過器，脱塩器，サ ンプル槽		（2）	当該の系統の各機器は不燃材で構成されて おり，火災により放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
		空気作動弁		（2）	当該弁はフェイル・クローズ設計であり，自動的に閉止する。また，万ーの誤作動を想定 した場合であっても，移送先が 1 号又は 2 号炉の復水貯蔵タンクであることから，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	液体廃棄物処理系 （HCW）	配管，タンク，濃縮装置，ろ過器，脱塩器		（2）	当該の系統の各機器は不燃材で構成されて おり，火災により放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
		空気作動弁		（2）	当該弁はフェイル・クローズ設計であり，自動的に閉止する。また，万ーの誤作動を想定 した場合であっても，放水路移送ラインに3個の空気作動弁を直列に設置しており，単一 の誤作動では放射性物質が放出されない設計としていることから，火災により放射性物質の貯蔵又は閉じ込め機能に影響を与える ものではない。
	固体廃棄物処理系	固体廃棄物貯蔵庫（ドラム缶）		（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	新燃料貯蔵庫	新燃料貯蔵庫		（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。

系統又は設備番号	系統又は設備名称	機種	機能	対策	備考
	原子炉格納容器	容器	放射性物質の閉じ込め機能，放射線 の遮へい及び放出低減機能	（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	原子炉格納容器隔離弁	空気作動弁，電動弁		（2）	原子炉の安全停止機能を有する機器等に火災防護対策を実施することにより，火災によ り想定される事象が発生しても原子炉の安全停止が可能であり，放射性物質が放出され るおそれはない。
	原子炉格納容器ス プレイ冷却系	配管，電動弁，ポンプ		（2）	原子炉の安全停止機能を有する機器等に火災防護対策を実施することにより，火災によ り想定される事象が発生しても原子炉の安全停止が可能であり，放射性物質が放出され るおそれはない。
	原子炉建屋	建屋	※原子炉建屋及び非常用ガス処理系 は，放射性物質放出防止機能も有す る	（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	原子炉棟給排気隔離弁	空気作動弁		（2）	当該弁は通常開，機能要求時閉である。火災影響を受け機能喪失した場合はフェイル・ク ローズ設計のため機能要求は満足する。ま た，万ーの不動作を想定しても二重化されて いることから，系統機能に影響を及ぼすもの ではない。
	非常用ガス処理系	空気作動弁，電動弁，空調機，乾燥装置	放射性物質の閉じ込め機能，放射線 の遮蔽及び放出低減機能	（1）	火災時における原子炉建屋の負圧維持の観点から，「火災防護に係る審査基準」に基 づく火災防護対策を実施する。
	可燃性ガス濃度制御系	ブロワ，加熱器，再結合器，冷却器，汽水分離器，電動弁		（2）	原子炉の安全停止機能を有する機器等に火災防護対策を実施することにより，火災によ り想定される事象が発生しても原子炉の安全停止が可能であり，放射性物質が放出され るおそれはない。
	非常用補給水系（残留熱除去系）	配管，ポンプ，熱交換器，空気作動弁，電動弁	使用済燃料プール の補給	（2）	当該系統の機能が喪失しても，使用済燃料プ ールの水位が遮蔽水位まで低下するまでに時間的余裕があり，その間に電動弁の手動操作等によって機能を復旧することができる ことから，火災により放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。
	放射性気体廃棄物処理系の隔離弁	空気作動弁	放射性物質の放出 の防止機能	（1）	火災時における放射性物質の放出リスク低減の観点から，「火災防護に係る審査基準」 に基づく火災防護対策を実施する。
	排気筒	排気筒		（2）	当該機器は不燃材で構成されており，火災に より放射性物質の貯蔵又は閉じ込め機能に影響を与えるものではない。

添付資料 3

「実用発電用原子炉及びその附属施設の火災防護に係る審査基準」
（抜粋）

「実用発電用原子炉及びその附属施設の火災防護に係る審査基準」（抜粋）
2.2 火災の感知，消火

2．2．1 火災感知設備及び消火設備は，以下の各号に掲げるように，安全機能を有する構築物，系統及び機器に対する火災の影響を限定し，早期の火災感知及び消火を行える設計であること。
（2）消火設備
（1）原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器が設置される火災区域または火災区画であって，火災時に煙の充満，放射線の影響等により消火活動が困難なところには，自動消火設備又は手動操作による固定式消火設備を設置すること。
（2）放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器が設置され る火災区域であって，火災時に煙の充満，放射線の影響等により消火活動が困難なところには，自動消火設備又は手動操作による固定式消火設備を設置する こと。
（3）消火用水供給系の水源及び消火ポンプ系は，多重性又は多様性を備えた設計で あること。
（4）原子炉の高温停止及び低温停止に係る安全機能を有する構築物，系統及び機器相互の系統分離を行うために設けられた火災区域又は火災区画に設置される消火設備は，系統分離に応じた独立性を備えた設計であること。
⑤消火設備は，火災の火炎，熱による直接的な影響のみならず，煙，流出流体，断線，爆発等による二次的影響が安全機能を有する構築物，系統及び機器に悪影響を及ぼさないように設置すること。
⑥可燃性物質の性状を踏まえ，想定される火災の性質に応じた十分な容量の消火剤を備えること。
（7）移動式消火設備を配備すること。
（8）消火剤に水を使用する消火設備は，2 時間の最大放水量を確保できる設計であ ること。
⑨ 消火用水供給系をサービス系または水道水系と共用する場合には，隔離弁等を設置して遮断する等の措置により，消火用水の供給を優先する設計であること。
（10）消火設備は，故障警報を中央制御室に吹鳴する設計であること。
（11）消火設備は，外部電源喪失時に機能を失わないように，電源を確保する設計で あること。
（12）消火栓は，全ての火災区域の消火活動に対処できるよう配置すること。
（13）固定式のガス系消火設備は，作動前に職員等の退出ができるように警報を吹鳴 させる設計であること。
（14）管理区域内で消火設備から消火剤が放出された場合に，放射性物質を含むおそ れのある排水が管理区域外へ流出することを防止する設計であること。
（15）電源を内蔵した消火設備の操作等に必要な照明器具を，必要な火災区域及びそ の出入通路に設置すること。
（参考）
（2）火災感知設備について
（1）－1 手動操作による固定式消火設備を設置する場合は，早期に消火設備の起動が可能となるよう中央制御室から消火設備を起動できるように設計されていること。上記の対策を講じた上で，中央制御室以外の火災区域又は火災区画に消火設備 の起動装置を設置することは差し支えない。
（1）－2 自動消火設備にはスプリンクラー設備，水噴霧消火設備及びガス系消火設備 （自動起動の場合に限る。）があり，手動操作による固定式消火設備には，ガ ス系消火設備等がある。中央制御室のように常時人がいる場所には，ハロン1301 を除きガス系消火設備が設けられていないことを確認すること。
（4）「系統分離に応じた独立性」とは，原子炉の高温停止及び低温停止に係る安全機能を有する構築物，系統及び機器が系統分離を行うため複数の火災区域又は火災区画に分離して設置されている場合に，それらの火災区域又は火災区画に設置された消火設備が，消火ポンプ系（その電源を含む。）等の動的機器の単一故障により，同時に機能を喪失することがないことをいう。
（7）移動式消火設備については，実用発電用原子炉の設置，運転等に関する規則（昭和 53 年通商産業省令第 77 号）第 85 条の 5 」を踏まえて設置されているこ と。
（8）消火設備のための必要水量は，要求される放水時間及び必要圧力での最大流量 を基に設計されていること。この最大流量は，要求される固定式消火設備及び手動消火設備の最大流量を合計したものであること。
なお，最大放水量の継続時間としての2時間は，米国原子力規制委員会（NRC）が定めるRegulatory Guide 1．189で規定されている値である。
上記の条件で設定された防火水槽の必要容量は，Regulatory Guide1． 18 では 1，136， 000 リットル（ $1,136 \mathrm{~m}^{3}$ ）以上としている。

女川原子力発電所 2 号炉における内部火災影響評価について
<目 次 >

1．概要

2．要求事項
3．内部火災影響評価手順の概要
4．火災区画特性表の作成（情報及びデータの収集•整理）
4．1．火淡区画の特定
4．2．火災区画の火災ハザードの特定
4．3．火災区画の防火設備
4．4．隣接火災区画への火災伝播経路
4．5．火災により影響を受ける火災防護対象機器の特定
4．6．火災により影響を受ける火災防護対象ケーブルの特定
4．7．火災シナリオの設定
5．一次スクリーニング
5．1．隣接火災区画との境界の開口の確認
5．2．等価時間と耐火時間の比較
6．二次スクリーニング
6．1．隣接火災区画に影響を与えない火災区画の火災影響評価
6．1．1．安全停止パスの確認
6．1．2．スクリーンアウトされる火災区画
6．1．3．スクリーンアウトされない火災区画
6．2．隣接火災区画に影響を与える火災区画に対する火災影響評価
6．2．1．当該火災区画のターゲットの確認
6．2．2．隣接火災区画のターゲットの確認
6．2．3．安全停止パスの確認
6．2．4．スクリーンアウトされる火災区画
6．2．5．スクリーンアウトされない火災区画

7．内部火災影響評価結果
7．1．一次スクリーニング（隣接火災区画への火災伝播評価）
7．2．二次スクリーニング
7．2．1．隣接火災区画に影響を与える火災区画に対する火災影響評価
7．2．2．隣接火災区画に影響を与えない火災区画に対する火災影響評価 8．火災により想定される事象の確認結果

添付資料1 女川原子力発電所
添付資料2 女川原子力発電所
2 号炉における火災区画番号について停止パスに必要な系統について
添付資料3 女川原子力発電所
2 号炉の火災区画特性表の例
添付資料 4 女川原子力発電所
2 号炉隣接火災区画への火災伝播評価結果
添付資料5 女川原子力発電所 の火災影響評価
添付資料 6 女川原子力発電所 2 号炉火災区画内の火災影響評価結果

参考資料1 女川原子力発電所 2号炉における内部火災により想定される事象の確認結果

女川原子力発電所 2 号炉における
 内部火災影響評価について

1．概要

「実用発電用原子炉及びその附属施設の火災防護に係る審査基準」（以下「火災防護に係る審査基準」という。）は，発電用原子炉施設が火災により その安全性が損なわれないよう，必要な火災防護対策を要求しており，「原子力発電所の内部火災影響評価ガイド」（以下「内部火災影響評価ガイド」 という。）では，これらの要求に基づく火災防護対策により，発電用原子炉施設内で火災が発生しても，原子炉の高温停止及び低温停止に係る安全機能 が確保されることを確認するために実施する内部火災影響評価の手順の一例が示されている。

本資料では，女川原子力発電所 2 号炉に対して「内部火災影響評価ガイド」 を参照して内部火災影響評価を行い，原子炉の高温停止及び低温停止を達成 し，維持することが可能であることを確認する。

2．要求事項

内部火災影響評価は，「火災防護審査基準」の「2．3 火災の影響軽減」の 2．3．2に基づき実施することが要求されている。

2．3．2 原子炉施設内のいかなる火災によっても，安全保護系及び原子炬停止系の作動が要求される場合には，火災による影響を考慮しても，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉を高温停止及び低温停止できる設計であ ること。
また，原子炉の高温停止および低温停止が達成できることを，火災影響評価によ り確認すること。
（火災影響評価の具体的手法は「原子力発電所の内部火災影響評価ガイド」による。）
（参考）
「高温停止及び低温停止できる」とは，想定される火災の原子灲への影響を考慮して，高温停止状態及び低温停止状態の達成，維持に必要な系統及び機器がその機能を果た すことができることをいう。

また，いかなる火災によっても原子炉を高温停止及び低温停止できる設計 であることを確認する際，原子炉の安全確保の観点により，内部火災影響評価ガイドにおいて要求される以下の事項を考慮する。

4．火災時の原子炉の安全確保
3．に想定する火災に対して，
－原子炉の安全停止に必要な機能を有する系統が，その安全機能を失わないこと （信頼性要求に基づき独立性が確保され，多重性又は多様性を有する系統が同時にそ の機能を失わないこと）。

内部火災により原子炉に外乱が及び，かつ，安全保護系，原子炉停止系の作動を要求される場合には，その影響（火災）を考慮し，安全評価指針に基づき安全解析 を行う必要がある。

なお，「発電用軽水型原子炬施設の火災防護に関する審査指針」（以下「火災防護審查指針」）では下記のとおり要求されている。

3－2 原子炉施設内のいかなる場所の想定される火災に対しても，この火災により原子炉 に外乱が及び，かつ，安全保護系，原子炉停止系の作動を要求される場合には，単一故障を仮定しても，原子炉を高温停止できる設計であること。
低温停止に必要な系統は，原子炉施設内のいかなる場所の想定される火災によって も，その機能を失わない設計であること。
（解説）
（1）3－2の要求事項は，安全設計審査指針の指針 9．に定める原子炉施設一般の要求事項である信頼性に関する設計上の考慮における考え方を，火災による外乱発生時にも適用したものである。「単一故障を仮定」とは，想定される火災により出力運転中の原子炉に外乱が及び，原子炉を速やかに停止し，かつ，停止状態を維持する必要が生 じた場合，高温停止のため新たに作動が要求される安全保護系，原子炉停止系の機器 に単一故障（原子炉又は蒸気発生器に給水する系統の機器の新たな作動が要求される場合には，その系統の機器に単一故障）を仮定することを要求するものである。大規模な地震等の苛酷な自然現象の発生により火災が発生する可能性が $1-3$ の措置を講 じることにより十分低減されている構築物，系統及び機器で火災が発生し，又は当該自然現象と無関係に火災が発生する場合については，当該火災と無関係な故障まで考慮する必要はない。
（2）「高温停止できる」とは，想定される火災の原子炉への影響を考慮して，高温停止状態 の達成に必要な系統及び機器がその機能を果たすことができることをいう。
（3）「その機能を失わない設計であること」とは，低温状態に移行する場合にあつては低温停止に必要な系統のうち少なくとも一つは機能すること，低温状態を維持する場合に あっては低温停止状態が維持されることをいう。

3．内部火災影響評価手順の概要

「内部火災影響評価ガイド」を参照して実施した女川原子力発電所 2 号炉の内部火災影響評価の手順の概要を示す（第 10－1 図参照）。

火災区画は，火災防護対象機器及び火災防護対象ケーブル（以下，「ターゲ ット」という）の設置状況を考慮し各建屋に設定する。（資料 3）
設定した各火災区画について，「情報及びデータ収集•整理」として，可燃性物質，機器，ケーブル，隣接区画との関係等を調査し，各火災区画の特徴を示す「火災区画特性表」を作成する。

一次スクリーニングとして，当該火災区画の火災影響評価を実施する前に隣接火災区画への火災伝播評価を実施し，隣接火災区画への影響の有無を確認す る。

一次スクリーニングの結果，「隣接火災区画に影響を与えない火災区画」に ついては，二次スクリーニングとして，当該火災区画内の全可燃性物質の燃焼，全機器の機能喪失を想定し，原子炉の安全停止に必要な成功パス（以下「安全停止パス」という。）の有無を確認する。安全停止パスが少なくとも一つ確保 され，原子炉の安全停止が可能であれば当該火災区画をスクリーンアウトする。

スクリーンアウトされない火災区画については，当該火災区画に設置された ターゲットが「火災防護に係る審査基準」の「2．3 火災の影響軽減」に基づく火災防護対策の対象か否かを確認する。

一方，一次スクリーニングの結果，「隣接火災区画に影響を与える火災区画」 については，二次スクリーニングとして，当該火災区画及び隣接火災区画のタ ーゲット有無を確認する。当該火災区画内及び隣接火災区画内の全可燃物の燃焼，全機器の機能喪失を想定しても，安全停止パスが少なくとも一つ確保され，原子炉の安全停止が可能であれば，当該火災区画をスクリーンアウトする。

スクリーンアウトされない火災区画については，「隣接火災区画に影響を与 えない火災区画」と同様に，当該火災区画のターゲットが「火災防護に係る審査基準」の「2．3 火災の影響軽減」に基づく火災防護対策の対象か否かを確認 する。

