資料2-1-2

女川原子力発電所2号炉 竜巻影響評価について (審査会合での指摘事項に対する回答)

平成30年5月31日 東北電力株式会社

All rights Reserved. Copyrights ©2018, Tohoku Electric Power Co., Inc.

1. 審査会合における指摘事項への回答【指摘事項①】(1/14)

【審査会合における指摘事項①】

流入層高さの感度解析結果において, 流入層高さが低くなると結果が厳しくなることを踏まえた上で, 初期 高さ及び流入層高さの影響について, 整理して提示すること

【指摘事項①への回答】

- ▶ 当社の竜巻影響評価は,藤田博士が考案した渦モデル(以下,フジタモデル)を用いた飛散評価手法*により飛来物の飛散評価を実施しているが,フジタモデルを用いた飛散評価手法を適用にあたっては,実際の竜巻現象に対する不確かさ及び飛散評価手法における不確かさを考慮する必要がある
- 不確かさの影響を確認する観点から、フジタモデルを用いた飛散評価手法の特徴である流入層高さが飛 散評価に与える影響を評価した結果、物品の初期高さが0m(地表面)の場合に、流入層高さが低くなるに 従い結果が厳しくなることを確認した(表1参照)
- ▶ 上記を踏まえて, 流入層高さ及び初期高さの影響を整理し, 飛散評価の条件を設定することとした

※ :フジタモデルの風速場と物体の浮上・飛来モデルを実装した数値解析コード(1)

風速100m/s	流入層高さ(15m:基本ケース)				
初期高さ0m	10m	12.5m	15m	17.5m	20m
最大飛散高さ[m]	0.3	0.2	0.2	0.2	0.2
最大飛散距離[m]	8.7	7.3	6.5	5.8	5.0
最大速度(水平)[m/s]	14.0	12.7	11.7	11.0	10.2
最大速度(鉛直)[m/s]	1.1	1.0	0.9	0.9	0.8

表1 飛散評価に対する流入層高さの影響

初期高さが0m(地表面)の場合に流入層高さが低い方が評価結果が厳しくなる

1. 審査会合における指摘事項への回答【指摘事項①】(2/14)

1. フジタモデルを用いた飛散評価手法の特徴

- フジタモデルは米国NRCが実際の竜巻の風速場をモデル化したいという要望により竜巻観測記録に基づき考案した渦モデルである
- フジタモデルを用いた飛散評価手法は、実際の竜巻で観察される「地表面付近における竜巻中心に向かう強い 水平方向の流れの風速場を流入層としてモデル化している」という他の飛散評価手法にはない特徴を持つ(図1 参照)
- 地表面の風速場をモデル化して、物品の浮上・飛散評価を行うことにより、適切な飛来物発生防止対策や、評価 対象施設の防護対策を実施することが可能となる

図1 フジタモデルを用いた飛散評価手法の風速場(イメージ)

1. 審査会合における指摘事項への回答【指摘事項①】(3/14)

2. フジタモデル適用における課題

フジタモデルは竜巻のビデオ画像(図2参照)に対して写真図化分析(図3参照)し, 地上痕跡, 被害状況に基づき作成されたものであるが, モデル化にあたっては地表面付近の風速ベクトルが作成されておらず, 地表面付近の領域 に対し, 必ずしも十分な分析がなされていない可能性がある

図2 Ash Valley竜巻(1974.8.30)のビデオ画像

図3 写真画像分析で作成された風速ベクトル(1)に一部加筆

1. 審査会合における指摘事項への回答【指摘事項①】(4/14)

- 3. 至近の研究報告
 - ➢ Kosiba and Wurman 2013⁽¹⁾(図4参照)によると、地上高さ約5mにおける風速は地上高さ約40mに比べて約25%大きな値が観測されたことが報告されている
 - ▶ ただし、地上から高さ3m程度は観測していないこと等も踏まえ、本研究の結論としては、地表面付近の竜巻特性として一般化するには更なる観察が必要であるとしている
 - ▶ よって, 現状では, 実際の竜巻における地表面付近の状況をモデル化することには, 不確かさを含んでいるものと 考える

