女川原子力発電所2号炉

運転停止中原子炉における燃料損傷防止対策の

 シーケンス選定の概要について
東北電力株式会社平成30年2月

1．運転停止中原子炉における燃料損傷防止対策の有効性評価の流れ
2．炉心損傷頻度評価結果の概要
3．事故シーケンスグループ及び重要事故シーケンス選定の全体プロセス
4．事故シーケンスグループ別炉心損傷頻度
5．重要事故シーケンスの選定結果
6．重要事故シーケンス及び主な重大事故等対処設備について
参考1 女川 2 号炉の炉心損傷防止対策における対策設備の概要
参考2 有効性評価における事故シーケンスグループと主要な事故対策の関係
参考3 女川原子力発電所2号炉確率論的リスク評価（内部事象停止時 レベル1PRA）について

1．運転停止中原子炉における燃料損傷防止対策の有効性評価の流れ

－内部事象及び外部事象に対して，確率論的リスク評価（PRA）の知見を活用し，対象とすべき事故シーケンスグループ（出力運転時及び運転停止時），格納容器破損モードを抽出
＜PRAの実施範囲＞
＞内部事象運転時レベル1
＞内部事象運転時レベル1．5
＞地震レベル 1
＞津波レベル1
＞内部事象停止時レベル1

（炉心損傷頻度	$5.5 \times 10^{-5} /$ 炉年）
（格納容器破損頻度	$5.5 \times 10^{-5} /$ 炉年）
（炉心損傷頻度	$1.8 \times 10^{-5} /$ 炉年）
（炉心損傷頻度	$4.5 \times 10^{-6} /$ 炉年）
（炉心損偒頻度	$9.8 \times 10^{-7} /$ 定期検査）

（炉心損傷頻度
$9.8 \times 10^{-7} /$ 定期検査）
（炉心損傷頻度
－10
$5.5 \times 10^{-5} /$ 炉年）
$.8 \times 10^{-5} /$ 炉年）
$4.5 \times 10^{-6} /$ 炉年）
． 8×10^{-7} 定期検县）

「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」で指定される事故シーケンスグループ，格納容器破損モード以外のものは抽出されず
－抽出した事故シーケンスグループ及び格納容器破損モードから，評価する事故シーケンスを選定
し，重大事故等対策の有効性評価を実施（以下の項目を参照）
－本評価において，1，3号炉は停止中（炉心燃料は全数取出し状態）を想定
＜有効性評価の内容＞
＞炉心損傷防止対策の有効性評価
＞格納容器破損防止対策の有効性評価
$>$ 燃料プールにおける燃料損傷防止対策の有効性評価
$>$ 運転停止中の原子炉における燃料損傷防止対策の有効性評価