火災区画特性表の作成，一次スクリーニング，二次スクリーニングについて，次項以降に示す。

第10－1図：内部火災影響評価の手順の概要フロー

4．火災区画特性表の作成（情報及びデータの収集•整理）

火災影響評価では，各火災区画に設置される機器等の情報を使用して評価 を実施することから，これらの評価に先立ち，以下の手順に従って火災区画特性表を作成する。なお，火災区画特性表の代表例を添付資料 3 に示す。

4．1．火災区画の特定

資料3「女川原子力発電所 2号炉における火災区域，区画の設定につい て」にて設定した火災区画に対して，以下の情報を調査し，火災区画特性表 に記載する。
（1）プラント名
（2）建屋名
（3）火災区画番号（添付資料 1）

4．2．火災区画の火災ハザードの特定

各火災区画内に存在する火災ハザード調査として，以下の情報を整理し，火災区画特性表に記載する。
（1）火災区画内の部屋番号，名称
（2）床面積
（3）発熱量
（4）火災荷重
（5）等価時間（注）
注：等価時間＝火災荷重（単位面積当りの発熱量）／燃焼率（単位時間単位面積当たりの発熱量）

4．3．火災区画の防火設備

各火災区画内の防火設備について，以下の情報を調査し，火災区画特性表 に記載する。
（1）火災感知器
（2）主要消火設備
（3）消火方法
（4）消火設備のバックアップ
（5）障壁耐火時間（他の火災区画との境界の耐火時間）

4．4．隣接火災区画への火災伝播経路

各火災区画から隣接する火災区画（火災区画を構成する各部屋）との火災伝播経路を調査し，火災区画特性表に記載する。

なお，隣接する火災区画は，火災を想定する当該火災区画の上下，左右，前後6面のうち，一部でも壁が接している火災区画（火災区画を構成する各部屋）を選定する。
（1）隣接火災区画番号
（2）隣接火災区画内の部屋番号，名称
（3）火災伝播経路
（4）障壁の耐火能力
（5）隣接部屋の消火形式
（6）伝播の可能性

4．5．火災により影響を受ける火災防護対象機器の特定

資料7「女川原子力発電所 2 号炉における火災防護対象機器等の系統分離について」により選定したターゲットが，当該火災区画の火災により影響 を受けるものとして，火災区画特性表に記載する。

4．6．火災により影響を受ける火災防護対象ケーブルの特定

4．5．項で特定した「火災防護対象機器」の電源，制御，計装ケーブルで ある「火災防護対象ケーブル」を，火災区画特性表に記載する。

火災影響評価では，安全停止パスが少なくとも一つ確保されるか否かを確認するが，その際には，ポンプや弁等の火災防護対象機器の機能喪失に加え，火災防護対象ケーブルの断線等も想定して，火災影響評価を行らことから，火災防護対象ケーブルが敷設されている火災区画を調査し，火災区画特性表 に記載する。

4．7．火災シナリオの設定

火災区画内の火災源及び火災防護対象機器の設置状況を踏まえ，火災影響評価及び火災伝播評価における火災シナリオを設定し，火災区画特性表に記載する。

5．一次スクリーニング

当該火災区画の火災発生時に，隣接火災区画に影響を与える場合は，隣接火災区画も含んだ火災影響評価を行う必要があることから，当該火災区画の火災影響評価を実施する前に，隣接火災区画への火災伝播評価を実施する。
（第10－2図参照）

5．1．隣接火災区画との境界の開口の確認

隣接火災区画との境界の障壁に開口がない場合は，火災が直接，隣接火災区画に影響を与える可能性はないことから，火災区画特性表により，隣接火災区画との境界の開口の有無を確認し，隣接火災区画への火災伝播の可能性 を確認する。

5．2．等価時間と耐火時間の比較

当該火災区画の等価時間が，火災区画を構成する障壁の耐火能力より小さ ければ，隣接火災区画への影響はないことから，火災区画特性表により，火災区画の等価時間と火災区画を構成する障壁の耐火能力を比較し，隣接火災区画への火災伝播の可能性を確認する。

第 10－2 図：一次スクリーニングの概要フロー

6．二次スクリーニング

6．1．隣接火災区画に影響を与えない火災区画の火災影響評価

隣接火災区画に影響を与えない火災区画について，当該火災区画内に設置 される全機器の機能喪失を想定しても，安全停止パスが少なくとも一つ確保 される場合には，当該火災区画の火災発生を想定しても，原子炉の安全停止 に影響を与えない。
一方，安全停止パスを一つも確保できない場合は，火災防護審査基準の
「2．3 火災の影響軽減」に基づく火災防護対策の実施状況を確認する。次に，詳細な火災影響評価を行い原子炉の安全停止への影響の有無を確認する。火災により原子炉の安全停止に影響を与える評価結果となった場合には，火災防護対策を実施する。
原子炉の安全停止への影響については，以下の手順に従って評価する。 （第 10－3 図参照）

6．1．1．安全停止パスの確認

当該火災区画内に設置される全機器の機能喪失を考慮しても，原子炉の安全停止パスが少なくとも一つ確保されるか否かを，以下のとおり確認す る。
（1）安全停止パスの確保に必要な系統，機器の組合せ
安全停止パスの有無の確認に当たつて，系統の多重性及び多様性を踏 まえて安全停止パスの確保に必要な系統，機器の組合せを整理した。（添付資料2参照）
（2）安全停止パスの確認
4．5．項で選定した火災防護対象機器について，当該火災区画の火災 による影響の可否を基に，添付資料2により火災の影響を直接受ける緩和系を確認し，その結果を火災区画特性表に記載する。（添付資料 3 参照）火災の直接影響あるいは間接影響によっても各々の緩和系のいずれ かが確保される場合，安全停止パスが確保されることになる。

なお，火災により原子炉に外乱が及び，かつ，安全保護系，原子炉停止系の作動を要求されることが否定できない場合には，内部火災影響評価ガイドに基づき，高温停止の成功パスの確認において単一故障を考慮 する。

6．1．2．スクリーンアウトされる火災区画

安全停止パスが少なくとも一つ確保される火災区画は，当該火災区画に火災を想定しても，原子炉の安全停止に影響を与えないことから，スクリ ーンアウトする。

6．1．3．スクリーンアウトされない火災区画

安全停止パスが一つも確保できない火災区画は，当該火災区画に火災を想定した場合，原子炉の安全停止に影響を与える可能性がある。

この場合，当該火災区画で火災の影響により安全停止パスが確保できな い主原因となった部屋に対して，「火災防護に係る審査基準」の「2．3 火災の影響軽減」に基づく火災防護対策の実施状況を確認する。次に詳細な火災影響評価を行い，安全停止パスが確保可能か否か確認する。詳細な火災影響評価の結果，火災の影響を受けて安全停止パスが確保できないと評価された場合は火災防護対策を行い，原子炉の安全停止パスを少なくとも一つ確保する。

※火災源：油内包機器，電源盤，ケーブルトレイ
第10－3図：隣接火災区画に影響を与えない火災区画の
火災影響評価手順の概要フロー

6．2．隣接火災区画に影響を与える火災区画に対する火災影響評価

隣接火災区画に影響を与える火災区画については，当該火災区画と隣接火災区画それぞれにおいてターゲットの有無を確認する。当該火災区画内及び隣接火㷋区画内に設置される全機器の機能喪失を想定しても，安全停止パス が少なくとも一つ確保される場合には，当該火災区画の火災発生により隣接火災区画に影響を与えることを想定しても，原子炉の安全停止に影響はない。一方，安全停止パスを一つも確保できない場合は，火災防護審査基準の
「2．3 火災の影響軽減」に基づく火災防護対策の実施状況を確認する。次に詳細な火災影響評価を行い原子炉の安全停止への影響の有無を確認する。火災により原子炉の安全停止に影響を与える評価結果となった場合には，火災防護対策を実施する。

原子炉の安全停止への影響については，以下の手順に従って評価する。（第 10－4 図参照）

6．2．1．当該火災区画のターゲットの確認

当該火災区画のターゲットの有無を確認する。当該火災区画にターゲッ トが存在しない場合，隣接火災区画の火災による安全停止パスの確保の可否を確認する。

6．2．2．隣接火災区画のターゲットの確認

隣接火災区画にターゲットが存在する場合においては，改めて隣接火災区画のターゲットの有無を確認する。隣接火災区画にターゲットが存在し ない場合，当該火災区画から隣接火災区画への延焼を想定しても，原子炉 の安全停止に影響を与えないことから，当該火災区画の火災による安全停止パスの確保の可否を確認する。

6．2．3．安全停止パスの確認

当該火災区画及び隣接火災区画のターゲットの有無の組合せに応じて，安全停止パスが少なくとも一つ確保されるか否かを確認する。確認は， 6．1．1．項と同様に行う。

6．2．4．スクリーンアウトされる火災区画

当該火災区画及び隣接火災区画のターゲットの有無の組合せに応じて，安全停止パスが少なくとも一つ確保される火災区画は，当該及び隣接火災区画に火災を想定しても原子炉の安全停止に影響を与えない。

6．2．5．スクリーンアウトされない火災区画

安全停止パスが一つも確保されない火災区画は，その火災区画に火災を

想定した場合，原子炉の安全停止に影響を与える可能性がある。
この場合，当該火災区画及び隣接火災区画のターゲットの有無の組合せ に応じて，火災の影響により安全停止パスが確保できない主原因となった部屋に対して，「火災防護に係る審査基準」の「2．3 火災の影響軽減」に基づく火災防護対策の実施状況を確認する。次に詳細な火災影響評価を行 い，安全停止パスが確保可能か否か確認する。詳細な火災影響評価の結果，火災の影響を受けて安全停止パスが確保できないと評価された場合は火災防護対策を行い，原子炉の安全停止パスを少なくとも一つ確保する。

第 10－4 図：隣接火災区画に影響を与える火災区画に対する火災影響評価

7．内部火災影響評価結果

7．1．一次スクリーニング（隣接火災区画への火災伝播評価）

5 項に基づき，当該火災区画に火災を想定した場合の隣接火災区画への影響の有無を評価した。その結果，火災防護対象設備が設置された隣接火災区画に影響を与える火災区画が存在することを確認した。（添付資料4）

7．2．二次スクリーニング
一次スクリーニングの結果をもとに，二次スクリーニングとして，
（1）隣接火災区画に影響を与える火災区画に対する火災影響評価
（2）隣接火災区画に影響を与えない火災区画に対する火災影響評価 を行った。

7．2．1．隣接火災区画に影響を与える火災区画に対する火災影響評価

隣接火災区画に影響を与える火災区画について，第 10－4 図に示すフロ ーに基づき評価を行った結果，火災防護対策により安全停止パスを少なく とも一つ確保可能であることを確認したことから，原子炉の安全停止に影響はない。（添付資料 5）

7．2．2．隣接火災区画に影響を与えない火災区画に対する火災影響評価

隣接火災区画に影響を与える火災区画について，第 10－4 図に示すフロ ーに基づき評価を行った結果，火災防護対策により安全停止パスを少なく とも一つ確保可能であることを確認したことから，原子炉の安全停止に影響はない。（添付資料 6）

8．火災により想定される事象の確認結果

7 項に示したとおり，各火災区画で火災発生を想定した場合において，安全停止が可能であることを確認した。

あわせて，火災により原子炉に外乱が及ぶ場合について重畳事象も含め，ど のような事象が起こる可能性があるかを分析し，火災を起因として発生する事象に対して，単一故障を想定した場合においても，影響緩和系により事象が収束可能であることを確認した。（参考資料1）

添付資料1

女川原子力発電所 2 号炉における火災区画番号について

\square
\square
\square
\square
\square
\square

添付資料2

女川原子力発電所 2 号炉における

内部火災影響評価に係る安全停止パスに必要な系統について

女川原子力発電所 2 号炬における

1．概要

火災防護対象機器には，多重性を有する安全上重要な以下の設備等がある。
a．安全保護系
b．原子炉停止系
c．工学的安全施設（原子炉補給水機能をもつ系統）
d．非常用所内電源系
e．直流電源系
f．事故時監視計器
g．残留熱除去系
h．最終ヒートシンクへ熱を輸送する系統
g．補助設備

これら設備等について，女川原子力発電所2号炉において原子炉の安全停止 パスを確保するために必要な系統を整理した。

火災影響評価において，当該火災区画内に設置される全機器の機能喪失を想定しても，安全停止パスが少なくとも一つ確保される場合には，当該火災区画 の火災発生を想定しても，原子炉の安全停止に影響はない。

一方，安全停止パスを一つも確保できない場合は，火災防護審査基準の「2．3火災の影響軽減」に基づく火災防護対策の実施状況確認や詳細な火災影響評価 を行い，原子炉の安全停止パスが少なくとも一つ確保されるか否かを確認する。
2．安定停止パスを確保するために必要な系統一覧

緩和系	安全停止パス①	安全停止パス（1）	安全停止パス（2）	安全停止パス（2）
a．安全保護系	原子炉保護系の安全保護回路			
	工学的安全施設の作動回路			
b．原子炉停止系	スクラム機能			
	SLC			
c．工学的安全施設 （原子炉補給水機能を もつ系統）	ADS弁（A系）	ADS弁（A系）	ADS弁（B）	ADS弁（B系）
	RCIC	HPCS	HPCS	RCIC
	LPCS or LPCI（A）	LPCS or LPCI（A）	LPCI（B）or LPCI（C）	LPCI（B）or LPCI（C）
d．非常用所内電源系	非常用交流電源（区分 I ）	非常用交流電源（区分 I）	非常用交流電源（区分 II）	非常用交流電源（区分 II）
	－	非常用交流電源（区分III）	非常用交流電源（区分III）	－
e．直流電源系	直流電源（区分 I）	直流電源（区分 I）	直流電源（区分 II）	直流電源（区分 II）
	－	直流電源（区分III）	直流電源（区分III）	－
f．事故時監視計器	中性子束	中性子束	中性子束	中性子束
	原子炉圧力	原子炉圧力	原子炉圧力	原子炉圧力
	原子炉水位	原子炉水位	原子炉水位	原子炉水位
	S／C水温	S／C水温	S／C水温	S／C水温
g．残留熱除去系	RHR（A）	RHR（A）	RHR（B）	RHR（B）
h．最終ヒートシンク へ熱を輸送する系統	RCW（A）／RSW（A）	RCW（A）／RSW（A）	RCW（B）／RSW（B）	RCW（B）／RSW（B）
	－	HPCW／HPSW	HPCW／HPSW	－
g．補助設備	中央制御室空調（区分 I）	中央制御室空調（区分 I）	中央制御室空調（区分 II）	中央制御室空調（区分 II）
	非常用D／G－A室空調	非常用D／G－A室空調	非常用D／G－B室空調	非常用D／G－B室空調
	－	HPCS－D／G室空調	HPCS－D／G室空調	－
	非常用電気品室空調（区分I）	非常用電気品室空調（区分I）	非常用電気品室空調（区分II）	非常用電気品室空調（区分 II）
	－	HPCS電気品室空調	HPCS電気品室空調	－
	HECW（区分 I ）	HECW（区分 I ）	HECW（区分 II ）	HECW（区分 II ）

添付資料 3

女川原子力発電所 2 号炉の
火災区画特性表の例

女川原子力発電所 2 号炉の

火災区画特性表の例
1．概要

女川原子力発電所 2 号炉の内部火災影響評価では，8条－別添1－資料3におい て設定した火災区域（区画）毎の情報（部屋番号，床面積，等価時間，隣接の火災区域 等）を火災区画特性表へ記載し整理する。
また，火災区画特性表には当該火災区画内に設置される原子炉の安全停止に係 る機器等（ケーブルを含む）を明確にする。その上で，当該火災区画にて最も厳しい単一火災を想定し，火災区画内の安全停止に係る機器等全てを機能喪失 したと仮定した場合に影響を受ける緩和系を明確にし，残された緩和系におい て安全停止パスが少なくとも一つ確保されるか否かについて評価を行い，火災区画特性表のまとめ表として整理する。