上記のことから, 地表面付近の状況をモデル化するには課題があるため, 風速場モデルの不確かさ, 実際の竜巻現象の不確かさを考慮する必要があると判断した

1. 審査会合における指摘事項への回答【指摘事項①】(5/14)

- 4. フジタモデルを用いた飛散評価手法における流入層のモデル化
 - フジタモデルを用いた飛散評価における風速場は図5に示すように、半径方向に3つの領域(内部コア、外部コア、最外領域)で構成され、鉛直方向は流入層と非流入層で構成される
 - 流入層では竜巻中心方向に向かう強い流れ(流入風)があり、この空気の流れ込みが外部コア内での上昇風 となる
 - ▶ <u>流入風の最大風速は流入層の上限で発生</u>するようにモデル化しており、<u>地表面に近づくにつれて連続的に減</u> <u>衰</u>する(図6参照)

1. 審査会合における指摘事項への回答【指摘事項①】(6/14)

- 4. フジタモデルを用いた飛散評価手法における流入層のモデル化
- 流入層高さが異なる場合でも、竜巻の規模(風速、外部コア半径等)が同じ場合には、流入風速の最大値は変 わらないことから、流入層内における同一の高さの物品は、流入層高さが高い場合に比べて、低い場合の方が 大きな流入風速の影響を受ける(図7参照)
- また, 流入層高さが高い場合の方が, 流入層内の流量が大きいため, 流入層高さが低い場合に比べて, <u>外部つ</u> ア内の上昇風速が大きくなる(図7参照)

図7 風速場における流入風と上昇風のイメージ

1. 審査会合における指摘事項への回答【指摘事項①】(7/14)

- 5. 流入層高さの範囲
 - ▶ 流入層高さは飛散評価に影響を与えることから,適切な流入層高さにて評価する必要がある
 - ▶ 設定にあたっては、最新の研究成果や文献等について幅広く確認して設定することとした。

(1) 最新の竜巻観測・研究結果

 Kosiba⁽¹⁾らの観測結果においては、外部コア半径(R_m)が約50mの竜巻に対して、竜巻中心方向への流入風(1m/s~7m/s)は地面から10~14m以下で発生したと観測していることから、外部コア半径と流入層高さの比(η) は約0.2~0.3と推測される。この場合、R_mが30mの場合には流入層高さ(H_i)は約6m~9m

(2)解析による流入層高さの推測

- <u>原子力安全基盤機構の調査研究報告書(2)</u>による解析においては、 <u>R_mが30mにおける η は0.4程度であり、 H_iは</u> <u>12m程度</u>となっている
- (3) Fujita Workbook⁽³⁾による竜巻事例に対する分析による流入層高さの推測
 - Fujita Workbook⁽³⁾では竜巻事例を可視化して分析しており、R_mが約120mと大きな竜巻に対して、H_iは約70mと観 測しており、ηは0.58であるとの記載がある。文献⁽⁴⁾では流入層高さはR_mに比例するとされているが、R_mが30mと 比較的小さな竜巻にη=0.58を適用した場合には、H_iは17.5mとなる
- (4) 工学的モデルによる流入層高さの設定
 - Fujita Workbook⁽³⁾における工学的モデルとして、H_iをR_mの関数として設定しており、設計竜巻の最大風速 V_D=100m/sの場合、R_m=30mであり、ηが約0.5であることから、H<u>=15m</u>と算出される
 - ▶ 最新の研究(Kosiba⁽¹⁾ら, 2013)においては, 流入層高さは約6m~9mと低く推測されているものの, 様々 な知見を幅広く確認した結果, 流入層高さの感度解析の範囲を6m~17.5mと設定した

(1)Karen A. Kosiba and Joshua Wurman: The Three-Dimensional Structure and Evolution of a Tornado Boundary Layer. Weather and Forecasting, 28, 1552-1561, 2013.
 (2)東京工芸大学,平成21~22年度原子力安全基盤調査研究(平成22年度)竜巻による原子力施設への影響に関する調査研究,独立行政法人原子力安全基盤機構委託研究成果報告書, 2011.
 (3)Fujita,T.T.,Workbook of tornadoes and high winds for engineering applications, U.Chicago, 1978.
 (4)Howard B. Bluestein, Severe Convective Storms and Tornadoes --Observations and Dynamics--, Springer, 2013.

