> 女川原子力発電所 2 号炉 指摘事項に対する回答一覧表(後施工せん断補強筋による耐震補強について)

No．	分類	項 目	審 査会合日	回 答
1	指 摘 事 項	CCb 工法を適用する構造物ごと に，CCb の性能に影響を与える要因を網羅的に整理し，建設技術審査証明報告書の実験及び解析の対象範囲と対象外の範囲を表等で提示すること。	H30．8． 7	（本日回答） CCb により耐震補強を行った構造物に対 し，CCb の性能に影響を与える要因（CCb の鉄筋径•種別，部材厚，荷重形態等）を整理し，審査会合で示したフロー（2）より確認 できる範囲（建設技術審査証明報告書より確認）またはフロー③）より確認できる範囲 （フロー（2）で確認できなかった項目に対 し，数値実験解析等により確認）を表形式 にて整理し追記した。 －資料－1－2－2 3.3 （2）建設技術審査証明報告書の適用範囲の確認（ $\mathrm{p} 17 \sim 18$ ）
2	指 摘 事 項	充填剤として用いるグラウト材と CCb の両端のセラミック製のキャ ップについて，仕様，特性及び役割について提示すること。また， グラウト材及びセラミック製のキ ヤップの付着効果を踏まえ，材料設定の妥当性，設計へ反映する事項を提示すること。	H30．8． 7	（本日回答） 充填材（グラウト）及び定着体（セラミッ クキャップ）に用いる材料の役割，要求性能及び特性等について整理し，その妥当性 を追記した。 －資料－1－2－2 3.3 （2）建設技術審査証明報告書の適用範囲の確認（p19～21）
3	指 摘 事 項	CCb 工法の定着効果及び付着効果 のモデル化及びその妥当性につい て整理して提示すること。	H30．8． 7	（本日回答） CCb の解析上の定着効果及び付着効果のモ デル化方法とその妥当性について整理し追記した。 －資料－1－2－2 4.2 ステップ（1）：CCb の解析上のモデル化方法（p28～37）
4	指 摘 事 項	CCb の解析モデルにおける定着無効区間の設定に関し，5Dとした妥当性を条件の異なる複数の実験結果を用いて検証し，提示するこ と。	H30．8． 7	（本日回答） 建設技術審査証明報告書に記載の実験ケ ースのらち審査会合で示した以外のケー ス（シリーズ1）について，せん断補強筋 （CCb）の無効区間長をパラメータとした材料非線形解析の結果を整理し，その妥当性を追記した。 －資料－1－2－2 4.2 ステップ（1）：CCb の解析上のモデル化方法（p28～34）

No．	分類	項 目	審 査会合日	回 答
5	指 摘 事 項	部材のひび割れが CCb 工法の付着性能に及ぼす影響について，採用箇所のひび割れ状況を含めて整理 して提示すること。	H30． 8.7	（本日回答） CCb 工法を採用した構造物（部材）につい て，CCb 施工箇所のひび割れ状況を整理し追記した。 －資料－1－2－2 6．女川 2 号炉におけるコンクリートの 健全性の検討（確認項目（E））（p62～64）
6	指 摘 事 項	ディープビーム的な破壊が CCb 工法へ及ぼす影響について，試験で実証しなくて良いと考えた理由を提示すること。	H30． 8.7	（本日回答） 棒部材的な破壊形態及びディープビーム的な破壊形態に対する応力の負担機構や ディープビーム的な破壊に対し棒部材式 によりせん断耐力を評価することの保守性等を整理し，ディープビーム的な破壊に対する CCb 工法の適用性を整理した。 また，ディープビーム的な破壊に対する CCb のせん断補強効果の確認実験を行うこ と及び実験の目的や概要，確認内容等につ いて記載し，確認実験の結果は工事計画認可申請段階で示すことを追記した。 －資料－1－2－2 7．ディープビーム的な破壊に対する CCb工法の適用性の検討（確認項目（F））（p66 ～69）
7	指 摘 事 項	面外荷重と面内荷重が作用する部材への CCb 工法の適用性につい て，数値解析による検証の必要性 について検討し提示すること。	H30． 8.7	（本日回答） CCb 工法を採用した構造物（部材）のらち，面外荷重と面内荷重を同時に考慮すべき部材の設計の考え方や面内荷重により発生するひび割れの影響を整理し，面外荷重 と面内荷重が作用する部材への CCb 工法 の適用性を整理した。 また，面外荷重と面内荷重が作用する部材 に対する CCb のせん断補強効果を確認す るための数値解析を行うこと及び解析の目的や概要，確認内容等について記載し，数値解析の評価結果は工事計画認可申請段階で示すことを追記した。 －資料－1－2－2 8．面内荷重と面外荷重が作用する部材 ～の CCb 工法の適用性の検討（確認項目 （G））（p71～72）

No．	分類	項 目	審 査会合日	回 答
8	指 摘 事 項	CCb の有効率について，実験結果，解析結果及び設計値の比較検討を行い，設計で用いる有効率が保守性を有していることを整理して提示すること。	H30． 8.7	（本日回答） 設計式，実験値及び解析値から得られるせ ん断耐力より，有効係数 β_{aw}（CCb のせん断耐力の補強効果を示す有効係数）の保守性 を整理し追記した。 －資料－1－2－2 9．女川 2 号炉における CCb 工法の保守性及び設計上の制限の整理（p74～75）
9	指 摘 事 項	面外せん断力に対する設計上の制限を設けていない理由について，面外せん断力によるひび割れの発生状況と CCb 工法の効果を踏まえ た説明を提示すること。	H30． 8.7	（本日回答） CCb により耐震補強を行うにあたっての設計上の制限として，建設技術審査証明報告書の梁試験のひび割れ発生状況や変形状況を踏まえ，主筋の降伏以下で使用するこ とや圧縮縁コンクリートひずみ 1.0% また は層間変形角 $1 \% ~(1 / 100)$ に十分な余裕を もった範囲で使用することを追記した。 さらに，施工精度の低下の可能性等を鑑 み，せん断破壊に対する照査値を 0.8 程度 に収めることを追記した。 －資料－1－2－2 9．女川 2 号炉における CCb 工法の保守性及び設計上の制限の整理（p74）