ここで，女川原子力発電所 2 号炉における火災区画の代表例として，火災区画番号「R1－A（RHR ポンプ室，RCIC ポンプ室 等）」の火災区画特性表を下記 のとおり示す。（ただし，火災区画特性表添付のケーブルリストや可燃物リス ト（データシート）については省略する。）
なお，その他火災区画も含めた火災区画特性表における評価結果の要約につ いては添付資料 6 にて示す。

火災区画特性表のまとめ						1／1
プラント	O－2	建屋	原子炉建屋	火災区画番号	R1－A	

火災区画特性表 II

火災区画内の火災源及び防火設備										1／1
	プラント	O－2				火災区画番号		R1－A		
No．	火災区画内の部屋番号	火災源				防火設備				
	火災区画内の部屋名称	$\begin{gathered} \text { 床面積 } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	$\begin{array}{\|l} \hline \text { 発熱量 } \\ \text { (MJ) } \end{array}$	火災荷重 （MJ／m²）	等価時間 （h）	火災検知器	主要消火設備	消火方法	消火設備の バックアップ	障壁耐火時間 $(h)(* 1)$

火災区画特性表III

火災区画に隣接する火災区画（部屋）と伝播経路							1／2
プラント			0－2	火災区画番号		R1－A	
No．	対象区画内 の部屋番号	隣接火災区画番号	隣接火災区画内の部屋番号	火災伝播経路	障壁の耐火能力$(h)(* 1)$	隣接部屋の消火形式	伝播の可能性
			隣接火災区画内の部屋名称				

火災区画特性表V

火災により影響を受ける設備						1／2
	プラント	0－2		火災区画番号	R1－A	
No	火災区画内の	系統名	機器番号	機器名称	安全区分	影響を受ける緩和系

火災区画特性表 V

火災により影響を受けるヶーブル					1／1
	プラント	0－2	火災区画番号	R1－A	
No	火災区画内の部屋番号	火災区画内の部屋名称	O：添付有 x ：添付無	備考	

添付資料－1

火災影響評価のデーダート 目次					1／1
	プラント	0－2	火災区画番号	R1－A	
No	火災区画内の部屋番号	火災区画内の部屋名称	O：添付有 \times ： F 付無 x ：添付無	備考	

添付資料 4

女川原子力発電所 2 号炉における
隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉における隣接火災区画への火災伝播評価結果

1．概要

全ての火災区画について，隣接火災区画への火災影響の有無を確認するため火災伝播評価を実施した。

2．前提条件

火災伝播評価においては，火災の影響軽減対策の実施を前提として，火災の伝播の有無を評価する。
（8条－別添1－資料7参照）

3．評価

全ての火災区画について，隣接する火災区画を抽出し，火災伝播評価手順の概要フローに従い，火災伝播評価を実施した。

火災伝播＂無＂となった火災区域については，火災影響評価で「隣接火災区画に影響を与えない火災区画の火災影響評価」を実施し，火災伝播＂有＂とな った隣接火災区画については，火災影響評価で「隣接火災区画に影響を与える火災区画の火災影響評価」を実施する。
女川原子力発電所2号炉 隣接火災区画への火災伝播評価結果

| |
| :--- | :--- |

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果 \square
女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果 \square

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

火災区画	火災区画内の主な部屋名称	等価火災 時間	隣接火災区画	耐火時間	火災伝播 の可能性	備考

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果 \square
女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果 \square
女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果 \square
女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

女川原子力発電所 2 号炉 隣接火災区画への火災伝播評価結果

添付資料 5

女川原子力発電所 2 号炉における
隣接火災区画に影響を与える火災区画の火災影響評価結果
女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

火災を想定する当該火災区画			隣接火災区画			安全停止パス		評価
$\begin{aligned} & \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \text { ターゲ } \\ \text { ット } \end{gathered}$	$\begin{aligned} & \text { 火災自 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \text { ターゲ } \\ \text { ット } \end{gathered}$	2 火災区画機能喪失想定	$\begin{aligned} & \text { 成功 } \\ & \text { 俍 } \end{aligned}$	

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

						安全停止パス		評価	

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

火災を想定する当該火災区画			隣接火災区画			安全停止パス		評価
$\begin{aligned} & \hline \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \begin{array}{c} \text { ターゲ } \\ ッ ト \end{array} \end{gathered}$	$\begin{aligned} & \hline \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \begin{array}{l} \text { ターゲ } \\ ッ ト \end{array} \end{gathered}$	2 火災区画機能喪失想定	$\begin{aligned} & \text { 成功 } \\ & \text { パス } \end{aligned}$	

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

火災を想定する当該火災区画			隣接火災区画			安全停止パス		評価
$\begin{aligned} & \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \text { ターゲ } \\ ッ ト \end{gathered}$	$\begin{aligned} & \hline \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \begin{array}{c} \text { ターゲ } \\ ッ ト \end{array} \end{gathered}$	2 火災区画機能喪失想定	$\begin{aligned} & \text { 成功 } \\ & \text { パス } \end{aligned}$	

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

火災を想定する当該火災区画			隣接火災区画			安全停止パス		評価
$\begin{aligned} & \hline \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \text { ターゲ } \\ \text { ット } \end{gathered}$	$\begin{aligned} & \hline \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \begin{array}{c} \text { ターゲ } \\ ッ ト \end{array} \end{gathered}$	2 火災区画機能喪失想定	$\begin{aligned} & \hline \text { 成功 } \\ & \text { パス } \end{aligned}$	

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

火災を想定する当該火災区画			隣接火災区画			安全停止パス		評価
$\begin{aligned} & \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \begin{array}{c} \text { ターゲ } \\ ッ ト \end{array} \end{gathered}$	$\begin{aligned} & \text { 火災 } \\ & \text { 区画 } \end{aligned}$	火災区画内の主な部屋名称	$\begin{gathered} \begin{array}{l} \text { ターゲ } \\ ッ ト \end{array} \end{gathered}$	2 火災区画機能喪失想定	$\begin{aligned} & \text { 成功 } \\ & \text { パス } \end{aligned}$	

女川原子力発電所 2 号炉 隣接火災区画に影響を与える火災区画の火災影響評価結果

添付資料 6

女川原子力発電所 2 号炉における
火災区画内の火災影響評価結果
女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

㫲
鮸
\％ B 4
娞
㗜眔

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

怱
限
部墙
4眚

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

結果
確認事項

結果
確認事項

火災区画 番号	安全 保護系	工学的 原子炉 亭止系	非常用 安全 施設	所内 電源系

\square
女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火炎区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

| |
| :--- | :--- |

女川原子力発電所 2 号炉 火災区画内の火災影響評価結果

参考資料1

女川原子力発電所 2 号炉における

内部火災により想定される事象の確認結果

女川 2 号炉では，内部火災の影響軽減対策として，原子炉の安全停止を達成し，維持するために必要な系統は，内部火災によって同時に機能が喪失しないように系統分離等の対策を講じており，安全停止パスを確保することとしている。

その上で内部火災により原子炉に外乱が及ぶ場合について重畳事象も含め，どのよ らな事象が起こる可能性があるかを分析し，発生する事象に対して単一故障を想定し た場合においても収束が可能であるか，また，安全停止が可能であるかについて解析的に確認を行った。

以下に，事象の抽出プロセス，解析前提条件及び解析結果を示す。

1．想定される事象の抽出及び評価プロセス
（1）評価前提
次の事項を前提とし，評価を行うこととする。
－内部火災発生時において原子炉の安全停止に必要な機能は，内部火災が発生し た場合においても維持される。
－原子炉建屋（以下「R／B」という。）又はタービン建屋（以下「T／B」という。） において内部火災の発生を想定した場合，原子炉の安全停止に必要な機器は， その機能が維持されることを確認していることから，これ以外の機器は全て機能喪失すると仮定する。
－R／B 又はT／Bにおいて発生した内部火災は，当該の建屋以外に影響を及ぼさな い。
－中央制御室における火災については，火災検知器による早期検知，消火設備に よる初期消火，並びに運転員操作によるプラント停止が期待でき，火災の影響 は1区分内に限定されるため，中央制御室が位置する制御建屋については，検討対象外とする。 ※
※中央制御室において発生した火災については，早期検知，消火が可能であり，過渡事象 が発生するような状況まで事象が進展することは考え難い。また，火災によりケーブル等が焼損すれば，電源断となりフェイルセーフによりスクラムすることが考えられ，ス クラムできない事象が発生することは考え難い。
（2）抽出プロセスの考え方
内部火災に起因して様々な機器の故障や誤作動に伴う外乱の発生が想定され， また，いくつかの外乱が同時に発生することも考えられる。

しかしながら，内部火災に対する原子炉の安全停止に必要な機器等以外の常用系等の設備に対しては，網羅的にそれらの配置を整理し，詳細に火災影響を分析

する事が困難である事から，R／B 及び T／B で内部火災により発生すると考えられ る外乱及び故障の抽出を行い，抽出された故障について厳しくなるものを代表事象として選定した。また，代表事象に対して，重畳することも勘案し分析を行っ た。なお，全ての起因事象の重畳の組み合わせを定量的に評価することは現実的 ではないことから，事象の単独発生時の事象進展の特徴から，重畳した場合の事象進展を定性的に推定し，より厳しい評価結果となり得る組み合わせについて，収束が可能であるかについて解析的に確認を行った。

以下に想定される事象の抽出プロセス並びに各ステップの手順を示す（第1．1図参照）。
【ステップ 1】
評価事象を網羅的に抽出するため，『発電用軽水型原子炉施設の安全評価に関 する審査指針』（以下「安全評価審査指針」という。）の評価事象の選定方法に従 い，原子炉に有意な影響を与える要因を抽出する。（第2．1図参照）
【ステップ 2】
原子炉に有意な影響を与える要因を誘発する故障を抽出する。（第2．1図参照）【ステップ 3】

ステップ 2 で抽出した故障が発生し得る内部火災区画を分析する。ここでは，保守的に R / B 及び T / B を一つの区画とみなした分析を行う。（第2．1図参照）
【ステップ 4】
ステップ 3 で分析した結果を踏まえ，各建屋で発生する故障分析の結果から抽出された故障について，圧力上昇等の観点から事象進展が厳しくなるものを代表事象として特定する。（第2．1図参照）

【ステップ5】

各建屋で発生すると特定した代表事象の単独発生時の解析結果を踏まえ，事象 の組み合わせごとに，重畳を考慮した場合にプラントに与える影響が厳しくなる か否かの分析を行い，解析の要否を整理する。（本文 3 項参照）
【ステップ6】
各建屋ごとに内部火災を想定した場合に動作を期待できる緩和系を確認する。 （第4．2．1表参照）
【ステップ 7】
安全評価審査指針に従い，原子炉停止機能，炉心冷却機能及び放射能閉じ込め機能に単一故障を想定する。（第5．2表参照）

なお，ここでは，内部火災により火災影響を受ける設備＊が機能喪失している ことを前提に，火災影響を受けない火災区域にある設備に単一故障を更に重ねる。 ※：「資料10 女川原子力発電所2号灲における内部火災影響評価について」

にて評価された設備の機能喪失が発生することを前提としている。
【ステップ8】
ステップ 7 までの分析結果等を踏まえ，抽出した事象の解析を実施し，プラン トの安全停止が維持できるかについて確認する。（本文 6 項参照）

第1．1図 評価プロセス

2．火災により発生が想定される事象の抽出【ステップ $1,2,3,4 】$
全評価審査指針の評価事象の選定方法に従い，原子炉に有意な影響を与え る主要な要因及びその要因に対する故障の抽出結果を第2．1図に示す。また，同図において，抽出した故障が，R／B 及び T／B において発生し得るかを分析し，各建屋において抽出した代表事象を示す。

第2．1図において抽出された，R／B 及びT／Bにおける内部火災により発生 する可能性のある代表事象を第2．1表に示す。

第2．1表 抽出された事象

抽出された事象	R／B	T／B
原子炉冷却材系の停止ループの誤起動	\bigcirc	
原子炉冷却材流量の喪失	\bigcirc	${ }^{* 1}$
原子炉冷却材流量制御系の誤作動	\bigcirc	
給水流量の全喪失＋タービントリップ	\bigcirc	
主蒸気隔離弁の誤閉止	\bigcirc	\bigcirc
逃がし弁開放	\bigcirc	
給水制御系の故障（流量減少）	\bigcirc	＊2
給水制御系の故障※3（流量増加）	\bigcirc	\bigcirc
HPCS の誤起動	\bigcirc	
RCIC の誤起動	\bigcirc	
給水加熱喪失		\bigcirc
負荷の喪失		\bigcirc
原子炉圧力制御系の故障		\bigcirc
給水流量の全喪失		\bigcirc

※ 1 R／Bでは再循環ポンプ全台トリップ，T／Bでは部分台数トリップを想定
※2 T／B ではより厳しい給水流量の全喪失を想定
$※ 3$ 原子炉給水制御系の誤信号等により，給水流量が増加する事象は，原子炉設置変更許可申請書に倣い，単に「給水制御系の故障」という。

ステップ 1 ステ｜c｜ | | ステップ 2 | ステップ $3 \cdot 4$ |
| :---: | :---: | :---: |

第2．1図 外乱分析図（1／3）

第2．1図 外乱分析図（2／3）

第2．1図 外乱分析図（3／3）

3．重畳を考慮した内部火災影響評価事象の抽出【ステップ 5】

（1）重畳を考慮すべき事象の分析
2．で抽出した R／B 及びT／B における内部火災により発生する可能性のある事象について，重畳を考慮すべき事象を判別した結果を第3．1表及び第3．2表に示す。

重畳を考慮すべき事象として抽出された代表事象の概要を第3．3表に示す。
第3．1表 R／Bにおける抽出事象及び重畳考慮の要否

抽出された事象	重畳	重畳を考慮しない理由＊
原子炉冷却材の停止ループの誤起動	－	部分出力状態での発生事象で あり重畳による影響が小さい
原子炉泠却材流量の喪失	－	（1）
原子炉冷却材流量制御系の誤作動	考慮	－
給水流量の全喪失＋タービントリップ	考慮	－
主蒸気隔離弁の誤閉止	考慮	－
逃がし弁開放	－	（2）
給水制御系の故障（流量減少）	－	（3）
給水制御系の故障（流量増加）	考慮	－
HPCS の誤起動	－	（2）（上部プレナムへの注水）
RCIC の誤起動	考慮	－

第3．2表T／Bにおける抽出事象及び重畳考慮の要否

抽出された事象	重畳	重畳を考慮しない理由＊
給水加熱喪失	考慮	-
原子炉泠却材流量の喪失	-	（1）
負荷の喪失	考慮	-
主蒸気隔離弁の誤閉止	考慮	-
原子炉圧力制御系の故障	-	（2）
給水流量の全喪失	-	(3)
給水制御系の故障（流量増加）	考慮	-

※ 重畳を考慮しない理由
（1）再循環流量が減少する事象は，BWR－5 では再循環ポンプの慣性が大きく，灲心流量 の減少による炉心の冷却能力低下に対し，原子炉出力の減少が早めに作用するた め，重畳しても結果は厳しくならない。
（2）圧力が低下する事象は重畳しても結果は厳しくならない。
（3）出力低下する事象は重畳しても結果は厳しくならない。