[^0]
＞PRAの結果から得られるプラントの特徴（重大事故等対策未考慮）

炉心損傷頻度は，崩壊熱除去機能喪失の割合が大きい\Rightarrow 残留熱除去系機能喪失時のMUWCの操作失敗により炉心損傷に至るリスクが相対的に大きい

起因事象別

4．事故シーケンスグループ別炉心損傷頻度

事故シーケンス		$\begin{aligned} & \text { シーケンス別 } \\ & \text { CDF } \\ & (/ \text { 定期検查) } \end{aligned}$	$\begin{aligned} & \text { グループ別 } \\ & \text { CDF } \\ & (/ \text { 定期検查) } \end{aligned}$	$\begin{gathered} \hline \text { 全CDF } \\ \text { ~の } \\ \text { 寄与割合 } \end{gathered}$	運転停止中事故シーケンスグル ープ	備考
1	崩壊熱除去機能喪失＋崩壊熱除去•炬心泠却失敗	9.0×10^{-7}	9． 3×10^{-7}	94．8\％	崩壊熱除去機能喪失	全炝心損傷頻度の 100% を燃料損傷防止対策にてカバー
	外部電源啔失＋崩壊熱除去•炬心泠却失敗	3.2×10^{-8}				
2	外部電源喪失＋直流電源喪失＋崩壊熱除去•炬心洽却失敗	2.2×10^{-13}	5.1×10^{-8}	5．1\％	全交流動力電源喪失	
	外部電源喪失＋交流電源礝失＋崩壊熱除去•炬心冷却失敗	1.7×10^{-12}				
	外部電源喪失＋直流電源喪失	3.5×10^{-8}				
	外部電源喪失＋交流電源喪失	1.6×10^{-8}				
3	原子炉冷却材の流出（RHR 切替時の泠却材流出 $)+$ 崩壊熱除去•炬心泠却失敗	$\begin{gathered} 1.7 \times 10^{-10} \\ \left(1.7 \times 10^{-10} / \text { 回 }\right) \end{gathered}$	3.5×10^{-10}	＜0．1\％	原子炉椧却材 の流出	
	原子炬泠却材の流出（CUWブロー時の泠却材流出）＋崩壊熱除去•灲心冷却失敗	$\begin{gathered} 1.7 \times 10^{-10} \\ \left(5.7 \times 10^{-11} / \text { 回 }\right) \end{gathered}$				
	原子炉冷却材の流出（CRD 交換時の泠却材流出）＋崩壊熱除去•炬心冷却失敗	$\begin{gathered} 4.0 \times 10^{-12} \\ \left(4.0 \times 10^{-12} / \text { 回 }\right) \end{gathered}$				
	原子炬冷却材の流出（LPRM 交換時の泠却材流出）＋崩壊熱除去•炬心泠却失敗	$\begin{gathered} 2.3 \times 10^{-12} \\ \left(2.3 \times 10^{-12} / \text { 回 }\right) \end{gathered}$				
合計		9.8×10^{-7}	9.8×10^{-7}	100．0\％	－	

5．重要事故シーケンスの選定結果（1／3）

【基本的考え方】

同じ事故シ一ケンスグル一プに複数のシ一ケンスが含まれる場合には，事象進展が早いものなど，より厳しい シーケンスを重要事故シ一ケンスとして選定する。
【着眼点】
a．余裕時間
崩壊熱，余裕時間，必要な注水量の観点で影響度を分類
b．設備容量
炉心損傷防止対策に必要となる設備容量の観点で影響度を分類
c．代表シ一ケンス
炉心損傷頻度を比較し，大きさとシーケンスグル一プ内における割合に応じて分類

重要事故シーケンスの選定について（2／3）

[^1]重要事故シーケンスの選定について（3／3）

6．重要事故シ一ケンス及び主な重大事故等対処設備について
重要事故シーケンス，主な重大事故等対処設備等及び使用計算コード

事故シーケンスグループ	重要事故シーケンス	重大事故等対処設備等	評価結果の概要	使用計算 コード
崩壊熱除去機能喪失	崩壊熱除去機能喪失＋崩壊熱除去•炉心冷却失敗	－待機中の残留熱除去系 （低圧注水モード）	－水位低下が厳しい「全交流動力電源喪失」においても，燃料有効長頂部の約 4.2 m 上まで低下する にとどまり，燃料は露出すること なく，放射線の遮蔽の維持は確保される。	－
全交流動力電源喪失	外部電源喪失十交流電源喪失 + 崩壊熱除去 \cdot 炉心冷却失敗	- 低圧代替注水系（常設） - 原子炉補機代替冷却水系 - 常設代替交流電源設備		－
原子炉冷却材の流出	原子炉冷却材の流出（RHR切替時の冷却材流出）＋崩壊熱除去•炉心冷却失敗	\cdot 待機中の残留熱除去系 （低圧注水モード）		－
反応度の誤投入	制御棒の誤引き抜き	－	－燃料の健全性に影響を与えない一時的かつ僅かな出力上昇を伴 う臨界であり，スクラム後は未臨界が確保される。 －燃料は露出することなく冷却可能	APEX SCAT