1. 審査会合における指摘事項への回答【指摘事項①】(8/14)

- 6. 感度解析結果(鋼製材)
- (1)最大水平速度(図8及び図9参照,①~③は物品の初期高さを示す)
 - ・初期高さが増加するに従い、約11mまでは水平速度が大きく増加し、その後の変化は緩やかとなる
 - ①<u>初期高さが0m(地表面)付近では</u>,地面効果による大きな揚力を受けて,わずかに浮上する。また,流入層高さ が低い方が大きい流入風によって地面効果を受けるようにモデル化しているため,わずかに高く浮上する。この ため,高い流入風の影響を受けることとなり,<u>流入層高さが低い方が水平速度はわずかに大きくなる</u>
 - ②初期高さが低い場合(約11mまでの範囲(地表面除く))は, 流入層高さが低い方が, 流入層内で相対的に大きな 流入風を受けるため, わずかであるが値が大きくなる
 - ③初期高さが高い場合(約11m以上の範囲)は,図6(P5参照)に示すように流入層高さが高い方が大きな竜巻の水 平風速の影響を受けることから,水平速度は大きくなる。初期高さが高くなるにつれて,竜巻の水平風速は緩や かに減少していくようにモデル化していることから,水平速度も同様に低下していく

1. 審査会合における指摘事項への回答【指摘事項①】(9/14)

- 6. 感度解析結果(鋼製材)
- (2)最大鉛直速度(図10~図12参照,①~④は物品の初期高さを示す)
 - ① <u>初期高さが地表面(0m)付近では</u>, 地面効果による大きな揚力を受けて, わずかに浮上する。 <u>流入層高さが低い場合の方が</u>大きい流入風によって地面効果を大きく受けるようにモ デル化しているため, わずかに高く浮上する。このため<u>鉛直速度はわずかに大きくなる</u>
 - ②初期高さが低い場合(約11mまでの範囲(地表面を除く))では,流入層高さが高い場合で も浮上条件に到達せず,飛散高さが変わらないことから,鉛直速度は流入層高さの影響 を受けない
 - ③初期高さが約11mからは,流入層高さが高い場合の方が浮上するため,鉛直速度が増加 する(図12参照)
 - ④初期高さが高い場合(約11m以上の範囲)では,流入層高さが高くなるに従い,竜巻コア 内の上昇風の影響を受けて浮上するため,鉛直速度が増加する傾向となる

図10 飛散イメージ(鉛直速度)

東北雷力

1. 審査会合における指摘事項への回答【指摘事項①】(10/14)

7. 感度解析結果(砂利)

(1)最大水平速度(図13参照)

- 初期高さが0m(地表面)付近では、地面効果による大きな揚力を受けて、わずかに浮上する。流入層高さが低い方が流入風が大きく、地面効果により高く浮上する。このため、高い流入風の影響を受けて、水平速度はわずかに大きくなる
- 初期高さが増加するに従い、約5mまでは水平速度が大きく増加し、その後の変化は緩やかになる。
- ・ 流入層高さの影響は鋼製材と同様の傾向である

(2)最大鉛直速度(図14参照)

- 初期高さが0m(地表面)付近では、地面効果による大きな揚力を受けて、わずかに浮上する。流入層高さが低い方が流入風が大きく、地面効果により高く浮上する。このため鉛直速度はわずかに大きくなる
- 初期高さが低い場合(約5mまでの範囲)では、流入層高さが高い場合でも浮上条件に到達せず、飛散高さが変わらないことから、鉛直速度は影響を受けない
- 初期高さが高い場合(約5m以上の範囲)では、流入層高さが高くなるに従い、竜巻コア内の上昇風の影響を受けて浮上することから、鉛直速度が増加する傾向となる
- ・ 流入層高さの影響は鋼製材と同様の傾向である

図13 水平速度の感度解析結果(砂利)

図14 鉛直速度の感度解析結果(砂利)

1. 審査会合における指摘事項への回答【指摘事項①】(11/14)

8. 感度解析結果(鉛直速度に対する自由落下速度の感度)