第 3.3 表 重畳対象事象（単独事象）の概要

抽出事象	概要
原子炉泠却材流量制御系の誤作動	原子炉の出力運転中に，再循環流量制御系の誤作動により，再循環流量が増加し，原子炉出力が上昇する事象。 中性子束高スクラムにより出力の異常上昇を抑制する。
$\begin{aligned} & \text { 給水流量の全哇失 } \\ & \text { プー } \end{aligned}$	原子炉の出力運転中に，原子炉水位高信号の誤発生により，タービンがト リップすると共に，原子炉給水ポンプがトリップする事象。 タービントリップにより原子炉はスクラムされ，主蒸気止め弁の閉止によ り再循環ポンプ 2 台がトリップする。
主蒸気隔離弁の誤閉止	原子炉の出力運転中に，主蒸気隔離并が閉止し，原子炉圧力が上昇する事象。 主蒸気隔離弁がある程度（ 10% ）閉止すれば，原子炉をスクラムさせ，原子炉圧力があらかじめ定められた圧力に達すれば，逃がし安全弁が開放さ れる。
給水制御系の故障 （流量増加）	原子炉の出力運転中に，給水制御器の誤作動等により，給水流量が急激に増加し，炉心入口サブクーリングが増加して，原子炉出力が上昇する事象。原子炉水位上昇によるキャリ・オーバの増加に対してタービンを保護する ため，原子炉水位高でタービンはトリップされる。タービントリップによ り原子炉はスクラムされ，主蒸気止め弁の閉止により再循環ポンプ 2 台が トリップする。
RCIC の䛊起動	原子炉の出力運転中に，RCIC が誤起動し，炉心入口サブクーリングが増加して，原子炉出力が上昇する事象。 給水制御系により水位は制御され，原子炉出力は静定する。
給水加熱喪失	原子炉の出力運転中に，給水加熱器への蒸気流量が喪失して，給水温度が徐々に低下し，炉心入口サブクーリングが増加して，原子炉出力が上昇す る事象。 中性子束高（熱流束相当）スクラムにより出力の異常上昇を抑制する。
負荷の喪失	原子炉の出力運転中に，電力系統事故等により，発電機負荷遮断が生じ，蒸気加減弁が急速に閉止し，原子炉圧力が上昇する事象。 タービン出力が 40% 以上で発電機負荷遮断が生じると，蒸気加減弁が急速閉止し，同時に原子炬スクラム，再循環ポンプ 2 台トリップを行う。その後，タービンバイパス弁を急開し，原子炉圧力の上昇を緩和した後，原子炉圧力が逃がし安全弁の設定圧に達すれば逃がし安全弁が開放される。

（2）抽出事象に対する重畳の分析結果
3．（1）にて抽出した重畳を考慮した場 合に事象を厳しくする可能性の ある事象について，スクラムのタイミング，隔離弁の閉止のタイミング等につ いて，整理する。これを踏まえ，プラント挙動の観点から，2 項で抽出された事象に対し，重畳を考慮した場合に事象を厳しくする可能性の有無について，更なる検討を行った。

この検討においては，2 つの事象の組み合わせについて，重畳を考慮したと しても，どちらか 1 つの事象で代表させることが可能，重畳を考慮した場合に は，厳しい評価となる可能性がある，または，重畳を考慮しない（単独の事象）

方が厳しい評価となるかについて分析を行っている。
重畳を考慮した場合に厳しくなる事象の組み合わせが複数考えられる場合 には，それらの更なる重畳について検討することになるが，R／Bにおける火災発生時には単独事象が，T／Bにおける火災発生時には 2 つの事象の重畳事象が第3．1表並びに第3．2表に示す重畳を考慮すべき事象の重ね合わせを包含する。

a．R／B における代表事象の重畳

第3．1表に抽出した重畳を考慮すべき事象について，スクラムのタイミン グ，蒸気遮断のタイミング等について第3．4表に整理する。この整理した結果を踏まえ，プラント挙動の観点から抽出した事象の重畳考慮の要否につい て検討を行った。この検討の結果を第3．6表に示す。

以下に第3．6表に記載の分析結果について示す。
「（2）給水流量の全喪失＋タービントリップ」，「（3）主蒸気隔離弁の誤閉止」及び「（4）給水制御系の故障（流量増加）」はいずれも主要弁の閉止を伴う圧力上昇事象である。

「（4）給水制御系の故障（流量増加）」と「③主蒸気隔離弁の誤閉止」を比較すると，「（4）給水制御系の故障（流量増加）」の方が弁の閉止速度が速いた め，厳しい結果となる。また，「（4）給水制御系の故障（流量増加）」と「（2）給水流量の全喪失＋タービントリップ」を比較すると「（4）給水制御系の故障（流量増加）」の方が弁閉止時の出力が高くなるため厳しい結果となる。

これらの事象のうち，「（4）給水制御系の故障（流量増加）」が最もスクラム信号発生が遅い事象であるため，「（3）主蒸気隔離弁の誤閉止」と「（2）給水流量の全喪失＋タービントリップ」とは組み合わせない方が結果を厳しくする。

「（4）給水制御系の故障（流量増加）」と「①原子炉冷却材流量制御系の誤作動」を比較すると，「（4）給水制御系の故障（流量増加）」の方が厳しい結果 となる。また，「（4）給水制御系の故障（流量増加）」と「①原子炉冷却材流量制御系の誤作動」が重畳した場合，炉心流量の増加による出力上昇に伴い， タービントリップする前に短時間で中性子束高スクラムにいたるため，「①原子炉冷却材流量制御系の誤作動」とほぼ同様の事象になるため，組み合わ せない方が結果を厳しくする。

「RCIC の誤起動」による注水流量の増加分は定格給水流量に対して約 2%程度であり，「（4）給水制御系の故障（流量増加）」による外乱としての増加分 である約 36% と比べると，注入量が小さいため，結果に大きな影響はない。

以上より，第3．6表に示すとおり，R／Bにおける内部火災を想定した場合，発生し得る代表事象として 4 つの事象を抽出したが，「給水制御系の故障（流量増加）」の単独事象が原子炉に与える影響としては最も厳しいことから，

ここでは事象の組合せは考慮せず単独事象に対し解析を行うこととした。

b．T／Bにおける代表事象の重畳

第3．2表に抽出した重畳を考慮す心゙き事象について，スクラムのタイミン グ，隔離弁の閉止のタイミング等について第3．5表に整理する。この整理し た結果を踏まえ，プラント挙動の観点から抽出した事象の重畳の要否につい て検討を行った。この検討の結果を第3．7表に示す。

以下に第3．7表に記載の分析結果について示す。
「（2）負荷の喪失」，「（3）主蒸気隔離弁の誤閉止」及び「（4）給水制御系の故障 （流量増加）」はいずれも主要弁の閉止を伴う圧力上昇事象である。

「④給水制御系の故障（流量増加）」と「③主蒸気隔離弁の誤閉止」を比較すると，「（4）給水制御系の故障（流量増加）」の方が厳しい結果となる。ま た，「（4）給水制御系の故障（流量増加）」と「（2）負荷の喪失」を比較すると， タービンバイパス弁の不作動を仮定した場合，「④給水制御系の故障（流量増加）」の方が弁閉止時の出力が高くなるため厳しい結果となる。

これらの事象のらち，「（4）給水制御系の故障（流量増加）」が最もスクラム信号発生が遅い事象であるため，「（2）負荷の喪失」と「③主蒸気隔離弁の誤閉止」とは組み合わせない方が結果を厳しくする。

「④給水制御系の故障（流量増加）」と「①給水加熱喪失」は事象開始時 に同時に発生すると，「（4）給水制御系の故障（流量増加）」が単独で発生した場合よりは出力が高い状態でタービントリップに至ると考えられる。

以上より，第3．7表に示すとおり，T／Bにおける内部火災を想定した場合，発生し得る過渡事象として 4 つの事象を抽出したが，「給水制御系の故障」及び「給水加熱喪失」の重畳事象が原子炉に与える影響としては最も厳しい ことから，ここでは 2 つの事象の組合せを考慮することとした。
第 3．4表 想定される代表事象（単独事象）の解析結果（R／B 火災発生時を想定）

	$\begin{gathered} \text { スクラム } \\ \text { タイミング } \end{gathered}$	蒸気遮断タイミング及び弁の閉止速度		蒸気遮断時 の出力	原子炉圧力 ピーク値	中性子束 ピーク値
原子炉冷却材流量制御系の誤作動	約 7.2 秒後 （中性子束高）	原子炬停止手順に従い隔離		－	約 6． 82 MPa ［gage］	約 127%
$\begin{aligned} & \text { 給水流量の全喪失 } \\ & \text { タービントリップ\% } \end{aligned}$	約 0.1 秒 （MSV 閉）	$\begin{gathered} \text { TB トリップ } \\ \text { (MSV 閉) } \end{gathered}$	0.1 秒	約 105\％	約 7．79MPa［gage］	約 118\％
主蒸気隔離弁 の誤閉止	約 0.3 秒後 （MSIV 閉）	0 秒後 （MSIV 閉（誤閉止））	3 秒	約 105\％	約 7．84MPa［gage］	初期値 を超えない
給水制御系の故障 （流量増加）	約 9 秒後 （MSV 閉）	$\begin{gathered} \text { 約 } 9 \text { 秒後 } \\ \text { (MSV 閉(L8 TB トップ)) } \end{gathered}$	0.1 秒	約 113\％	約 7．81MPa［gage］	約 131\％
RCIC の誤起動	RCIC 誤起動に伴う給水流量の増加は 2% 程度であり，給水制御系の故障時の流量増加分（ 36% ）と比べると影響は小さいた め，重畳を考慮しない					

※タービントリップが単独で発生した場合とほぼ同様の事象となるため，負荷の喪失事象の解析結果を参考に記載
第3．5表 想定される代表事象（単独事象）の解析結果（T／B 火災発生時を想定）

	$\begin{gathered} \text { スクラム } \\ \text { タイミング } \end{gathered}$	蒸気遮断タイミング及び弁の閉止速度		蒸気遮断時 の出力	$\begin{aligned} & \text { 原子炉圧力 } \\ & \text { ピーク値 } \end{aligned}$	中性子束 ピーク値
給水加熱㖪失 ${ }^{\text {\％}}$	約 92 秒 （TPM）	原子炉停止手順に従い隔離		－	約 7．11MPa［gage］	約 122\％
負荷の喪失	約 0.1 秒 （蒸気加減弁急速閉）	負荷遮断 （蒸気加減弁急閉）	0.1 秒	約 105\％	約 7．79MPa［gage］	約 118\％
主蒸気隔離弁 の誤閉止	約 0.3 秒後 （MSIV 閉）	$\begin{gathered} 0 \text { 秒後 } \\ \text { (MSIV 閉 }(訁 \text { 誤閉止)) } \end{gathered}$	3 秒	約 105\％	約 7．84MPa［gage］	初期値 を超えない
給水制御系の故障 （流量増加）	約 9 秒後 （MSV 閉）	約 9 秒後 （MSV 閉 （L8 TB トリップ））	0.1 秒	約 113\％	約 7．81MPa［gage］	約 131\％

[^3]第3．6表 重畳事象の分析（R／B 火災発生時）

	（1）原子炉冷却材流量制御系の誤作動	（2）給水流量の全喪失 $\begin{gathered} + \\ \text { タービントリップ } \end{gathered}$	（3）主蒸気隔離弁の誤閉止	（4）給水制御系の故障 （流量増加）
		\times	\times	\times
（1）原子炉冷却材流量制御系の誤作動		スクラムタイミングが遅い①が出力上昇の観点から厳しいが，（2）は圧力上昇の観点で厳しくプラント挙動としては影響が大きい。 重畳事象はタービントリップによ り直ちにスクラムするため，単独事象である（2）により代表できる。 【抽出事象：（2）】	隔離弁の閉止タイミングが早い（3） が原子炉圧力上昇の観点から厳し い。 重畳事象は（3）により直ちにスクラ ムするため，単独事象である③）によ り代表できる。 【抽出事象：（3）】	スクラムタイミングが遅い（4）の方が出力上昇が厳しい。かつ，（4）は主蒸気止め弁がスクラム後瞬時に閉止するため通常停止手順で原子炉を隔離 する（1）に比べ原子炉圧力の観点からも厳しい。重畳事象は炉心流量の増加による出力上昇に伴 いタービントリップ前に短時間で中性子束高ス クラムにいたるため，組合せない方が結果を厳し くする。したがって，（4）により代表できる。 【抽出事象：（4）】
			\times	\times
（2）給水流量の全喪失 $\begin{gathered} + \\ \text { タービントリップ } \end{gathered}$	－		隔離弁の閉止タイミングが早い③ が原子炉圧力上昇の観点から厳し い。 重畳事象は（3）により直ちにスクラ ムするため，単独事象である③によ り代表できる。 【抽出事象：（3）】	スクラムタイミングが遅い（4）の方が出力上昇が厳しい。かつ，遮断蒸気量の多い（4）が原子炉圧力 の観点からも厳しい。 重畳事象はタービントリップにより直ちにスク ラムするため，単独事象である（4）により代表でき る。 【抽出事象：（4）】
				\times
（3）主蒸気隔離弁 の誤閉止	－	－		スクラムタイミングが遅い（4）が出力上昇が厳し い 重畳事象は③により直ちにスクラムするため，単独事象である（4）により代表できる。 【抽出事象：（4）】
（4）給水制御系の故障 （流量増加）	－	－	－	

[^4]第3．7表 重畳事象の分析（T／B 火災発生時）

[^5]4．内部火災発生時に期待できる緩和系の整理【ステップ6】
4． 1 内部火災による緩和設備に対する機能維持状態
除熱機能の 2 区分のらち， 1 区分は機能を維持するよう対策を実施しているも のの，「運転時の異常な過渡変化」又は「設計基準事故」の発生と同時に除熱機能 （残留熱除去系停止時冷却モード）が喪失した場合，さらに，単一故障を想定する と，除熱機能が喪失する可能性がある。

このため，残留熱除去系の制御系から実際の機器配置場所までを以下の区画及 び建屋を対象に調査することで「運転時の異常な過渡変化」又は「設計基準事故」 の発生と同時に除熱機能が同時に喪失する状況にあるかについて系統分離の考え方とともに網羅的に確認した。
（1）中央制御室
（2）ケーブル処理室及び電気品室
（3）R S S 盤室
（4）建屋内（ $\mathrm{R} / \mathrm{B} / \mathrm{T} / \mathrm{B}$ ）火災
（1）中央制御室
a．中央制御室における火災防護上の設計の考え方
－中央制御室の制御盤は，スイッチ，配線等の構成部品に単一火災を想定して も，近接する他構成部品に影響が波及しないことを確認した実証試験の知見 に基づく分離設計を行っているため，制御盤間の延焼が生じることはない。
－火災により中央制御室の制御盤 1 区画（面）の安全機能が喪失したとしても，他区画の制御盤の運転操作及び現場操作により，原子炉の高温停止及び低温停止を達成し，維持できる。
－中央制御室においては常駐する運転員により火災の早期感知•消火が可能で あるため，制御盤にて火災が発生した場合であっても火災による影響は限定的である。

第4．1．1図において，残留熱除去系の関連制御盤の配置状況を示す。

第4．1．1図 残留熱除去系関連制御盤の状況（中央制御室）
b．中央制御室の火災による残留熱除去系への影響
中央制御室における単一火災において，「運転時の異常な過渡変化」又は「設計基準事故」の発生と残留熱除去系の機能喪失（操作手段の一部喪失）の関係につ いて整理した。第4．1．1表に整理結果を示す。また，各盤における火炎により，発生の可能性のある故障について第4．1．2表に示す。

評価の結果，「運転時の異常な過渡変化」又は「設計基準事故」の発生と同時に残留熱除去系の操作手段が一部喪失する事象があることを確認した。

このため，以下に示す他の操作手段により，残留熱除去系の機能維持が可能で あることを確認した。
（a）
（b）「他の中央制御盤でのジャンパ／リフト対応」，「現場 MCC 等電気盤におけるジ ヤンパ／リフト対応」による信号入力
a．と同様に中央制御室の当該盤を使用した残留熱除去系の操作ができない場合においても，「他の中央制御盤でのジャンパ／リフト対応」，「現場 MCC 等電気盤におけるジャンパ／リフト対応」による信号入力が可能である。

例えば，「RHR（A）ポンプスイッチ」が使用できない場合においても，当該制御盤（H11－P601－1）ではなく，他の中央制御盤（H11－P617）にて起動指令をジ ャンパすることでRHR（A）ポンプを起動可能である。さらに，同様の操作を現場 MCC 等電気盤において実施することで対応が可能となる。
「現場 MCC 等電気盤におけるジャンパ／リフト対応による信号入力」の例を第 4．1．2図に示す。

