(原子力発電所)資料3-2

女川原子力発電所2号機 基準津波の策定のうち 「海洋プレート内地震」,「津波地震」等に起因する津波の評価について (コメント回答)

平成28年9月30日 東北電力株式会社

All rights Reserved. Copyrights ©2016, Tohoku Electric Power Co., Inc.

基準津波の評価の全体概要

審査会合におけるコメント

No.	コメント時期	コメント内容	説明資料
S53	平成27年1月23日 第185回審査会合	発電所はリアス式海岸の南部に位置することから,基準津波水位の評価に複雑な地形の 影響が考慮されているかを確認するため,女川湾等の周期特性について説明すること。	Ⅱ. 第2章
S55	平成27年1月23日 第185回審査会合	評価に用いた潮位条件の詳細(観測位置, 観測期間)を説明すること。	Ⅱ. 第1章
S72	平成27年3月20日 第210回審査会合	津波地震,海洋プレート内地震の評価について,地震規模の設定並びに波源特性の不確 かさの考慮方法が女川地点の評価決定ケースとして十分厳しくなっているか,地震調査 研究推進本部の知見等も踏まえ,再度説明すること。	Ⅰ.第1章 Ⅰ.第2章
S73	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価決定ケースが最も厳しい位置となっているか確認 すること。合わせて, 発電所に厳しい位置がどこになるか図で示すこと。	I.第1章 I.第2章
S74	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価決定ケースを対象に, 防波堤無しの検討を実施 すること。	(原子力発電所) 資料3-4 (Ⅲ. 第2章) (Ⅳ. 第3章)
S75	平成27年3月20日 第210回審査会合	海洋プレート内地震の波源位置の不確かさについて,現状,アウターライズ領域での南北 方向の検討を実施しているが,東西方向(海溝軸直交方向)となる検討を実施すること。 合わせて,起震応力が共通で共役な断層となることも踏まえた検討も実施すること(西落 ち傾斜,東落ち傾斜)。また,プレート上面の傾斜も考慮して検討してほしい。	I.第2章
S79	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価フローの記載方法について, 検討内容に合わせて 修正すること。	I.第1章 I.第2章

Ι	. 地震に起因する津波の評価	
	1. 津波地震 ····································	• 4
	2. 海洋プレート内地震 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
	3. 海域の活断層による地殻内地震	94
π	计符合计算	

Ⅱ. 計算条件等

1.	潮位条件	••••••	 97
2.	発電所周辺	地形及び津波の周期特性	 102

I. 地震に起因する津波の評価

1. 津波地震

1. 1 審査会合におけるコメント内容 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1.2 本説明(コメント回答)の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.3 地震規模に関する知見の整理 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.4 基準断層モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.5 波源特性の不確かさの考慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.6「津波地震」に起因する津波の評価 ・・・・・・・・・・・・・・・・・・・・・	37

I. 地震に起因する津波の評価 1. 津波地震

1.1 審査会合におけるコメント内容

No.	コメント時期	コメント内容
S72	平成27年3月20日 第210回審査会合	津波地震,海洋プレート内地震の評価について,地震規模の設定並びに波源特性の不確かさの考慮方法が 女川地点の評価決定ケースとして十分厳しくなっているか,地震調査研究推進本部の知見等も踏まえ,再度説明 すること。
S73	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価決定ケースが最も厳しい位置となっているか確認すること。合わせて, 発電所に厳しい位置がどこになるか図で示すこと。
S79	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価フローの記載方法について, 検討内容に合わせて修正すること。

【S72に対するコメント(補足)】

・第210回審査会合における指摘事項を明確にするため書面にて提示(H27.3.30)を受けた内容

No.	コメント内容
S72-1	地震調査研究推進本部(2012)の評価結果を引用するに当たり, MtとMwの関係を整理すること。
S72-2	東北電力は「基準断層モデルは, 地震調査研究推進本部(2012)の評価及び国内外で最大規模の1896年明治三陸地震津波を再現す るモデル(Mw8.28)を基本として, これを上回るよう土木学会(2002)を参考にMw8.3にスケーリングして設定した。」としている。一方, 地 震調査研究推進本部(2012)における『次の地震の規模』の評価ではMt8.6~Mt9.0と幅で表現しているが, 東北電力の基準断層モデル で設定されたMw8.3とこれとの関係を説明すること。
S72-3	地震調査研究推進本部(2012)が幅のある評価結果(Mt8.6~Mt9.0)を提示していることを尊重した上で,設定すべき基準断層モデルの 規模を検討すること。