有効性評価においては，下記に示す対策設備についてその有効性を確認しており，事象進展の緩和，環境への影響低減に努めている。

機能	系統•設備	運転停止中原子炉における燃料損傷防止対策の有効性評価における事故シーケンスグループ			
		崩壊熱除去機能喪失	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入＊
原子炉注水	残留熱除去系（低圧注水モード）	（ ）		（ ）	
	低圧代替注水系（常設）		（ $)$		
原子炉減圧	手動減圧	\bigcirc	\bigcirc		
格納容器除熱	残留熱除去系（ 原子炉補機冷却水系）	\bigcirc			
	残留熱除去系（原子炉補機代替冷却水系）		（		
交流動力電源	外部電源				\bigcirc
	非常用ディーゼル発電機	\bigcirc		\bigcirc	
	常設代替交流電源設備	\bigcirc	（	\bigcirc	

参考3 内部事象停止時レベル1PRA

手順の概要
対象施設の設計及び運転の特性を把握するため，プラントに関す る各種情報を収集する。

プラントパラメータ（冷却材の水位，温度，圧力）の類似性，緩和設備の点検状況及び起因事象，成功基準，時間余裕の類似性によって，評価対象期間を複数のPOSに分類する。

炉心損傷を防止するために必要とされる緩和設備又は緩和操作 の組み合わせや，緩和設備や緩和操作がその機能を達成するた めに必要な条件である成功基準を同定する。

選定した起因事象に対して，炉心損傷を防止するために必要な安全機能及び安全機能を達成するために必要な緩和設備や緩和操作を検討して，炉心損傷に至る事故シーケンスを展開する。

「事故シーケンスの分析」で同定されたイベントツリーのへ ディングの分岐確率や最小カットセットを算出するために，そ のヘディングに対応するシステムの信頼性モデルを作成し，シ ステムの非信頼度や最小カットセットを求める。

起因事象発生前の作業及び発生後の緩和操作を対象として，そ れらを遂行する過程で起こり得る人的過誤を同定し，その発生確率を求める。

システム信頼性解析や事故シーケンスの定量化のために必要と なる機器故障率，試験又は保守作業による待機除外確率などを評価するために必要となるパラメータを作成する。

炉心損傷に至る事故シーケンスの発生頻度を算出して全炉心損傷頻度を算出すると共に，主要結果に関する分析を実施する。

2．プラントの構成•特性

■女川 2 号炉における主要設備

CUW：原子炉冷却材浄化系
Hx ：熱交換器
F／D：万過脱塩装置

■代表定期検査工程

＞停止時PRA実施において，部分燃料取出を行った最新の定期検査工程である第4回定期検査を代表工程として分析した。

注）保守点検に伴う使用可能な設備の組合せにより，事象区分AをA1，A2，事象区分BをB1，B2，事象区分CをC1，C2に分類確率論的リスク評価3．1．2 停止時PRA 第3．1．2．a－5図確率論的リスク評価3．1．2 停止時PRA 3．1．2．a．

3．プラント状態（POS）の分類（2／2）

■停止時のプラント状態の推移

＞以下に，プラント定期検査時の安全設備等の待機状態を示す。
＞事象区分BおよびCの期間は，他の期間と比べ，保守点検をしている場合が多いため，使用可能な緩和系が少ない。

RHR：残留熱除去系
RCIC：原子炉隔離時冷却系
HPCS：高圧炉心スプレイ系
LPCI：低圧注水系
LPCS：低圧炉心スプレイ系
MUWC：復水補給水系

RCW／RSW：原子炉補機冷却水系／海水系
HPCW／HPSW：高圧炉心スプレイ補機冷却水系／海水系 DG：非常用ディーゼル発電機

4．起因事象選定と発生頻度の評価（ $1 / 2$ ）

－起因事象の抽出にあたって，以下を参考として選定した
＞マスターロジックダイヤグラムを用い，起因事象を同定した。
＞既往PRA等による国内外における起因事象に関する評価事例を参考とした。