自由落下速度の影響(図15及び図16参照)

- 物品は竜巻の風速場の影響により浮上し、地表面に落下する挙動となるため、自由落下時の鉛直速度の影響 が支配的となる
- 「算出した鉛直速度」と飛散評価により得られる「最大飛散高さからの自由落下時の最大鉛直速度」を比較すると、「算出した鉛直速度」は上昇風の影響を受け、落下時に減速されるため、最大飛散高さからの自由落下時の 最大鉛直速度の方が大きく算出されることを確認
- ・ 流入層高さは上昇風速の大きさに影響を及ぼすことから、「算出した鉛直速度」は流入層高さの影響を受ける

1. 審査会合における指摘事項への回答【指摘事項①】(12/14)

- 9. フジタモデルを用いた飛散評価手法に対する流入層高さ及び初期高さの分析の整理
- 初期高さが0m(地表面)付近では、流入層高さが低い場合にわずかに値が大きくなる傾向になるものの、初期高さが 高く、流入層高さも高い場合に大きな値が算出されることを確認(表2参照)
- 「算出した鉛直速度」に対して, 「最大飛散高さ(初期高さ含む)からの自由落下時の最大鉛直速度」は流入層高さの 影響を受けず, 大きな値が算出されることを確認

					初期高さ		
			鋼製材:約11mまで(地表面除く) 砂利:約5mまで(地表面除く)		鋼製材:約11m以上 砂利:約5m以上		
			水平速度	鉛直速度	水平速度	鉛直速度	
流入	H 範囲①	鋼製材:6~15m 砂利:6~10m	 初期高さの増加に 従い値が大きく増加 	 初期高さの増加に 従い値が増加 	 ・最大値が算出される ・最大値となった後は初期高 さが増えることによる変化 は緩やか 	• 物品は浮上せず, 初期高さ の増加に従い値が増加	
へ層高さ	Hi 範囲 ②	鋼製材:15~17.5m 砂利:10~17.5m	• H _i 範囲①と同様の 傾向であるが, わず かに値が小さい	• Hiが大きくなっても, 物品が浮上しない ため, 値に影響しな い	・ <u>最大値が算出される</u> ・ <u>H_i範囲①と同様の傾向であ</u> るが, わずかに値は大きい	 <u>H</u>が大きくなることで、物品 が浮上し、値が大きくなる 「自由落下時の鉛直速度」 は「算出した鉛直速度」より 大きい 	

表2 流入層高さ及び初期高さの感度解析結果のまとめ

飛散評価の条件は上記の感度解析結果を踏まえて設定する

(具体的な評価は次項に記載)

審査会合における指摘事項への回答【指摘事項①】(13/14)

- 10. 不確かさを踏まえた飛散評価条件の設定
- ▶ 感度解析結果を踏まえて、飛散評価条件は以下のとおり設定(表3参照)
 - (1) 流入層高さ
 - ・飛散評価結果が厳しくなるように、感度解析における流入層高さの上 限である17.5mと設定
 - (2)物品の初期高さ
 - ・現場ウォークダウンの結果, 仮設資材の設置状況は最大でも約1.2m 程度である(図17参照)が、飛散評価結果が厳しくなるように、鋼製材 は約11m以上,砂利は約5m以上と設定
 - 女川原子力発電所の敷地特徴である高台を考慮して設定(図18参照) 高台から到達する(飛散範囲内に含まれる)評価対象施設に対しては 、高台を考慮した飛散評価条件を設定

	鋼製材	砂利	設定の考え方		
流入層高さ(m)	17.5	同左	感度解析の上限値		
初期高さ(m) 11.		8.0	感度解析結果を踏まえて水 平速度の算出条件を適用		
高台高さ(m)	最大 O.P.62	同左	評価対象に到達する最も高 い高台を設定		

主? 武歩評価冬卅の設守

仮設資材(鋼製材含 む)が、0.8m程度の 架台の上に0.8~ 1.2mの範囲に置か れているが、 締結保 管されている

図17 仮設資材の配置状況(例)

図18 女川原子力発電所の敷地における高台の状況

1. 審査会合における指摘事項への回答【指摘事項①】(14/14)