I. 地震に起因する津波の評価 1. 津波地震

1.2 本説明(コメント回答)の基本方針

■<u>第210回審査会合(H27.3.20)でのご説明</u>

・ 地震調査研究推進本部(2012)において次の地震の規模を1896年明治三陸地震津波と評価していること、並びに同地震は国内外で最大規模の地震であることを踏まえ、基準断層モデルの地震規模(Mw)は、1896年明治三陸地震津波を再現するモデル(Mw8.28)を上回る規模(Mw8.3)を考慮するとともに、土木学会(2002)を参考に波源特性の不確かさを考慮した。

■本説明(コメント回答)の基本方針

- 上記検討が女川地点を評価する上で十分厳しくなっているかを確認するため、申請時の基準断層モデル(Mw8.3)による敷地前面最大ケースを対象に、
 発電所周辺におけるMtを算定した結果、Mt8.8~9.1となり、地震調査研究推進本部(2012)の評価(Mt8.6~9.0)を上回ることを確認した※。
 ※:申請時の基準断層モデルによる評価の詳細は、(原子力発電所)資料3-4「皿、1、申請時の基準断層モデルによる評価」に記載。
- ただし、地震調査研究推進本部(2012)では、阿部(2003)が過大評価気味としたMt9.0を評価に取り入れたことに鑑み、保守性を確保する観点から、地震 規模の不確かさを考慮した基準断層モデル(Mw8.5)を設定する。

1.3 地震規模に関する知見の整理

1. 3. 1	地震調査研究推進本部(2012)の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1. 3. 2	国内外で発生した津波地震の地震規模	11
1.3.3	2011年東北地方太平洋沖地震発生後の応力状態 ・・・・・・・・・・・・・・・・	12
1. 3. 4	地震規模の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15

1.3.1 地震調査研究推進本部(2012)の評価

・ 地震調査研究推進本部(2012)では、阿部(2003)の知見を引用し、次の地震の規模を「Mt8.6~Mt9.0」、その信頼度を「A」と評価している。

項目	将来の地震発 生確率等 ^{注2}	備考	評価の 信頼度 ^{注4}
 今後10年以内の発生確率 # 今後20年以内の発生確率 # 今後30年以内の発生確率 # 今後40年以内の発生確率 # 今後50年以内の発生確率 # 今後100年以内の発生確率 # 今後300年以内の発生確率 # 	9%程度 (2%程度) 20%程度 (5%程度) 30%程度 (7%程度) 30%程度 (9%程度) 40%程度 (10%程度) 60%程度 (20%程度) 90%程度以上 (50%程度)	約412年間に顕著な津波を伴った地震が三陸 沖北部から房総沖の海溝寄りに4回発生して いると判断し,平均発生間隔を103年(+412 年/4回)とし,ポアソン過程により三陸沖北 部から房総沖の海溝寄りのどこかで発生する 確率を算出した。また,1896年の地震の断層 長が三陸沖北部から房総沖の海溝寄り全体の 0.25倍程度を占めることから,特定の海域で は同様の地震が412年に1回発生するものとし て,ポアソン過程から発生確率を算出した。 # 三陸沖北部から房総沖の海溝寄り全体での 発生確率を示す。()は特定の海域の値。	С
次の地震の規模	Mt8.6-Mt9.0 ^{注3}	過去に発生した地震のMt等を参考にして判断 した。津波地震であるためMtdMtより小さい。	А

次の三陸沖北部から房総沖の海溝寄りのプレート間地震(津波地震)の発生確率等

(地震調査研究推進本部(2012))