4．起因事象選定と発生頻度の評価（2／2）

■起因事象及び発生頻度

起因事象	発生頻度	発生頻度の評価方法

※ 総定期検査日数 $\quad \cdots$ 平成 21 年3月末までのBWR全32基の定期検査日数の合計値 70，822日

5．成功基準の設定

－炉心損傷の定義

＞有効燃料長頂部が露出した状態とする。
成功基準一覧表

POS起因事象	S	A1	A2	B1	B2	C1	C2	D
RHRフロントライ ン系機能喪失	$\begin{gathered} \text { RHR-B } \\ \text { LPCS } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$	$\begin{gathered} \text { RHR-B } \\ \text { LPCS } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$	LPCS MUWC	MUWC	MUWC	MUWC	$\begin{aligned} & \text { RHR-A } \\ & \text { LPCS } \\ & \text { LPCI-C } \\ & \text { MUWC } \end{aligned}$	$\begin{gathered} \text { RHR-A } \\ \text { LPCS } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$
RHRサポート系機能喪失	$\begin{gathered} \text { RHR-B } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$	$\begin{gathered} \text { RHR-B } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$	MUWC	MUWC	MUWC	MUWC	RHR－A LPCS MUWC	RHR－A LPCS HPCS MUWC
外部電源喪失	$\begin{aligned} & \text { RHR-A } \\ & \text { RHR-B } \\ & \text { LPCS } \\ & \text { LPCI-C } \\ & \text { HPCS } \\ & \text { MUWC } \end{aligned}$	$\begin{gathered} \text { RHR-A } \\ \text { RHR-B } \\ \text { LPCS } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$	RHR－A LPCS MUWC	RHR－A MUWC	RHR－B MUWC	RHR－B MUWC	$\begin{gathered} \text { RHR-A } \\ \text { RHR-B } \\ \text { LPCS } \\ \text { LPCI-C } \\ \text { MUWC } \end{gathered}$	$\begin{gathered} \text { RHR-A } \\ \text { RHR-B } \\ \text { LPCS } \\ \text { LPCI-C } \\ \text { HPCS } \\ \text { MUWC } \end{gathered}$
RHR切替時の LOCA					LPCI—A MUWC			
$\begin{aligned} & \text { CRD交換時の } \\ & \text { LOCA } \end{aligned}$				LPCI－A				
LPRM交換時の LOCA				LPCI—A MUWC				
$\begin{aligned} & \text { CUWブロ一時の } \\ & \text { LOCA } \end{aligned}$						LPCI－B		$\begin{aligned} & \text { LPCS } \\ & \text { LPCI-A } \\ & \text { LPCI—B } \\ & \text { LPCI-C } \\ & \text { HPCS } \end{aligned}$

6．事故シーケンスの分析（1／2）

■イベントツリー図
＞抽出した起因事象グループと成功基準に基づき，各々のイベントツリーを作成し，事故シーケンス グループを抽出した。

■崩壊熱除去機能喪失

葥壊熱除去機能喪失	崩壊熱除去•炉心冷却	事故シーケンス グループ
		炉心損傷なし

■原子炉冷却材流出

■外部電源喪失

■イベントツリーの最終状態
＞イベントツリーによって抽出された炉心損傷事故シーケンスを炉心損傷防止機能の喪失状況，プラ ントの状態に与える影響によって下表のとおりに分類する。

シーケンスの説明	シーケンスグループ
RHRフロントライン系・サポート系機能喪失後，崩壊熱除去と炉心注水の失敗によって炉心損傷に至る事故シ ーケンス	崩壊熱除去機能喪失
外部電源喪失時，非常用D／G等による交流電源の確保 に成功した後，崩壊熱除去と炉心注水の失敗によって炉心損傷に至る事故シーケンス	
外部電源喪失時，非常用D／G等による交流電源の確保 に失敗し，全交流動力電源喪失によって炉心損傷に至 る事故シーケンス	全交流動力電源喪失
原子炉冷却材の流出後，炉心注水の失敗によって炉心損傷に至る事故シーケンス	原子炉冷却材の流出