- 11. 設計飛来物の速度等の設定
 - ▶ 設定した飛散評価条件に基づき評価した結果を踏まえ、以下のとおり設計飛来物の速度等を設定した(表4及び図19参照)

(1)最大水平速度

• 流入層高さ、初期高さの感度解析結果における水平速度の最大値(鋼製材:46.6m/s,砂利:59.3m/s)を適用

(2)最大鉛直速度

- ・ 飛散高さから地面まで自由落下した場合の最大鉛直速度を適用
- 高台を考慮して,評価対象施設ごとに鉛直速度を設定

(3) 飛散高さ, 飛散距離

• 飛散評価条件に基づき設定

	設計飛来物(鋼製材)が到 達する高台のうち最大鉛 直速度が最も大きくなる高 台 ^{※1}		鋼製材	
主な評価対象施設			最大水平速度 [m/s]	最大鉛直速度 [m/s] ^{※2}
防潮堤	(16)	0.P.62m		34.7
2号タービン建屋	1	O.P.56m		32.9
2号補助ボイラー建屋	1	O.P.56m		32.9
防潮壁	1	0.P.56m		32.9
排気筒	8	0.P.50m	46.6	31.1
1号制御建屋	8 0.P.50m		40.0	31.1
2号制御建屋				
2号原子炉建屋	4	Ŧ		16.7
軽油タンク	*	*		
竜巻防護ネット				

表4 評価対象施設毎の設計飛来物の速度(鋼製材)

※1 番号は図19の高台の位置を示す

複数の高台から設計飛来物が到達する場合は、設計飛来物が到達する高台のうち最も高い高台を設定

※2 高台高さに初期高さ(11.5m)を加えて評価した飛散高さからの自由落下速度を適用

図19 各高台からの設計飛来物の飛散範囲

東北電力

2. 審査会合における指摘事項への回答【指摘事項②】(1/5)

【審査会合における指摘事項②】

飛来物の最大鉛直速度について、米国NRCの基準類を参考に設定した審査ガイドの値と比較して低い値 となっていることを踏まえ、その保守性について整理して提示すること

【指摘事項②への回答】

- ▶ 飛来物の最大鉛直速度のうち、最大鉛直速度の最小値は鋼製材:16.7m/s,砂利:22.6m/sであり、審査 ガイドにおける設定例に対して低い値となっている
- ▶ 以下に、審査ガイドにおける最大鉛直速度の設定の考え方を踏まえた、当社の鉛直速度の設定の考え 方の保守性について説明する
- 1. 原子力発電所の竜巻影響評価ガイドにおける考え方 解説 4.3.1.3.3 設計飛来物の速度の設定 (1) 基本的な考え方 ▶ 審査ガイドでは、非定常な乱流場を数値的に解析できる計算手 法等による計算結果等に基づいて設定することを基本とし. LES (Large-eddy-simulation)を用いた飛来物の飛散評価結果(最大 水平速度.最大鉛直速度)が例示されている 速度として設定してもよい。
 - ▶ 設計飛来物の最大鉛直速度は、「非定常な乱流場を数値的に解 析できる計算手法等により求めても良い」し、「最大水平速度の2 /3と算定してもよい」との記載がある(図20参照)

【NRAガイドより抜粋】

設計飛来物に設定する速度は、設計竜巻によって飛来した際の最大速度とす る。設計飛来物の最大水平速度("V_{Huna})は、非定常な乱流場を数値的に解析でき る計算手法等による計算結果等に基づいて設定することを基本とする。ただし、 安全側の設計になるように、設計竜巻の最大風速(V_n)を設計飛来物の最大水平 設計飛来物の最大鉛直速度(<u>WV</u>_{vnax})は、最大水平速度と同様に計算等により求 めても良いし、米国 NRC の基準類^(参4)を参考に設定した下式により算定しても よい。 $_{\rm M}V_{\rm Vmax} = (2/3) \cdot _{\rm M}V_{\rm Hmax} \cdots (4.3)$ ここで、WHarkは、設計飛来物の最大水平速度を表す。

図20 審査ガイド(抜粋)