以上より，中央制御室における単一火災において，残留熱除去系停止時冷却モ ードにより，原子炉の低温停止が可能である。

第4．1．1表 中央制御室火災により発生する事象と残留熱除去系への影響確認結果

場所	盤番号	起因となる故障	発生の可能性が ある事象	RHR 関連機器	RHR への 影響	備考
	H11－P601－1	RCIC の誤起動逃がし弁開指令誤発生 等	RCIC の誤起動逃がし安全弁誤開放等	残留熱除去系ポ ンプ（A）等	中央制御室での操作ができない可能性有り	※a．又は b．によ り，対応可能
	H11－P601－2	速度制御器増加要求信号誤発生等	原子炉冷却材流量制御系の誤動作 等	RHR A 系停止 時冷却吸込第二 隔離弁 等		
	H11－P603	原子炉給水制御系増信号誤発生等	給水制御系の故障等	RHR A 系停止時冷却吸込第一隔離弁 等		
	H11－P613－1	RCIC の誤起動	RCIC の誤起動	RHR 流量発信器		
	H11－P618	RCIC の誤起動	RCIC の誤起動	残留熱除去系ポ ンプ（B）等		
	H11－P622	速度制御器増加要求信号誤発生等	原子炉冷却材流量制御系の誤動作 等	RHR A 系停止 時冷却吸込第一 隔離弁 等		
	H11－623	速度制御器増加要求信号誤発生等	原子炉冷却材流量制御系の誤動作 等	RHR A 系停止 時冷却吸込第二 隔離弁 等		
	H11－P630－1	主蒸気隔離弁の閉止	主蒸気隔離弁の誤閉止	RHR A 系停止時冷却吸込第一隔離弁 等		
	H11－P630－2	主蒸気隔離弁の閉止	主蒸気隔離弁の誤閉止	RHR B 系停止時冷却吸込第一隔離弁 等		
	H11－P630－3	主蒸気隔離弁の閉止	主蒸気隔離弁の誤閉止	RHR A 系停止 時冷却吸込第一 隔離弁 等		
	H11－P630－4	主蒸気隔離弁の閉止	主蒸気隔離弁の誤閉止	RHR B 系停止時冷却吸込第一隔離弁 等		
	H11－P631－1	RCIC の誤起動逃がし弁開指令誤発生	RCIC の誤起動逃がし安全弁誤開放	RHR B 系停止 時冷却吸込第二 隔離弁 等		
	H11－P631－2	RCIC の誤起動等	RCIC の誤起動 等	残留熱除去系ポ ンプ（B）等		
	H11－P760	逃がし弁開指令誤発生	逃がし安全卉誤開放	RHR ヘッドス プレイ注入隔離弁		

※ а．
b．「他の中央制御盤でのジャンパ／リフト対応」，「現場 MCC 等電気盤におけるジ ャンパ／リフト対応」による信号入力

第 4．1．2 表 残留熱除去系停止時冷却機能関連盤と発生の可能性のある「運転時 の異常な過渡変化」又は「設計基準事故」の整理結果

			RHR停止時椧却機能の関連盤																						
																									榣
原子炉に有意な影響を与える主要な要因（BWR） （安全評価審査指針の手引きにおける評価事象の選定方法を参考に作成）		要因に対応する故障	$\frac{\frac{\pi}{0}}{\frac{0}{0}}$	$\begin{aligned} & \frac{1}{0} \\ & \frac{0}{0} \\ & \frac{1}{\bar{x}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} 0 \\ & 0 \\ & \frac{1}{5} \\ & \frac{1}{5} \end{aligned}$		$\begin{aligned} & \frac{\bar{\circ}}{\stackrel{y}{0}} \\ & \frac{1}{\overline{9}} \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\tilde{\omega}}{\tilde{0}} \\ & \frac{\omega}{0} \\ & \frac{1}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\infty}{0} \\ & \frac{0}{0} \\ & \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{0} 0 \\ & \frac{0}{2} \\ & \frac{1}{\bar{x}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 冗ơ్ర } \\ & \frac{0}{0} \\ & \frac{1}{\bar{x}} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & \stackrel{\overleftarrow{\circ}}{0} \\ & \frac{0}{\overline{1}} \\ & \frac{1}{2} \end{aligned}$			$\left\lvert\, \begin{aligned} & \frac{T}{0} \\ & \frac{0}{7} \\ & \frac{1}{7} \end{aligned}\right.$		$\begin{aligned} & \tilde{(}{ }^{\circ} \\ & \frac{0}{4} \\ & \frac{1}{\bar{x}} \\ & \hline \end{aligned}$			$\begin{aligned} & \frac{7}{2} \\ & \frac{1}{9} \\ & \frac{1}{I} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{N}{2} \\ & \frac{N}{\frac{1}{2}} \\ & \frac{1}{\bar{x}} \end{aligned}$	$\frac{\stackrel{8}{9}}{\frac{8}{\overline{9}}}$
	再循環ボンプ速度の増加	速度制御器増加要求信号誤発生	0	0								0	0												
		主制御器增加要求信号憬発生	0	0								0	0												
		抽気逆止弁の唄閉止																							
	給水流量の増加	原了妒給水制御系増信号絽発生			0																				
		予備給復水ボンブの説起動			0																				
	ECCS等の题起動	HPCSの諟起動	0																						
		RCICの諟起動	0		0			0			0							0	0						
	再循噮ループの諟起動弁の閉止（烝気ラインの弁の閉止）	再循環ポンプの諟起動	0	0								0	0												
		蒸気加蔵升の閉止																							
		主蒸気止め弁閉止			0																				
		主蒸気隔離弁の閉止	0	0	0							0	0	0	0	0	0								
		湿分分離加熱器第2段加熱蒸気ラインの隔離弁の閉止																							
	自由空間体積の蔵少	原子炉給水制御系增信号誤発生			0																				
		予備給復水ポンプの䛊起動			0																				
	給水温度の低下	抽気逆止弁の䜋閉止																							
	給水流量の増加	原子妒粭水制御系増信号趗発生			0																				
		予備給復水ボンブの憬起動			0																				
	尣の開放	逃がし弁開指令諟発生	0	0														0	0						0
		蒸気加蔵弁開信号語発生																							
		圧力制御装置最大出力信号誤発生																							
		タービンバイパス弁の詯開放																							
	ECCS等の唄起動	HPCSの誤起動	0																						
		RCICの稢起動	0		0			0			0							0	0						
	再循環ルーブの哭起動	再循環ポンプの說起動	0	0								0	0												
	再循珸ポンブのトリップ	駆動電源衰失	0	0								0	0												
		再循環ポンブトリッブ信号誤発生	0	0								0	0												
	再循環ポンプ速度の增加	速度制御器增加要求信号誤発生	0	0								0	0												
		主制御器增加要求信号誤発生	0	0								0	0												
	弁の閉止	PLUJレー誥作動（蒸気加蔵弁開止）																							
		昪駆動用油圧系統の故障（ 蒸気加隇弁閉止）																							
		各一ビントリップ信号の誤免生（主暴気止め升閉止）																							
		主発電機トリッブ信号の悞発生（主蒸気止め弁閉止）																							
		原子炉水位高（L－8）信号の僦発生（主蒸気止め弁閉止）																							
		中間加滅弁の誤閉止発生（主蒸気止め弁閉止）																							
			0	0	0							0	0	0	0	0	0								
	自由空間体積の蔵少	原子妒給水制御系増信号餼発生			0																				
		予備給復水ポンプの説起動			0																				
	弁の開放	逃がし弁開指令誤発生	0	0														0	0						0
		蒸気加滅升開信号誤発生																							
		压力制御装置最大出力信号俁発生																							
		タービンバイパス弁の誤開放																							
	給水流量の低下	原子妒給水ポンプのトリップ			0																				
		原子炉水位高（L－8）信号の䜋発生			0																				
		原子炉給水制御系滅信号慥発生			0																				
		复水ボンプのトリッブ																							
	弁の開放	逃がし弁開指令俱発生	0	0														0	0						0
		蒸気加滅升開信号嗅発生																							
		圧力制御装置最大出力信号縣発生																							
		タービンバイパス弁の詯開放																							
	給水流量の増加	原子炉給水制御系増信号祝発生			0																				
		予備給復水ボンプの䜋起動			0																				
	ECCS 等の誒起動	HPCSの諟起動	0																						
		RCICの噯起動	0		0			0			0							0	0						
			0	0	0	\times	\times	0	\times	\times	0	O	0	0	0	O	0	0	0	\times	\times	\times	\times	\times	\bigcirc

第4．1．2 図 誤信号の解除操作例
（2）ケーブル処理室及び電気品室
a．ケーブル処理室及び電気品室における火災防護上の設計の考え方
第4．1．3図に示すとおり，ケーブル処理室及び電気品室は常用系区分及び安全系区分ごとに分離配置されており，それぞれ別の火災区画となっている。

このことから，ケーブル処理室及び電気品室において，単一火災によって複数 の区分が同時に機能喪失することはない。

第4．1．3図 ケーブル処理室及び電気品室における分離状況
b．ケーブル処理室及び電気品室の火災による残留熱除去系への影響
ケーブル処理室及び電気品室における単一火災において，「運転時の異常な過渡変化」又は「設計基準事故」の発生と残留熱除去系の機能喪失の関係について整理し た。第4．1．3表に整理結果を示す。以下に（a）ケーブル処理室，（b）電気品室におけ る整理結果を示す。
（a）ケーブル処理室
ケーブル処理室においては，「RHR 関連機器」，「運転時の異常な過渡変化又は設計基準事故の起因となる機器」及び動力ケーブルは配置されていないため，第 4． 1.3 表に機器は記載されていない。

ケーブル処理室における火災発生時には，火災が発生した区分と別区分の残留熱除去系は健全である。加えて，火災が発生した区分の残留熱除去系の機能につ いても，「現場 MCC 等電気盤におけるジャンパ／リフト対応による信号入力」 操作

により，その機能は維持されるため，原子炉の低温停止が可能である。
（b）電気品室
評価の結果，非常用母線（A，B 系）の動力用電源盤のらち「運転時の異常な過渡変化」又は「設計基準事故」の起因となる系統の設備が存在する盤（460V R／B MCC 2C－4，460V R／B MCC 2D－4）を抽出した。

抽出した盤において，原子炉に有意な影響を与える主要な要因に対応する故障 を発生させるような機器として，「原子炉再循環ポンプ（A）吐出弁」，「原子炉再循環 ポンプ（B）吐出弁」等が抽出され，これらの機器の機能喪失により，「運転時の異常 な過渡変化」の 1 つである「原子炉冷却材系流量の部分喪失」が発生することとな る。しかしながら，本事象は原子炉スクラムには至らない事象であるため，「運転時の異常な過渡変化」又は「設計基準事故」の発生と残留熱除去系の機能喪失の重畳を考慮する必要はない。

以上より，ケーブル処理室及び電気品室における火災において，単一故障を想定し た場合においても残留熱除去系停止時冷却モードにより，原子炉の低温停止が可能で あることを確認した。

第4．1．3表 ケーブル処理室及び電気品室火災により発生する事象と
残留熱除去系への影響確認結果※1

場所	盤番号	起因となる機器	発生の可能性が ある事象	RHR関連機器	RHR の同時機能喪失 ${ }^{*} 2$	備考
	$\begin{aligned} & \text { MCC } \\ & 2 \mathrm{C}-4 \end{aligned}$	原子炬再循環 ポンプ（A）吐出开原子炬再循環 ポンプ（A）吸込弁	原子炉冷却材流量 の部分喪失	－	\bigcirc	－
	$\begin{aligned} & \text { MCC } \\ & \text { 2D-4 } \end{aligned}$	原子炬再循環 ポンプ（B）吐出弁原子炬再循環 ポンプ（B）吸込弁	原子炉冷却材流量 の部分喪失	－	\bigcirc	－

※1 ケーブル処理室については，「RHR 関連機器」及び「起因となる機器」がないため，リストへの記載なし。
※2 ○：機能售失無，\times ：機能進失有
（3）中央制御室外原子炉停止装置（RSS）盤室
a．中央制御室外原子炉停止装置（RSS）盤室における火災防護上の設計の考え方 （a）1時間以上の耐火能力を有する隔壁

同一火災区画内で異なる安全区分の制御盤間に，1時間耐火能力を有する「耐火材（トンネライト，ハイラック）」を，互いの制御盤が直視できないよ ら設置する。
（b）火災感知設備
発信箇所が特定でき，異なる種類の信号を有する火災感知器を火災区画内 に設置し，火災の発生を常時監視する。
（c）自動消火設備
当該火災区画の全域を消火範囲としたハロン自動消火設備を設置する。

第4．1．4図及び第4．1．5図において，残留熱除去系の関連制御盤の配置状況を示 す。

第4．1．4図 残留熱除去系関連制御盤の配置状況（R S S 盤室）

第4．1．5図 中央制御室外原子炉停止装置盤の系統分離
b．中央制御室外原子炉停止装置（RSS）盤室の火災による残留熱除去系への影響 R S S 盤室における火災発生時においては，中央制御室制御盤における火災発生時の対応と同様に「現場 MCC 等電気盤におけるジャンパ／リフト対応」に より信号を入力することで対応が可能である。

また，第4．1．5図に示したとおり，R S S 盤室については，1時間以上の耐火能力を有する隔壁により，残留熱除去系操作機能が両系統喪失することはな い。

したがって，R S S 盤室において火災が発生した場合についても安全停止上 の問題は発生しない。
（4）建屋内（ $\mathrm{R} / \mathrm{B} / \mathrm{T} / \mathrm{B}$ ）
a．建屋内（ $\mathrm{R} / \mathrm{B} / \mathrm{T} / \mathrm{B}$ ）における火災防護上の設計の考え方
建屋内（ $\mathrm{R} / \mathrm{B} / \mathrm{T} / \mathrm{B}$ ）の各区画については，火災源となる系統があり，また，火災影響を受ける隣接区画からの火災による影響の可能性があるため，「運転時 の異常な過渡変化」又は「設計基準事故」の発生と同時に緩和設備である除熱機能が喪失することがないか確認する。

表 4．1．4 に残留熱除去系による原子炉低温停止の可否を確認する観点から，残留熱除去系の機能のうち，停止時冷却モードに必要となる主要なフロント系及びサポート系機器を抽出した。
図 4．1．6～図4．1．18において，火災防護区画の設定の状況を示す。
b．建屋内（R／B／T／B）の火災による残留熱除去系への影響
表4．1．5に火災により発生の可能性がある事象を抽出し，事象発生の起因と なりらる設備及びその設置場所（火災防護区画）を整理し，火災防護区画にお ける「残留熱除去系関連機器」の設置有無を確認することで，「運転時の異常な過渡変化」又は「設計基準事故」の発生と同時に残留熱除去系の機能喪失が発生することがなく，加えて，残留熱除去系に単一故障を想定した場合において も，低温停止が可能であることを確認した。

事象発生の起因となりうる設備と「残留熱除去系関連機器」が同一区画に存在する場合もあるが，個別に発生する事象の詳細確認を行い，スクラムしない事象であること，PCV 内はプラント運転中は，窒素で置換されており，火災は発生しないことから，低温停止に対して影響はない。

以上より，「運転時の異常な過渡変化」又は「設計基準事故」の発生と同時に残留熱除去系が機能喪失する事象がないことを確認した。この結果より，主要建屋におけ る火災において，単一故障を想定した場合においても残留熱除去系停止時冷却モード により，原子炉の低温停止が可能であることを確認した。