7．システム信頼性解析（1／2）

■評価対象としたシステム
＞フロントライン系とサポート系の境界を明確にした上で，サポート系も含めた評価対象範囲を設計図書に基づき明確化。
＞システムが複数の系列から構成されている場合には，それぞれの系列についてモデル化。

評価対象システム一覧

フロントライン系	
炉心冷却機能	RHR（A，B）
炉心注水機能	HPCS，LPCS，LPCI（A，B，C），MUWC
サポート系	
補機冷却水系，海水系	RCW（A，B），RSW（A，B），HPCW，HPSW
電源系	交流電源（区分A，B，C，D，H），直流電源（区分A，B，H）

■起因事象毎のシステム信頼性評価結果
代表的な F T の非信頼度

起因事象	システム系統	非信頼度
- RHRフロント系機能喪失 - RHRサポート系機能喪失 －LOCA	残留熱除去系（RHR－A）※	4． 6×10^{-3}
	残留熱除去系（RHR－B）＊	4． 6×10^{-3}
	高圧炉心スプレイ系（HPCS）	1． 8×10^{-3}
	低圧炉心スプレイ系（LPCS）	1． 2×10^{-3}
	低圧注水系（LPCI－A）	1． 4×10^{-3}
	低圧注水系（LPCI－B）	1． 4×10^{-3}
	低圧注水系（LPCI－C）	1． 4×10^{-3}
	補給水系（MUWC）	3． 5×10^{-4}
－外部電源喪失	残留熱除去系（RHR－A）	3． 8×10^{-4}
	残留熱除去系（RHR－B）	3． 8×10^{-4}
	高圧炉心スプレイ系（HPCS）	5． 7×10^{-3}
	低圧炉心スプレイ系（LPCS）	1． 2×10^{-3}
	低圧注水系（LPCI－A）	保守的に期待しない
	低圧注水系（LPCI－B）	保守的に期待しない
	低圧注水系（LPCI－C）	1． 3×10^{-3}
	補給水系（MUWC）	3． 7×10^{-4}

[^2]
■人的過誤の評価結果

起因事象発生前／起因事象発生後	説明	平均値			
起因事象発生前	手動弁の開け忘れ・閉め忘れ	4.0×10^{-4}			
起因事象発生後	除熱の必要性に対する診断失敗 注水の必要性に対する診断失敗	右表参照	POS	$\begin{gathered} \text { 除熱の必要性に } \\ \text { 対する診断の } \\ \text { 失敗確率 } \end{gathered}$	注水の必要性に対する診断の失敗確率
				平均値	平均値
	LOCA時の診断失敗	7.1×10^{-7}	POS－S	2.7×10^{-3}	5.1×10^{-5}
	LOCA時の隔離失敗	8.3×10^{-6}			
	除熱系の手動起動失敗	5.3×10^{-5}	POS－A1	8.5×10^{-4}	3.8×10^{-5}
	注水系の手動起動失敗	3.5×10^{-4}	POS－A2	8.5×10^{-4}	2.8×10^{-5}
			POS－B1	2.7×10^{-4}	1.4×10^{-5}
			POS－B2	1.8×10^{-4}	1.4×10^{-5}
			POS－C1	2.4×10^{-4}	1.4×10^{-5}
			POS－C2	2.1×10^{-4}	1.4×10^{-5}
			POS－D	2.1×10^{-4}	1.4×10^{-5}

9．事故シ一ケンスの定量化（ $1 / 6$ ）

■全炉心損傷頻度及び主要な事故シーケンス
$>$ 全炉心損傷頻度： 9.8×10^{-7}［／定期検査］
$>$ 主要な事故シーケンス：崩壊熱除去機能喪失のシーケンス
全炉心損傷頻度に対する寄与割合の高いシーケンス