- 2. 当社の考え方
 - ▶ LESを実際の竜巻スケールの評価に適用するには、境界条件の設定等の様々な課題がある
 - ▶ このため、物品の地面からの浮上・飛散評価を行うことができる、フジタモデルを用いた飛散評価手法による評価 を行うこととし、不確かさを踏まえた飛散評価の条件を設定することとした

2. 審査会合における指摘事項への回答【指摘事項②】(2/5)

3. 当社の竜巻影響評価で考慮している事項

- フジタモデルの飛散評価手法を用いるにあたり、指摘事項①の回答で述べたように、<u>風速場モデルの不確かさ及び実際の竜巻現象に対する不確かさを、流入層高さ及び初期高さの設定において</u> <u>考慮している</u>
- ▶ また,当社の竜巻影響評価においては,<u>竜巻検討地域の設定から評価対象施設の構造健全性の</u> 確認までの評価全体において不確かさを考慮した設定としていることから, 竜巻影響評価全体とし ての保守性を確保している
- 以下に竜巻影響評価の各設定の考え方を示す

1. 竜巻検討地域の設定

▶ 申請時はIAEAの基準及び突風関連指数の確認から限定的な範囲のとしていたが、気候区分及び総観場の確認を踏まえ、北海道襟裳岬から千葉県九十九里町までの地域に設定

・ 突風関連指数による確認では、茨城県以西の太平洋側と環境場の傾向が異なることを確認したが、総観場による確認では、発生数が少なく不確かさはあるものの、<u>類似性があるエリアとして考慮する必要があると判断</u>
 ・ 上記に加え、気候区分による確認結果も勘案して地域を設定

2. 審査会合における指摘事項への回答【指摘事項②】(3/5)

- ▶ V_{B1}:申請時は竜巻検討地域及びその周辺地域の発生 実績(最大F2)から設定していたが,<u>日本全国で過去に発</u> <u>生した最大竜巻から設定するよう見直し,F3の上限値で</u> <u>ある92m/slこ設定</u>
- ▶ V_{B2}:年超過確率10⁻⁵における風速は83.6m/s
- ▶ V_{B1}及びV_{B2}より, V_B=92m/sに設定

【竜巻発生の不確実性に対する保守性】

 東北地方太平洋側は、竜巻の発生実績が 少なく竜巻の規模も小さいが、V_{B1}の設定に おいては、竜巻観測データの不確かさを考 慮し、日本全国で過去に発生した竜巻の最 大値から設定

表5 日本で過去に発生したF3竜巻

Fスケール	発生日時	発生場所	
F3	1971年07月07日	埼玉県浦和市	
F3	1990年12月11日	千葉県茂原市	
F3	1999年09月24日	愛知県豊橋市	
F3	2006年11月07日	北海道網走支庁佐呂間町	
F3	2012年05月06日	茨城県常総市	

・ 竜巻影響エリアに津波防護施設である防潮堤及び防潮壁を自主的に取込むことにより(図26参照), <u>年超過確率10⁻⁵の竜巻風速は76.6m/sから83.6m/sに増加(図</u>
 27参照)

3. 設計竜巻(V_D)の設定

▶ V_B=92m/sを安全側に切り上げて、V_D=100m/sに設定

【将来的な気候変動を勘案した保守性】

・地形効果による増幅を考慮する必要はないが、
 (将来的な気候変動による竜巻発)
 生の不確実性を考慮し、
 V_Bを安全側に切り上げて設定

次ページへ続く

枠囲みの内容は商業機密又は防護上の観点から公開できません

2. 審査会合における指摘事項への回答【指摘事項②】(4/5)

- 4. 風速場モデル及び飛散評価条件の設定
- ▶ 風速場モデル
 - ・実際の竜巻で観測される <u>地表面付近の風速場を流</u> <u>入層としてモデル化してい</u> <u>るフジタモデルを選定(図</u> <u>28参照)</u>
 - 適用における課題や至近の研究を踏まえて不確か さを考慮して適用する
 - 不確かさの考慮として、フ ジタモデルを用いた飛散 評価手法に影響を与える 「流入層高さ」と「初期高 さ」の影響を確認するため 感度解析を実施し、飛散 評価条件を決定