第4．1．4表 残留熱除去系フロント系及びサポート系機器（1／4）

	系統	機器	設置場所\％
フロント系	RHR	RHR A 系S／C スプレイ隔離弁	
		RHR B 系S／Cスプレイ隔離弁	
		RHR A 系試験用調整异	
		RHR B 系試験用調整异	
		RHR A 系停止時冷却吸达第二隔離弁	
		RHR B 系停止時冷却吸达第二隔離弃	
		RHR A 系停止時冷却注入隔離弁	
		RHR B 系停止時冷却注入隔離弁	
		RHR ポンプ（A）ミニマムフロー升	
		RHR ポンプ（B）ミニマムフロー弁	
		RHR A 系 RW 連絡第一弁	
		RHR B 系 RW 連絡第一弁	
		RHR A 系系統暖機弁	
		RHR B 系系統暖機弁	
		残留熱除去系ポンプ（B）	
		RHR ポンプ（B）S／C 吸込弁	
		RHR ポンプ（B）停止時冷却吸込弁	
		残留熱除去系ポンプ（A）	
		RHR ポンプ（A）S／C 吸込弁	
		RHR ポンプ（A）停止時冷却吸込弁	
		RHR ポンプ（A）出口流量	
		RHR ポンプ（B）出口流量	
		RHR A 系 LPCI 注入隔離弁	

※別添 1 資料 10 添付 1 に記載の火災区画番号

第 4．1．4表 残留熱除去系フロント系及びサポート系機器（2／4）

	系統	機器	設置場所＊
フロント系	RHR	RHR B 系 LPCI 注入隔離弁	
		RHR A 系格納容器スプレイ流量調整弁	
		RHR B 系格納容器スプレイ流量調整弁	
		RHR ヘッドスプレイ注入隔離弁	
		RHR 熱交換器（A）バイパス弁	
		RHR 熱交換器（B）バイパス弁	
		RHR 熱交換器（A）出口弁	
		RHR 熱交換器（B）出口弁	
		RHR A 系試料採取第一弁	
		RHR B 系試料採取第一弁	
		事故後 RHR サンプリング第一弁	
		RHR A 系停止時冷却吸込第一隔離升	
		RHR B 采停止時冷却吸达第一隔離弁	
サポート系	RCW	原子炬補機冷却水ポンプ（A）	
		原子炬補機冷却水ポンプ（C）	
		RCW 熱交換器（A）冷却水出口弁	
		RCW 熱交換器（C）泠却水出口弁	
		RCW 常用冷却水供給側分離弁（A）	
		RCW A 系 泠却水供給圧力	
		RCW 冷却水供給温度熱交換器（A）側調節卉	
		RCW 冷却水供給温度ポンプ（A）側調節弁	
		RCW A 系 泠却水供給温度	
		非常用 D／G（A）冷却水出口卉（A）	
		非常用 $\mathrm{D} / \mathrm{G}(\mathrm{A})$ 冷却水出口弁（C）	
		RHR 熱交換器（A）冷却水出口弁	
		HECW 泠谏機（A）泠却水圧力調節弃	
		HECW 泠凁機（ C ）泠却水圧力調節开	
		RCW サージタンク（A）水位	

※別添 1 資料 10 添付 1 に記載の火災区画番号

第 4．1．4表 残留熱除去系フロント系及びサポート系機器（3／4）

	系統	機器	設置場所＊
サポート系	RCW	原子炬補機泠却水ポンプ（B）	
		原子炬補機泠却水ポンプ（D）	
		RCW 熱交換器（B）冷却水出口弁	
		RCW 熱交換器（D）冷却水出口弁	
		RCW 常用冷却水供給側分離弁（B）	
		RCW B 系 泠却水供給圧力	
		RCW 冷却水供給温度熱交換器（B）側調節升	
		RCW 冷却水供給温度ポンプ（B）側調節弁	
		RCW B 系 泠却水供給温度	
		非常用 D / G（B）冷却水出口并（B）	
		非常用 $\mathrm{D} / \mathrm{G}(\mathrm{B}$ ）冷却水出口卉（D）	
		RHR 熱交換器（B）冷却水出口弁	
		HECW 泠涷機（B）冷却水圧力調節弁	
		HECW 泠谏機（D）冷却水圧力調節弁	
		RCW サージタンク（B）水位	
	RSW	RSW ストレーナ（A）ブロー弁	
		RSW ストレーナ（B）ブロー弁	
		RSW ストレーナ（C）ブロー弁	
		RSW ストレーナ（D）ブロー弁	
		原子炉補機冷却海水ポンプ（A）	
		原子炉機器冷却海水ポンプ（B）	
		原子炉補機冷却海水ポンプ（C）	
		原子炉機器泠却海水ポンプ（D）	
		RSW ポンプ（A）吐出弁	
		RSW ポンプ（B）吐出弁	
		RSW ポンプ（C）吐出弁	
		RSW ポンプ（D）吐出弁	
		RSW ポンプ吐出連絡管（A）止め弁	
		RSW ポンプ吐出連絡管（B）止め弁	

※別添 1 資料 10 添付 1 に記載の火災区画番号

第 4．1．4表 残留熱除去系フロント系及びサポート系機器（4／4）

	系統	機器	設置場所※
サポート系	HVAC	RHR ポンプ（A）室空調機	
		RHR ポンプ（B）室空調機	
	電源	460V R／B MCC 2C－1	
		460V R／B MCC 2D－1	
		$460 \mathrm{~V} \mathrm{P/C} \mathrm{4-2C}$	
		460V P／C 4－2D	
		6.9 kV メタクラ 6－2C	
		6.9 kV メタクラ 6－2D	
		125 V 直流分電盤 $2 \mathrm{~A}-1$	
		125 V 直流分電盤2B－1	

※別添 1 資料 10 添付 1 に記載の火災区画番号

[^6] 10

第4．1．7図 火災区域又は火災区画の設定（R／B その 2）

[^7]
第4．1．11図 火災区域又は火災区画の設定（R／B その6）

第4．1．12図 火災区域又は火災区画の設定（R／B その7）

第4．1．13図 火災区域又は火災区画の設定（R／B その 8）
\qquad

枠囲みの内容は防護上の観点から公開できません。

第4．1．15図 火㷋区域又は火災区画の設定（R／B その 10 ）
枠囲みの内容は防護上の観点から公開できません。 \square
第4．1．16図 火災区域又は火災区画の設定（R／B その 11）

第4．1．17図 火災区域又は火災区画の設定（R／B その 12）
\square

※ $1 \bigcirc$ ：機能喪失無，\times ：機能喪失有
※2 PCV 内はプラント運転中は，窒素で置換されていることから，火災は発生しない
※3 本過渡事象は，スクラムしない事象である。加えてRCIC ポンプ駆動用タービン制御用流量制御器のみが火災影響を受けても誤起動は起こらない ※4 本過渡事象は，スクラムしない事象である。加えて RCIC 注入弁のみが火災影響を受けても誤起動は起こらない
枓囲みの内容は防護上の絋点から公開できません。

[^8]| 「運転時の異常な過渡変化」 又は | | | | 基準事故」発生の可能性がある機呂と R HR 関連機器の関係（3／6） | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉に有意な影響を与える主要な要因（BWR） （安全評価審查指針の手引きにおける評価事象の選定方法を参考に作成） | | 要因に対応する故障 | 発生の可能性があ る事象 | 事象発生の起因となりうる設備 | 場所 | RHR関連機器 | RHRの同時機能喪失 ※ 1 | 備 考 |
| 炉心内の熱発生又は熱除去の異常な変化 | 弁の開放
 （蒸気ラインの弁の開放） | 逃がし弁開指令誤発生 | 逃がし升開放 | 主蒸気逃がし安全升 | | RHR A 系停止時冷却吸込第一隔雄弁 RHR B 系停止時冷却吸込第一隔離弁 | \bigcirc | ※2 |
| | | 蒸気加減弁開信号誤発生 | 原子炉圧力制御系 の故障 | 蒸気加減弁 | | － | \bigcirc | － |
| | | 圧力制御装置最大出力信号誤発生 | 原子炉圧力制御系 の故障 | 蒸気加隇异圧力制御䍗置（タービン制御系EHC） | | － | \bigcirc | － |
| | | | | | | | | |
| | | | | | | | | |
| | | タービンバイパ | 原子炉圧力制御系 | タービンバイパス升 | | － | \bigcirc | － |
| | | ス弁の誤開放 | の故障 | 圧力制御装置（タービン制御系EHC） | | | O | |
| | | HPCS の詔起動 | HPCS の詔起動 | 高圧炬心スプレイ系ポンプ | | － | \bigcirc | － |
| | | HPCS の䛊起動 | HPCS の䛊起動 | HPCS 注入隔離尣 | | － | \bigcirc | － |
| | | | | 原子炬隔離時泠却系ポンプ | | | | |
| | | | | 原子炬隔離時冷却系タービン | | | | |
| | | | | RCIC 主蒸気止め弁 | | － | O | － |
| | | | | RCIC 蒸気加減升 | | | | |
| | | | | RCICポンプ駆動用タービン制御用流量制御器 | | 125 V 直流分電盤 $2 \mathrm{~A}-1$ | \bigcirc | ※3 |
| | | | | | | RHR A 系S／Cスプレイ隔離尣 | | |
| | | | | | | RHR B 系 S／C スプレイ隔離弁 RHR A 系試験用調整弁 | | |
| | ECCS 等の詋起動 | | | | | RHR B 系試験用調整异 | | |
| | | RCIC の誤起動 | RCIC の誤起動 | | | RHR A 系停止時椧却吸达第二隔離弁 | | |
| | | | | | | RHR B 系停止時冷却吸込第二隔離弁 | | |
| | | | | RCIC 注入弁 | | RHR A 系停止時冷却注入隔離弁 | \bigcirc | ※4 |
| | | | | | | RHR B 系停止時冷却注入隔離升 | | |
| | | | | | | RHR ポンプ(B)ミニマムフロー弁 | | |
| | | | | | | RHR A 系 RW 連絡第一弁 | | |
| | | | | | | RHR B 系RW連絡第一卉 | | |
| | | | | | | RHR A 系系統暖機弁 | | |
| | | | | | | R | | |
| | | | | 原子炉再循環ポンプ（A）原子炉再循環ポンプ（B） | | | | |
| | 再循環ループの誤起動 | 再循環ポンプの | 原子炬椧却材系の停止ループの誤起 | 原子炉再循睘ポンプ（A）吸込弁原子师再循睘ポンプ（B）吸込弁 | | RHR A 系停止時冷却吸込第一隔離弁 RHR B 系停止時冷却吸込第一隔離弁 | \bigcirc | ※2 |
| | | | | 原子炬再循擐ポンプ（ A ）吐出弁 | | | | |
| | | | | 原子炬再循睘ポンプ（B）吐出弁 | | | | |
| | | | | 静止形原子炬再循環ポンプ電源装置（VVVF） | | － | \bigcirc | － |

[^9]※3 本過渡事象は，スクラムしない事象である。加えてRCIC ポンプ駆動用タービン制御用流量制御器のみが火災影響を受けても誤起動は起こらない
枠囲みの内容は防護上の観点から公開できません。

第4．1．5表 「運車時の異常な過渡			又は「設計基準事故」		あ	器と R H R 関連機呂	関係	6）
原子炬に有意な影響を与える主要な要因（BWR） $\left.\begin{array}{c}\text {（安全評価審査指針の手引きにおける評価事象の選定 } \\ \text { 方法を参考に作成）}\end{array}\right)$.		要因に対応する 故障	発生の可能性があ る事象	事象発生の起因となりらる設備	場所	$\begin{gathered} \text { RHR } \\ \text { 関連機器 } \end{gathered}$	$\begin{gathered} \hline \text { R HR の同 } \\ \text { 時機能啔失 } \\ \ldots \text {. } \\ \hline \end{gathered}$	備 考
炬心内の熱発生又は熱除去の異常な変化	再循環ポンプのトリップ	駆動電源喪失	原子炉冷却材流量 の部分霛失，原子炉冷却林流量の喪失	$\begin{aligned} & \hline \text { 原子炉再循環ポンプ (A) } \\ & \text { 原子炉再澴ポンプ (B) } \\ & \hline \end{aligned}$		RHR A 系停止時冷却吸达第一隔離弁 RHR B 系停止時冷却吸込第一隔離弁	\bigcirc	※2
				静止形原子炬再循澴ポンプ電源装置（VVVF）		－	\bigcirc	－
		再循環ポンプト リップ信号誤発生	原子炬冷却材流量 の部分喪失，原子炉泠却材流量の喪失	原子炉再循環ポンプ（ A ）原子炉再循環ポンプ（ B ）		RHR A 系停止時冷却吸込第一隔離弁 RHR B 系停止時冷却吸込第一隔離弁	\bigcirc	※2
				原子炬再循噮ポンプ（A）吸込弁原子炉再循環ポンプ（ B ）吸込弁				
				原子炬再循哝ポンプ（A）吐出弁原子炉再循環ポンプ（B）吐出弁				
				静止形原子炉再循澴ポンプ電源装置（VVVF）		－	\bigcirc	－
				VVVF 受電遮断器（VCB）		$\underline{-}$	\bigcirc	－
	再循環ポンプ速度の増加	速度制御器増加要求信号誤発生	原子炉冷却材流量制御系の誤動作	$\begin{aligned} & \text { 原子㛐再循擐ポンプ (A) } \\ & \text { 原子炉再循噮ポンプ (B) } \\ & \hline \end{aligned}$		RHR A 系停止時冷却吸达第一隔離升 RHR B 系停止時冷却吸达第一隔膗弁	\bigcirc	※2
				静止形原子炬再循噮ポンプ電源装置（VVVF）		－	\bigcirc	－
		主制御器増加要求信号誤発生	原子炉冾却材流量制御系の誤動作	$\begin{aligned} & \hline \text { 原子炉再循嘪ポンプ (A) } \\ & \text { 原子炬再環ポンプ (B) } \\ & \hline \end{aligned}$		RHR A 系停止時冷却吸込第一隔離弁 RHR B 系停止時冷却吸込第一隔離弁	\bigcirc	※2
				静止形原子炉再循澴ポンプ電源装置（VVVF）		－	\bigcirc	－
原子炬冷却材圧力又は原子炉冷却材保有量の異常 な変化	弁の閉止 （蒸気ラインの弁の閉止）	蒸気加減弁の閉止	負荷の喪失	蒸気加減弁		－	\bigcirc	－
				PLUリレー				
				急速作動電磁㚏				
				高圧リレートリップ油圧スイッチ 圧力制御装置（タービン制御系EHC）				
		主蒸気止め弁閉止	負荷の喪失 給水流量の全喪失 + タービントリッ プ	主蒸気止め弁				
				タービン保護装置		－	O	－
				原子炉水位高（L 8）信号計装		－	\bigcirc	－
		主蒸気隔離弁の閉止	主蒸気隔離弁の誤閉止	主蒸気第一隔離弁		RHR A 系停止時冷却吸达第一隔離弁 RHR B 系停止時冷却吸込第一隔離弁	\bigcirc	※2
				主蒸気第三隔離弁		－	\bigcirc	－

[^10]

$※ 1 \bigcirc:$ 機能喪失無，\times ：機能喪失有
※2 PCV 内はプラント運転中は，窒素で置換されていることから，火災は発生しない
体囲みの内容は防濩上の箴点から公開できません。