起因事象	POS	事故シーケンスの概要	炉心損傷頻度 ［／定期検査］
RHRフロントライン系機能喪失	POS－B1	RHRフロントライン系が機能喪失した後，崩壊熱除去•炉心冷却に失敗	3． 3×10^{-7}
RHRフロントライン系機能喪失	POS－C1	RHRフロントライン系が機能喪失した後，崩壊熱除去•炉心冷却に失敗	2． 9×10^{-7}
RHRフロントライン系機能喪失	POS－B2	RHRフロントライン系が機能喪失した後，崩壊熱除去•炉心冷却に失敗	1． 0×10^{-7}
$\begin{gathered} \text { RHRサポート系 } \\ \text { 機能喪失 } \end{gathered}$	POS－B1	RHRサポート系が機能喪失した後，崩壊熱除去•炉心冷却に失敗	4． 3×10^{-8}
$\begin{gathered} \text { RHRサポート系 } \\ \text { 機能喪失 } \end{gathered}$	POS－C1	RHRサポート系が機能喪失した後，崩壊熱除去•炉心冷却に失敗	3． 8×10^{-8}

9．事故シーケンスの定量化（2／6）

■起因事象別の炉心損傷頻度
$>$ RHR機能喪失（フロントライン系及びサポート系）時の炉心損傷が 90% 以上を占める。

	各起因事象別の炈	膓頻度
－RHR切替時のLOCA$\square C U W 7 ロ-$ 時の \quad－CRD交換時のLOCA \square LPRM交換時の	起因事象	炉心損傷頻度 ［／定期検査］
口外部電源剈失 L L	RHRフロントライン系機能喪失	7． 9×10^{-7}
－RHRサポート系機能	RHRサポート系機能喪失	1． 1×10^{-7}
	外部電源喪失	8． 3×10^{-8}
	CUWブロー時のLOCA	1． 7×10^{-10}
	RHR切替時のLOCA	1． 7×10^{-10}
	CRD交換時のLOCA	4． 0×10^{-12}
	LPRM交換時のLOCA	2． 3×10^{-12}
	合計	9． 8×10^{-7}

－RHRフロントライン系
機能喪失

■事故シーケンスグループ別の炉心損傷頻度
＞崩壊熱除去機能喪失による炉心損傷が支配的である。

－－原子炉冷却材の流出
■全交流動力電源喪失—

事故シーケンスグループ別の炉心損傷頻度

－－崩壊熱除去機能喪失

| 事故シーケンス |
| :---: | :---: | :---: |
| グループ |\quad 主要な事故シーケンス \quad 主要なカットセット

9．事故シ一ケンスの定量化（4／6）

■POS別の炉心損傷頻度
$>$ 待機除外となる系統が多く緩和系の少ないPOS（B1，B2，C1）が 95\％以上を占めている。

各POS別の炉心損傷頻度

POS	炉心損傷頻度 $[/$ 定期検査］
POS－S	4.7×10^{-9}
POS－A1	6.9×10^{-9}
POS－A2	2.2×10^{-8}
POS－B1	4.3×10^{-7}
POS－B2	1.3×10^{-7}
POS－C1	3.8×10^{-7}
POS－C2	2.5×10^{-9}
POS－D	7.4×10^{-9}
合計	9.8×10^{-7}

－重要度解析（FV重要度）
＞炉心損傷頻度に対する各基事象のFussell－Vesely（FV）重要度を評価

順位	基事象（機器名－故障モード）	FV重要度
1	MUWC操作失敗	7.8×10^{-1}
2	MUWCポンプC継続運転失敗	2.1×10^{-2}
3	除熱の必要性に対する診断失敗（POS－B1）	2.0×10^{-2}
4	注水の必要性に対する診断失敗 （除熱の診断失敗時の条件付き確率，POS－B1）	2.0×10^{-2}
5	除熱の必要性に対する診断失敗（POS－C1）	1.6×10^{-2}
6	注水の必要性に対する診断失敗 （除熱の診断失敗時の条件付き確率，POS－C1）	1.6×10^{-2}
7	注水の必要性に対する診断失敗（POS－B1）	1.4×10^{-2}
8	注水の必要性に対する診断失敗（POS－C1）	1.1×10^{-2}
9	パワーセンタ動力変圧器D機能喪失	1.0×10^{-2}
10	パワーセンタ動力変圧器C機能喪失	1.0×10^{-2}