▶ 飛散評価条件

- •流入層高さは感度解析結果を踏まえて17.5mと設定
- 初期高さは感度解析結果を踏まえて、最大水平速度の 算出条件を適用(鋼製材:11.5m,砂利:8.0m)
- ・女川原子力発電所の敷地特徴である高台から到達する(飛散範囲内に含まれる)評価対象施設に対しては、 高台を考慮した飛散評価条件を設定
- •飛散評価においては、物体の浮上条件や竜巻に対す る物体の配置条件を保守的に設定

次ページへ続く

【地表面付近の領域に対する保守性】(詳細は指摘事項①の回答を参照)

▶ 風速場モデル

- 竜巻を工学モデル化した際に、地表面付近の領域に対して必ずしも十分な分析 がなされていない可能性があることを確認
- ・ 至近の竜巻の観測研究報告によると、地上付近でも大きな風速が観測されているが、地表面付近の竜巻特性として一般化するには更なる観察が必要と結論付けており、実際の竜巻時の地表面の評価には不確かさを含む
- 感度解析における流入層高さの範囲は至近の研究では6~9mと低く推測される が,過去の知見を踏まえて6~17.5mと幅広く確認した

▶ 飛散評価条件

- 感度解析の結果から、流入層高さが大きい方が評価結果が厳しくなることを確認
- 感度解析の結果から、初期高さは鋼製材は約11m以上,砂利は約5m以上の場合に評価結果が厳しくなることを確認
- 「飛散評価で得られる鉛直速度」と「飛散高さからの自由落下速度」を比較し、評価結果が厳しくなる「飛散高さからの自由落下速度」を採用
- 複数の高台から到達する場合には、最大の高台高さを採用。高台からの飛散評価は初期高さも加えた評価を実施
- <u>竜巻に対する物体の場所依存性を考慮し、物体を風速場の高速域に配置して評</u> <u>価</u>(図29参照)
- <u>物体を風速場の中に多点数配置して飛散評価を実施し,最大の飛散速度を抽出</u> (図30参照)[参考:米国NRC R.G.1.76では1点配置]

<u>以上のように竜巻影響評価の各プロセスで不確かさを考慮した評価条件,評価手法を用いることで評価</u> 全体としての保守性を確保している

(参考1)地面効果の影響

【定義】

- 竜巻通過時に地面にある物品(図1のAの状態)が、竜巻の風速(Vw) を受ける場合に発生する揚力
 - 物体と地面の間に僅かに空隙が生じる場合,地面と物体の接触状態によって,物体の上面,下面の圧力差に伴う流体力が作用することで,鉛直方向の流体力(F_L)が揚力として働く

【飛散評価における適用】

- フジタモデルを用いた飛散評価手法では、上記の地面効果による揚 カを考慮することで、地面にある物体がより浮きやすい状況としている
- 地面効果は地面付近で最も高く発生するようにモデル化しており、物体高さの3倍までの高さの範囲で連続的に低減するように設定している(図2参照)

【効果】

- 物体が浮くことで,飛散評価(速度,飛散距離)が大きな値となる
 - 水平速度は物品が浮上することで、流入層内で相対的に高い流入 風の影響を受けるため、値が大きくなる
 - ・ 鉛直速度は浮上することで、高さが増すことで自由落下の速度が 大きくなる
 - 水平速度が増えることで, 飛散距離が増加する
- 地表面からわずかに高い初期高さにある物品よりも、初期高さ0m(地表面)の物品の方が浮上する結果となることで、飛散評価結果も初期高さ0m(地表面)の場合が大きくなる

A:地面上, B:Z<3dの高度範囲, C:Z>3dの高度範囲(Z:高さ, d:物品高さ))

図1 飛来物の運動モデルの模式図

(参考2) 竜巻風速場における飛散挙動のイメージ

- ▶ 竜巻風速場における物品の飛散挙動をイメージするため、初期高さに応じた鋼製材の飛散挙動を示す。
- 竜巻風速場に対する物品の位置は、多点配置した物品に竜巻が接近して飛散した場合に水平速度が最大となる位置の 飛散挙動を示している

図1 初期高さ毎の物体の飛跡及び最大水平・鉛直速度評価結果(鋼製材, H_i=17.5m)