第 4．1．5表	「連車云時の異	常な過渡変	化」又は	設計基準事故」 発生の可能	ぶあ	幾器と R H R 関連機	の関㐿	／6
原子炬に有意な影響を与える主要な要因（BWR） （安全評価富査指針の手引きにおける評伍事象の選定方法を参考に作成）		要因に対応する 故障	発生の可能性があ る事象	事象発生の起因となりうる設備	場所	RHR関連機器	RHRの同時機能哀失 ※ 1	備 考
原子炉冷却材圧力又は原子炬洽却材保有量の異常 な変化	弁の開放 （蒸気ラインの弁の開放）	逃がし弁開指令誤発生	逃がし升開放	主蒸気逃がし安全弁		RHR A 系停止時冷却吸込第一隔離弁 RHR B 系停止時冷却吸込第一隔離弁	\bigcirc	※2
		蒸気加減弁開信号誤発生	原子炉圧力制御系 の故障	蒸気加減弁 圧力制御装置（タービン制御系EHC）		－	\bigcirc	－
		圧力制御装置最大出力信号䛵発生	原子炉圧力制御系 の故障	蒸気加減弁		－	\bigcirc	－
				圧力制御装置（タービン制御系EHC）				
				タービンバイパス弁				
				圧力制御装置（タービン制御系EHC）				
		タービンバイパ ス弁の誤開放	原子炉圧力制御系 の故障	圧力制御装置（タービン制御系EHC）		－	\bigcirc	－
	給水流量の増加	原子炬給水制御系増信号䛊発生	給水制御系の故障	タービン駆動原子师給水ポンプ（TDRFP）		－	\bigcirc	－
				電動機駆動原子炬給水ポンプ（MDRFP）				
		予備給復水ポン プの詋起動	給水制御系の故障	電動機駆動原子炬給水ポンプ（MD R F P ）		－	\bigcirc	－
				電動機駆動原子炬給水ポンプ給水流量調節升後弁				
				電動機駆動原子炉給水ポンプ吸达亣				
				給水調節弁				
				高圧復水ポンプ				
				高圧復水ポンプ吐出弁				
				高圧復水ポンプ吸込弁				
				低圧復水ポンプ				
				低圧復水ポンプ吐出弁				
				低圧復水ポンプ吸込弁				
	ECCS 等の䛊起動	HPCS の誤起動	HPCS の誤起動	高圧炬心スプレイ系ポンプ		－	\bigcirc	－
				HPCS 注入隔離弁		－	\bigcirc	－
		RCIC の誤起動	RCIC の誤起動	原子炬隔離時冷却系ポンプ		－	\bigcirc	－
				原子炬隔離時冷却系タービン				
				RCIC 主蒸気止め弁				
				RCIC 蒸気加減并				
				RCICポンプ駆動用タービン制御用流量制御器		125 V 直流分電盤 $2 \mathrm{~A}-1$	\bigcirc	※3
				RCIC 注入弁		RHR A系 S／Cスプレイ隔離弁 RHR B 系 S／C スプレイ隔離弁 RHR A 系試験用調整弁 RHR B 系試験用調整弁 RHR A 系停止時冷却吸达第二隔離弁 RHR B 系停止時冷却吸込第二隔離弁 RHR A 系停止時冷却注入隔離升 RHR B 系停止時冷却注入隔離升 RHR ポンプ（A）ミニマムフロー弁 RHR ポンプ（B）ミニマムフロー弁 RHR A 系 RW 連絡第一弁 RHR B 系 RW 連絡第一弁 RHR A 系系統暖機弁 RHR B 系系統暖機弁	－	※4

[^11]※2 PCV 内はプラント運転中は，窒素で置換されていることから，火災は発生しない
※3 本過渡事象は，スクラムしない事象である。加えてRCICポンプ駆動用タービン制御用流量制御器のみが火災影響を受けても誤起動は起こらない ※ 4 本過渡事象は，スクラムしない事象である。加えてRCIC 注入弁のみが火災影響を受けても誤起動は起こらない

4.2 内部火災発生時に期待できる緩和設備

R／B 又は T／B における内部火災において，動作を期待できる緩和機能を第4．2．1表に示す。

第4．2．1表 内部火災発生時に期待できる緩和系

		R／B 火災発生時	T／B 火災発生時
MS－1 機能	$\begin{gathered} \text { 原子炉 } \\ \text { 停止機能 } \end{gathered}$	原子炉保護系 （中性子束高等のスクラム機能は多重化され，かつ 2 区分機能維持できる設計として いる。また，T／B 側 RPS は機能喪失しない）	原子炉保護系 （R／B 側 RPS）
	炉心 冷却機能	RCIC 及びECCS （3 区分に多重化されてお り，1区分火災で機能喪失し ても 2 区分は機能維持され る）	RCIC 及び ECCS （3 区分とも機能維持）
	その他機能	主蒸気隔離弁逃がし安全弁（安全弁機能）	主蒸気隔離弁逃がし安全弁（安全弁機能）
MS－3 機能		タービンバイパス弁	逃がし安全弁 （逃がし弁機能）

5．解析における機能喪失の仮定
（1）内部火災影響による機能喪失の仮定
4． 2 で示した動作を期待できる緩和機能を前提に，火災影響により解析におい て機能喪失を仮定する緩和系を第5．1表に示す。MS－3 機能については，内部火災 が発生する建屋ごとに機能喪失を仮定する。タービン系の原子炉保護系（RPS）（主蒸気止め弁閉スクラム・蒸気加減弁急速閉スクラム）については，T／B における内部火災に対して機能喪失すると仮定する。

第5．1表 火災影響により機能喪失を仮定する緩和系

	R / B 火災発生時	T / B 火災発生時
MS－1 機能	-	タービン系 RPS
MS－3 機能	逃がし安全弁（逃がし弁機能） 再循環ポンプトリップ機能	再循環ポンプトリップ機能 タービンバイパス弁

（2）単一故障の仮定【ステップ 7】
安全評価審査指針に従い，想定した事象の解析を行うに際して，原子炉停止，

灲心冷却及び放射能閉じ込めの各基本的安全機能別に，解析の結果を厳しくする機器の単一故障を仮定する。具体的な単一故障の想定と解析への影響を第5．2表 に示す。また，R／B 及びT／B での代表事象発生時に期待する緩和系を第5．3表に示す。

なお，火災を想定しても安全停止に必要な機能を維持できるように系統分離対策を講じている。この詳細については，「女川原子力発電所 2 号炉 火災防護につ いて」資料 7 に示している。

第5．2表 単一故障の仮定と解析への影響

単一故障を仮定する機能	解析への影響
原子炉停止機能	- 安全保護系に単一故障を仮定する。 - 安全保護系は多重化されているため影響はない。
炉心冷却機能	－内部火災により 1 区分，単一故障により更に 1 区分 の炉心冷却機能が喪失したとしても，残りの区分に より炉心冷却が可能であるため解析には影響しな い。
放射能閉じ込め機能	－評価事象において燃料は破損しない。

第5．3表 代表事象発生時に期待する緩和機能

R／B		スクラム	注水	減圧

6．解析の実施【ステップ 8】
（1）主要な解析条件
解析に当たつては，第6．1表に示すとおり，設置許可申請解析において使用し ているプラント動特性解析コード（REDY）及び単チャンネル熱水力解析コード
（SCAT）を使用している。また，解析条件については，プラントの初期状態等を設計基準事象である過渡事象における前提条件を踏襲する。主な解析条件を第 6.2 表に示す。

第6．1表 解析コード

解析項目	コード名		
プラント動特性挙動 •中性子束			
•原子炉圧力			
•原子炉冷却材圧力バウンダリ圧力		\quad REDY \quad（単チャンネル熱水力挙動	•燃料被覆管温度
:---			

第6．2表 主な解析条件

項目	解析条件
原子炉出力	$2,540 \mathrm{MW}$
炉心入口流量	$30.3 \times 10^{3} \mathrm{t} / \mathrm{h}$
原子炉圧力	$7.03 \mathrm{MPa}[\mathrm{gage}]$
原子炉水位	通常水位
外部電源	あり

（2）判断基準
内部火災を起因として発生する可能性のある過渡的な事象に対して，単一故障 を想定しても，影響緩和系により事象は収束し，原子炉が安全停止を維持できる ことを確認する。
（3）解析結果
解析を実施する事象について，解析結果を第6．3表～第6．4表及び第6．1図～第6．4図，第6．6図～第6．9図に，事象の推移を第6．5図及び第6．10図に示す。
a．R／B での内部火災に起因する事象
（a）給水制御系の故障
i ．原子炉停止状態
給水流量の増加による炉心入口サブクールの増加によってボイドが減少し，原子炉出力が上昇する。原子炉水位が上昇し，約 9 秒後原子炉水位高（レベ

ル8）に達するとタービントリップし，主蒸気止め弁閉信号が発生する。主蒸気止め弁の閉止により，原子炉はスクラムする。中性子束は定格値の約 146\％ に達する。逃がし安全弁（安全弁機能）の作動により，原子炉圧力（ドーム部）は約 8．02MPa［gage］（原子炉冷却材圧力バウンダリ圧力ピーク値： 8． 29 MPa ［gage］）に抑えられる。
ii ．炉心冷却状態
原子炉水位高（レベル 8）到達により，給水ポンプがトリップするため，原子炉水位は徐々に低下するが，高圧炉心スプレイ系等により注水は維持され る。また，原子炉圧力はタービントリップに伴う主蒸気止め弁閉止とともに上昇するが，逃がし安全弁（安全弁機能）の作動により抑制が可能。
iii．安全停止状態
原子炉スクラム及び炉心泠却により原子炉の安全停止の維持は可能である。
b．T／Bでの内部火災に起因する事象
（a）給水加熱喪失＋給水制御系の故障
i 。原子炉停止状態
給水流量の増加と給水加熱喪失による炉心入口サブクールの増加によって ボイドが減少し，原子炉出力が上昇する。また，給水流量の増加により原子炉水位が上昇し，約 9 秒後に原子炉水位高（レベル 8）に達するとタービント リップし，主蒸気止め弁閉信号が発生するが，タービン系 RPS の機能喪失を仮定するため，この時点ではスクラムしない。主蒸気止め弁の閉止により原子炉圧力が上昇し，炉心内のボイドの減少により原子炉出力が上昇するため，約 9 秒後に中性子束高信号が発生し，原子炉はスクラムする。中性子束は定格値の約 369% に達する。逃がし安全弁（逃がし弁機能）の作動により，原子炉圧力（ドーム部）は約 8．09MPa［gage］（原子炉冷却材圧力バウンダリ圧力ピ ーク値：8．38MPa［gage］）に抑えられる。
ii ．炉心冷却状態
原子炉水位高（レベル 8）到達により，給水ポンプがトリップするため，原子炉水位は徐々に低下するが，高圧炉心スプレイ系等により注水は維持され る。また，原子炉圧力はタービントリップに伴う主蒸気止め弁閉止とともに上昇するが，逃がし安全弁（逃がし弁機能）の作動により抑制が可能。
iii．安全停止状態
原子炉スクラム及び炉心冷却により原子炉の安全停止の維持は可能である。

以上より，内部火災を起因として発生する可能性のある過渡的な事象に対して，単一故障を想定しても，影響緩和系により事象は収束し，原子炉が安全停止を維持できることを確認した。

以上

表 6.3 解析結果まとめ表（R／B）

重畳事象	項目	解析結果 内は判断目安
給水制御系の故障（主蒸 気止め弁閉スクラム）	中性子束（\％）	$146(-)$
	原子炉圧力 $(\mathrm{MPa}[\mathrm{gage}])$	$8.29(10.34)$
	燃料被覆管温度（ $\left.{ }^{\circ} \mathrm{C}\right)$	沸騰遷移しない
(1200)		

発生事象	時刻（秒）
給水制御系故障発生	0
原子炉スクラム（主蒸気止め弁閉）	9.0
安全弁開開始	10.8

表6．4 解析結果まとめ表（T／B）

重畳事象	項目	解析結果 （）内は判断目安
	中性子束（\％）	$369(-)$
	原子炉圧力（MPa［gage］）	$8.38(10.34)$
	燃料被覆管温度（ ${ }^{\circ} \mathrm{C}$ ）	615 (1200)

発生事象	時刻（秒）
給水加熱喪失＋給水制御系の故障発生	0
原子炉水位 $\mathrm{L8}$（給水ポンプトリップ）	9.0
原子炉スクラム（中性子束高）	9.4
逃がし弁開開始	9.8

第6．1図R／Bにおける内部火災による事象変化（中性子束）

第6．2図 R／Bにおける内部火災による事象変化（原子炉水位）

第6．3図 R／Bにおける内部火災による事象変化（原子炉圧力）

第 6.4 図 R／B における内部火災による事象変化（燃料被覆管温度）

第6．5図 R／Bにおける事象推移のフローチャート

第6．6図T／Bにおける内部火災による事象変化（中性子束）

第6．8図T／Bにおける内部火災による事象変化（原子炉圧力）

第6．9図T／Bにおける内部火災による事象変化（燃料被覆管温度）

第6．10図T／Bにおける事象推移のフローチャート

女川原子力発電所 2 号炉

運用，手順能力説明資料
火災による損傷の防止
第8条 火災による損傷の防止 $(1 / 6)$

第8条 火災による損傷の防止（2／6）

第8条 火災による損傷の防止（3／6）

第8条 火災による損傷の防止（4／6）

第 1 表：運用，手順に係る対策等（設計基準）

設置許可基準規則対象条文	対象項目	区分	運用対策等
第8条内部火災	○水素感知時の対応手順 ○蓄電池室の換気設備停止時の対応手順	運用•手順	- 水素感知時の対応手順（手順整備含む） - 蓄電池室の換気設備停止時の対応手順
		体制	－（運転員の当直体制）
		保守•点検	－
		教育•訓練	－運転員による運転操作等の訓練
	○火災区域，火災区画毎の制限発熱量を超過しないよう可燃物の管理を実施 ○火災区域，火災区画における溶接等の作業において火気作業の計画策定，消火器等の配備，監視人の配置等を実施	運用•手順	- 持込可燃物の管理手順（手順整備含む） - 火気作業の管理手順（手順整備含む）
		体制	－
		保守•点検	－
		教育•訓練	－火災防護に関する教育
	○火災受信機盤の巡視•監視	運用•手順	－火災受信機盤の巡視•監視（手順整備含む）
		体制	－（運転員の当直体制）
		保守•点検	－
		教育•訓練	－運転員による運軽操作等の教育
	○故障警報発報時の対応手順	運用•手順	－故障警報発報時の対応手順（手順整備含む）
		体制	－（運転員の当直体制）
		保守•点検	－
		教育•訓練	－運転員による運転操作等の訓練

\begin{tabular}{|c|c|c|c|}
\hline 設置許可基準規則対象条文 \& 対象項目 \& 区分 \& 運用対策等

\hline \multirow[t]{12}{*}{第8条 内部火災} \& \multirow[t]{4}{*}{○火災感知器等作動時の対応手順} \& 運用•手順 \& －火災感知器作動時の対応手順（手順整備含む）

\hline \& \& 体制 \& －（運転員の当直体制）

\hline \& \& 保守•点検 \& －

\hline \& \& 教育•訓練 \& －運転員による運転操作等の教育

\hline \& \multirow[t]{4}{*}{○消火設備作動時及び使用時の対応手順} \& 運用•手順 \& －消火設備作動時及び使用時の対応手順（手順整備含む）

\hline \& \& 体制 \& －（運転員の当直体制）

\hline \& \& 保守•点検 \& －

\hline \& \& 教育•訓練 \& －火災防護に関する教育

\hline \& \multirow[t]{4}{*}{\begin{tabular}{l}
【原子炉格納容器の火災の影響軽減対策】

可能な限り離隔による分散配置

低温停止中及び起動中の火災感知器設置

低温停止中の原子炉格納容器の各入口への消火器設置

火気作業実施時の消火器の配備

火災時の対応手順

} \& 運用•手順 \&

- 火災感知器作動時の対応手順（手順整備含む）

- 消火要員等による消火器及び消火栓を用いた消火手順 （手順整備含む）

－原子炉の安全停止操作の手順（手順整備含む）
\end{tabular}

\hline \& \& 体制 \& | - （運転員の当直体制） |
| :--- |
| - （消防要員等による体制） |
| - （自衛消防組織） |

\hline \& \& 保守•点検 \& | - 設備の点検 |
| :--- |
| - 設備の故障時の補修 |

\hline \& \& 教育•訓練 \& | - 火災防護に関する教育 |
| :--- |
| - 運転員による運転操作等の訓練 |
| - 消防要員等による総合的な訓練 |
| - 所員による消防訓練 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 設置許可基準規則対象条文 \& 対象項目 \& 区分 \& 運用対策等

\hline \multirow[t]{8}{*}{第8条 内部火災} \& \multirow[t]{4}{*}{\begin{tabular}{l}
【中央制御室内の火災の影響軽減対策】