○評価結果
「MUWC操作失敗」が最も高い値となった。これはPOS－ B1•B2•C1において，崩壊熱除去機能喪失時の緩和設備 がMUWCのみであるため「MUWC操作失敗」の寄与割合が高 くなった。

－－ FV 重要度

炉心損傷を仮定したときに当該事象の発生が寄与している割合を示す指標。特定の機器の故障や人的過誤の発生確率を0とした時にリスクが どれだけ低減されるかを示す指標である。

$$
F V=\frac{F_{A}(C D)}{F(C D)}
$$

$F_{A}(C D)$ ：事象Aの発生が寄与して発生する炉心損傷頻度 $F(C D)$ ：炉心損傷頻度

9．事故シ一ケンスの定量化（6／6）

■重要度解析（RAW）
＞炉心損傷頻度に対する各基事象のリスク増加価値（Risk Achievement Worth（RAW））を評価

順位	基事象（機器名－故障モード）	RAW
1	MUWC操作失敗	$2.2 \times 1 \mathrm{O}^{3}$
1	MUWCポンプ継続運転共通要因故障	$2.2 \times 1 \mathrm{O}^{3}$
3	パワーセンタ動力変圧器D機能喪失	$1.6 \times 1 \mathrm{O}^{3}$
3	460V R／B MCC D電源喪失	1.6×10^{3}
3	動力変圧器遮断器D誤開	1.6×10^{3}
3	受電遮断器2D誤開	1.6×10^{3}
3	低圧非常用母線D機能喪失	1.6×10^{3}
3	高圧非常用母線D機能喪失	1.6×10^{3}
9	パワーセンタ動力変圧器C機能喪失	1.6×10^{3}
9	460V R／B MCC C 電源喪失	1.6×10^{3}

○評価結果
「MUWC操作失敗」「MUWCポンプ継続運転共通要因故障」 が最も高い値となった。FV重要度同様に，POS－B1•B2• C1において緩和設備がMUWCのみであるため，これらの RAW重要度が高くなった。


```
    ある事象が必ず発生するとした時に, リスクがどれだけ増加するかを示 I
    す指標。
\[
R A W=\frac{F(C D / A=1)}{F(C D)}
\]
IF（CD／A＝1）：対象とする事象Aの生起確率が1の場合の炉心損傷頻度 I \(F(C D)\) ：炉心損傷頻度
```


10．不確実さ解析と感度解析（1／2）

－不確実さ解析

－各シーケンスグル一プ及び全炉心損傷頻度について，平均値， 95% 上限値，中央値， 5% 下限値及び不確定性の指標としてエラーファクター（EF）を評価した。
－全炉心損傷頻度のEFは4．7であり，これは全炉心損傷頻度の約 95% を占める崩壊熱除去機能喪失のEFがほぼその まま反映された結果となった。

10．不確実さ解析と感度解析（2／2）

－感度解析（外部電源復旧の有無）

－本評価では外部電源喪失時に外部電源復旧による電源確保に期待している。感度解析において，外部電源復旧に期待しないケースの感度解析を行った。

○評価結果

全交流動力電源喪失については，外部電源復旧を考慮しないことにより，非常用電源が確保できず，緩和設備が使用不能 となる確率が高くなるため，炉心損傷頻度が増加した。事故シーケンスグループ別寄与割合および事故シーケンスグルー プ別炉心損傷頻度については，全交流動力電源喪失が支配的となったが，事故シーケンスグループの選定においては，影響がないことを確認した。

[^0]: 評価項目を満足することを確認

[^1]:

[^2]: ※ L O C A 時には期待しない