離隔距離等による分離

運転員による二酸化炭素消火器を用いた消火を実施

中央制御室内火災時の原子炉の高温停止•低温停止 の達成及び維持

} \& 運用•手順 \&

- 火災感知器作動時の対応手順（手順整備含む）

- 運転員による二酸化炭素消火器を用いた消火手順（手順整備含む）

－原子炉の安全停止操作の手順（手順整備含む）
\end{tabular}

\hline \& \& 体制 \& | - （運転員の当直体制） |
| :--- |
| - （消防要員等による体制） |

\hline \& \& 保守•点検 \& | - 設備の点検 |
| :--- |
| - 設備の故障時の補修 |

\hline \& \& 教育•訓練 \& | - 火災防護に関する教育 |
| :--- |
| - 運転員による運転操作等の教育 |
| - 消防要員等による総合的な訓練 |

\hline \& \multirow[t]{4}{*}{○排煙装置の起動手順（中央制御室）} \& 運用•手順 \& －排煙装置による排煙の手順（手順整備含む）

\hline \& \& 体制 \& | - （運転員の当直体制） |
| :--- |
| - （消防要員等の体制） |

\hline \& \& 保守•点検 \& －

\hline \& \& 教育•訓練 \& | - 火災防護に関する教育 |
| :--- |
| - 運転員による運転操作等の訓練 |
| - 消防要員等による総合的な訓練 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 設置許可基準規則対象条文 \& 対象項目 \& 区分 \& 運用対策等

\hline \multirow[t]{4}{*}{第8条 内部火災} \& \multirow[t]{4}{*}{\begin{tabular}{l}
【火災発生時の対応手順】

火災感知設備作動時の対応手順

自動消火設備作動時の対応手順

消火要員等による消火活動

原子炉格納容器内の消火活動

原子炉の安全停止操作

} \& 運用•手順 \&

- 火災感知器作動時の対応手順（手順整備含む）

- 消火要員による消火器及び消火栓を用いた消火手順 （手順整備含む）

－原子炉の安全停止操作の手順（手順整備含む）
\end{tabular}

\hline \& \& 体制 \& | - （運転員の当直体制） |
| :--- |
| - （消防要員等による体制） |
| - （自衛消防組織） |

\hline \& \& 保守•点検 \& | - 設備の点検 |
| :--- |
| - 設備の故障時の補修 |

\hline \& \& 教育•訓練 \& | - 火災防護に関する教育 |
| :--- |
| - 運転員による運転操作等の訓練 |
| - 消防要員等による総合的な訓練 |
| - 所員による消防訓練 |

\hline
\end{tabular}

設置許可基準規則対象条文	対象項目	区分	運用対策等
第8条 内部火災	－火災防護計画 ○火災防護対策及び計画を実施するために必要な手 順，機器，組織体制について定める 火災防護組織における責任と権限を定める 管理権原者の役割として，必要な要員を確保し，配置 することを定める	運用•手順	－対象項目のとおり（手順整備含む）
		体制	－
		保守•点検	－
		教育•訓練	－火災防護に関する教育
	○持込可燃物管理，火気作業管理等の火災の発生防止 に係る対策について定める ○火災の早期感知及び消火活動について定める ○原子炉施設の安全機能を有する構築物，系統及び機器を火災から防護するため，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減の3つの深層防護の概念に基づいて，火災防護対策を定める。	運用•手順	－対象項目のとおり（手順整備含む）
		体制	－－
		保守•点検	－
		教育•訓練	－火災防護に関する教育
	○原子炉施設全体を対象とした火災防護計画であること を定める ○原子炉施設の安全機能を有する構築物，系統及び機器を火災から防護するため，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減の3つの深層防護の概念に基づいて，火災防護対策を定める。	運用•手順	－対象項目のとおり（手順整備含む）
		体制	－
		保守•点検	－
		教育•訓練	－火災防護に関する教育

女川原子力発電所 2 号炉

火災防護に係る等価時間算出プロセスについて

1．概要

「実用発電用原子炉及びその附属施設の火災防護に係る審査基準」（以下「火災防護審査基準」という。）では，原子炉施設が火災によりその安全性が損な われないよう，必要な火災防護対策を要求しており，「原子力発電所の内部火災影響評価ガイド」（以下「内部火災影響評価ガイド」という。）では，これ らの要求に基づく火災防護対策により，原子炉施設内で火災が発生しても，原子炉の安全停止に係る安全機能が確保されることを確認するために実施する内部火災影響評価の手順の一例が示されている。

本資料は，女川原子力発電所2号炉に対して「内部火災影響評価ガイド」を参照して内部火災影響評価を行う際のインプット情報となる等価時間の算出 プロセスについて，その概要をまとめたものである。

2．火災影響評価における要求事項

内部火災影響評価は，「火災防護審査基準」の「2．3 火災の影響軽減 2．3．2」 に基づき実施することが要求されている。

実用発電用原子炉及びその附属施設の火災防護に係る審査基準（抜粋）

2．3． 2 原子炉施設内のいかなる火災によっても，安全保護系及び原子炉停止系の作動が要求される場合には，火災による影響を考慮しても，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉を高温停止及び低温停止できる設計であること。 また，原子炉の高温停止及び低温停止が達成できることを，火倓影響評価により確認すること。
（火災影響評価の具体的手法は「原子力発電所の内部火災影響評価ガイド」による。）
（参考）
「高温停止及び低温停止できる」とは，想定される火災の原子炉への影響を考慮して，高温停止状態及び低温停止状態の達成，維持に必要な系統及び機器がその機能を果たす ことができることをいう。

また，いかなる火災によっても原子炉を高温停止及び低温停止できる設計で あることを確認する際，原子炉の安全確保の観点により，内部火災影響評価ガ イドにおいて要求される以下の事項を考慮する。

「原子力発電所の内部火災影響評価ガイド」（抜粋）

4．火災時の原子炉の安全確保
3．に想定する火災に対して，
－原子炉の安全停止に必要な機能を有する系統が，その安全機能を失わないこと
（信頼性要求に基づき独立性が確保され，多重性又は多様性を有する系統が同時に その機能を失わないこと）。

内部火災により原子炉に外乱が及び，かつ，安全保護系，原子炉停止系の作動を要求される場合には，その影響（火災）を考慮し，安全評価指針に基づき安全解析 を行う必要がある。

内部火災影響評価ガイドでは，「火災影響評価は，『火災区域／火災区画の設定』，『情報及びデータの収集，整理』，『スクリーニング』，『火災伝播評価』というステップで実施する」ということが示されている（第 1 図参照）。

等価時間は，「情報及びデータの収集•整理」において設定した火災区画の耐火壁の耐火能力を評価するための指標であり，火災区画内の可燃性物質の量 と火災区画の面積から算出される火災の継続時間に相当する。

3．等価時間の算出について

等価時間の算出は，以下の手順で行う。
（1）火災区域及び火災区画の設定
原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器（具体的には，機器，配管，弁，ダクト，ケーブル，トレイ，電線管，盤等）が設置される火災区画の設定にあたつては，原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器の設置箇所，建屋の間取り，障壁，貫通部，扉の設置状況，機器やケーブル等の配置，耐火壁の能力，系統分離基準等を総合的に勘案し設定した
（2）火災区画内の可燃物の選定
a．可燃物量調査範囲について
可燃物量調査範囲は，火災影響評価の信頼性向上を図るため建屋内の全 ての場所について網羅的に把握する観点から，下記のとおりとした。

- 原子炉建屋全域
- タービン建屋全域
- 制御建屋全域
b．可燃物量調査対象について
可燃物量調査対象は，上記a．の範囲の全ての可燃物を対象とする。
ただし，除外する可燃物については以下のとおりとする。
（a）表示板，パッキン，塗料及び計器内の可燃物，工具棚，本設機器付属品（弁のキャップ），ページング，保安電話，拡声器，PHS アンテナ等は，発火の可能性が極めて低いこと，可燃物量としては少量であり，油等を加えた総熱量に対してその影響が小さいことから除外する。
（b）電線管内のケーブルは，酸素の供給が不十分で継続的な燃焼とならな いので除外する。
（c）仮置き資機材については定期検査期間中の一時的な持ち込みである こと，持込み可燃物管理にて管理すべきものであることから除外とす る。また，長期設置資機材（発電用資材として保管している潤滑油等 は除く）については，足場材や治工具等の鋼材が主であることから（a） と同様な理由から除外する。
（3）火災区画内の可燃物量調査
火災区画の可燃物量調査については，図面等の設計図書による図書調査， プラントウォークダウンによる現場調査を基本とする。

ただし，火災影響評価に用いる可燃物については本設備の可燃物であり，増減が生じる場合は改造工事に起因するものであることから，工事主管箇所 への聞き取り等による調査も考慮する。

なお，火災区画の面積については，設計図書から算定した。
a．図書調查
上記（2）で選定した可燃物のうち，ポンプや電動機等で使用される潤滑油，グリース，ケーブルの物量については，設計図面等を用いて調査した。

また，新規制基準対応への適合のための火災防護対策の検討に伴い，火災区画の見直しが発生した場合には，都度，図面等と現場を照合し，新し い火災区画における機器の配置等を確認し，可燃物の増減を評価する。
b．現場調査
上記（2）で選定した可燃物のらち，火災区画にケーブルトレイ，電源盤，油内包機器について，現場ウォークダウンにより調査した。

具体的には，各火災区画に設置されているケーブルトレイの布設状態の確認，油内包機器の種類•数量，現場の各種電気盤の面数及び寸法の確認 を実施した。
（4）可燃物の単位発熱量及び可燃物量調査結果に対する考慮
可燃物に係る単位発熱量については，最新の知見及び最も広く使用されて いる実績のあるNFPA Fire Protection Handbook 最新版（20th Edition）を原則として使用する。

火災影響評価に用いる火災区画の総可燃物量の算出に際しては，図書調査，現場調査における可燃物量の不確かさを考慮し，調査した総可燃物量に裕度 を持たせることとする。

具体的には，調査結果を基に算出した総発熱量に安全率 20% を加味する。
（5）等価時間の算出
等価時間の算出については，火災区画に存在する可燃物の総発熱量を算出 し，各火災区画の単位床面積あたりの発熱量である火災荷重を，下式により算定する。（内部火災影響評価ガイドと同様）

等価時間（h）＝火災荷重／燃焼率
＝発熱量／火災区域及び火災区画の面積／燃焼率
ここで，
火災荷重＝発熱量／火災区画の面積
燃焼率 ：単位時間単位面積あたりの燃焼量（ $908,095 \mathrm{~kJ} / \mathrm{m}^{2} / \mathrm{h}$ ）
発熱量 ：火災区画内の総発熱量（kJ）
$=$ 可燃性物質の量 \times 熱含有量
可燃性物質の量：火災区画内の各種可燃性物質の量（ m^{3} または k ）
火災区画の面積：火災区画の床面積（ m^{2} ）
※ 1 ：燃焼率としては，NFPAハンドブックのFire Protection Handbook Section／Chapter18，＂Confinement of Fire in Buildings Association＂の標準火災曲線のうち，最も厳しい燃焼クラスであるCLASS Eの値である 908， $095 \mathrm{~kJ} / \mathrm{m}^{2} / \mathrm{hr}$ を用いる。
（6）火災区画特性表の作成
可燃物量の調査結果は，火災区画特性表として整理した。火災区画特性表 の代表例を添付資料1に示す。

各火災区画の可燃物量の調査結果については，火災区画特性表 II にまとめ るとともに，火災影響評価のデータシートとして火災区画の部屋毎に設置機器や可燃物量を整理したデータシートを作成した。

改造工事等の設備更新を行う場合は，設計管理の中で可燃物量の増減の確

認し，その結果をデータシートに反映する。
（7）今後の対応
a．「火災区画特性表」による火災荷重•等価時間の管理
火災荷重•等価時間の管理については，「火災区画特性表」を用いて内部火災影響評価の一環として実施する。等価時間の算出手順を含めた内部火災影響評価の手順及び実施頻度については，火災防護計画で定める。

また，改造工事等の設備更新を行う場合は，設計管理の中で可燃物量の増減の確認，既存の内部火災影響評価結果に影響を与えないことを確認す ることを火災防護計画で定める。
b．持込み可燃物管理
持込み可燃物の管理は，火災発生防止及び火災発生時の規模の局限化，影響軽減を目的として実施する。持込み可燃物の運用管理手順には，発電所の通常運転に関する可燃物，保守や改造に使用するために持ち込まれる可燃物（一時的に持ち込まれる可燃物を含む）の管理を含む。

具体的には，原子炉施設内の各火災区画（部屋）の耐火障壁の耐火能力，設置されている火災感知器，消火設備の情報から管理基準を定め，火災区画（部屋）に持ち込まれ1日以上仮置きされる可燃物と火災区画（部屋） の既存の可燃物の火災荷重の総和を評価し，その管理基準を超過しないよ ら持込み可燃物を管理する。

以上

第1図：等価時間の算出フロー

女川原子力発電所 2 号炉の火災区画特性表の例

火災区画特性表 I

火災区画特性表のまとめ											$1 / 1$
プラント	$0-2$	建屋	原子炉建屋	火災区画番号	R1－A						

火災区画特性表II

火災区画内の火災源及び防火設備										1／1
	プラント	O－2				火災区画番号		R1－A		
No．	火災区画内の部屋番号	火災源				防火設備				
	火災区画内の部屋名称	$\begin{gathered} \text { 床面積 } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	発熱量 （MJ）	火災荷重 （MJ／m²）	等価時間 （h）	火災検知器	主要消火設備	消火方法	消火設備の バックアップ	障壁耐火時間 $(h)(* 1)$

火災区画特性表III

火災区画に隣接する火災区画（部屋）と伝播経路							1／2
プラント			0－2	火災区画番号		R1－A	
No．	対象区画内 の部屋番号	隣接火災区画番号	隣接火災区画内の部屋番号	火災伝播経路	障壁の耐火能力 （h）（＊1）	隣接部屋の消火形式	伝播の可能性
			隣接火災区画内の部屋名称				

火災区画特性表 1

火災により影響を受ける設備						1／2
	プラント	0－2		火災区画番号	R1－A	
No	火災区画内の	系統名	機器番号	機器名称	安全区分	影響を受ける緩和系

火災区画特性表 V

火災により影響を受けるヶーブル					1／1
	プラント	0－2	火災区画番号	R1－A	
No	火災区画内の部屋番号	火災区画内の部屋名称	○ ：添付有 x ：添付無	備考	

添付資料－1

火災影響評価のデータシート 目次					1／1
	プラント	0－2	火災区画番号	R1－A	
No	火災区画内の部屋番号	火災区画内の部屋名称	O：添付有 x ：添付無	備考	

[^0]: ＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す。

[^1]: ＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す

[^2]: ＊各系統から抽出された機器に対して，火災による放射性物質の貯蔵又は閉じ込めに必要な機能への影響を考慮し，火災防護対象の要否を個別に評価した結果を添付資料2に示す

[^3]: ス
 ※ 給水加熱器 1 段の喪失を想定。複数段の機能喪失時には，炉心入口サブクールの増加量が大きくなり，スクラム時刻は早くなるが， クラムする出力点は変わらず，スクラム後の評価は同様となると考えられる。
 ※

[^4]: ○：重畳事象が厳しい \times ：単独事象が厳しい

[^5]: ○：重畳事象が厳しい \times ：単独事象が厳しい

[^6]: 枠囲みの内容は防護上の観点から公開できません。

[^7]: 第4．1．8図 火災区域又は火災区画の設定（R／B その 3）

[^8]: ※ $1 \bigcirc$ ：機能喪失無，$\times:$ 機能喪失有
 ※2 PCV 内はプラント運転中は，窒素で置換されていることから，火災は発生しない

[^9]: PCV内はプラン運転中は，窒素で置換されていることから，火災は発生しない ※ 4 本過渡事象は，スクラムしない事象である。加えてRCIC 注入弁のみが火災影響を受けても誤起動は起こらない

[^10]: ※2 PCV 内はプラント運転中は，窒素で置換されていることから，火災は発生しない

[^11]: ※1 ○：機能喪失無，\times ：機能喪失有