注2 評価時点がどの時点でもポアソン過程を用いているため確率は変化しない。

注3 Mの推定値のばらつきについて、「程度」及び「前後」を使用。「程度」は「前後」よりばらつきが大きい場合に使用した。

注4 評価の信頼度

■規模の評価の信頼度:A

想定地震と同様な過去の地震の規模から想定規模を推定した。過去の地震データが比較的多くあり、規模の信頼性は高い。

■発生確率の評価の信頼度:C

想定地震と同様な過去の地震データが少なく、必要に応じ地震学的知見を用いて発生確率を求めたため、発生確率の値の信頼性はやや低い。 今後の新しい知見により値が大きく変わり得る。

地震調査研究推進本部(2012)は、阿部(2003)の知見を引用して次の地震規模を評価しているとともに、その規模をMt(津波マグニチュード)で評価 していることを踏まえ、次頁以降に阿部(2003)の知見、並びに津波地震のMtとMwの関係を整理する。

1.3.1 地震調査研究推進本部(2012)の評価:阿部(2003)の知見

• 阿部(2003)は、1896年明治三陸地震津波のMtに係る既往知見を次のとおり再整理した。

- ▶ 1896年明治三陸地震津波のMtは従来8.2と求められていたが(阿部(1988)), 用いたデータの少なさ^{※1}や遡上高からみると過小評価されているようにみえる。
- ▶ 遡上高の平均値に阿部(1999)のMt決定法を適用すると9.0が求められるが、この値は過大評価気味である。
- ▶ そこで今後は、環太平洋の計器観測(検潮儀記録)を重視して、Abe(1979)により海外のデータから求められた8.6を採用する。
- ※1:計算に使用されたデータは,花咲・鮎川・銚子の検潮記録であるが,検潮儀の特性からみると,非常に大きな津波が波源近くで線形に記録されていないことも十分に考え られる。

年.月.日	緯度	経度	地域	M_t	Ms
1596.9.4	33.3	131.6	別府湾	8.0	(7.0)
1605.2.3	33.5	138.5	慶長東海南海	8.2	(7.9)
1611.12.2	39.0	144.0	三陸沖	8.4	(8.1)
1677.11.4	35.0	141.5	房総沖	8.0	(8.0)
1741.8.29	41.6	139.4	渡島半島沖	8.4	-
1771.4.24	24.0	124.3	八重山諸島	8.5	(7.4)
1792.5.21	32.8	130.3	島原湾	7.5	(6.4)
1896.6.15	39.5	144.0	岩手県沖	8.6	7.2
1975.6.10	42.8	148.2	色丹島沖	7.9	6.8
1984.6.13	31.4	139.8	鳥島近海	7.3	5.4
1996.9.5	31.4	140.0	鳥島近海	7.5	5.7

日本周辺の特に顕著な津波地震(1498年~2002年)※2

(阿部(2003)に一部加筆)

※2:出典は、Abe(1985)、阿部(1999)及び本稿(阿部(2003))。かっこ内は宇津(1999)による値。

1.3.1 地震調査研究推進本部(2012)の評価:津波地震のMtとMwの関係

- 津波マグニチュード(Mt)は、地震の規模を表すマグニチュード(M)の決定式にならって、検潮儀で観測された津波の最大振幅(または痕跡高)と、 観測点から震央までの距離(伝播距離)から算定される津波の大きさを表す指標であり、国内外で発生した数多くの津波に対して、モーメントマグニチュード(Mw)と合致する(Abe(1979, 1981, 1985)、阿部(1988, 1999))。
- ただし、津波地震は地震規模の割に異常に大きな津波を引き起こす地震であり(Kanamori(1972))、MtからMwを推定することはできない (阿部(1999))。
 - 1. 検潮儀記録を用いた定義式
 - (1)近地津波の観測記録を対象とした定義式(Abe(1981))

 $M_{\rm t} = \log H + \log \Delta + 5.80$

- $M_{\rm t} = \log H_2 + \log \Delta + 5.55$
 - H:検潮儀記録に基づく津波の最大片振幅(m)
 - H₂:検潮儀記録に基づく津波の最大全振幅(m)
 - △ : 震央から観測点までの海洋上最短距離(km)
- (2)太平洋地域の津波の観測記録を対象とした定義式(Abe(1979))
 - $M_{\rm t} = \log H + 9.1 + \Delta C$
 - H :検潮儀記録に基づく津波の最大片振幅(m)

△C:津波の発生場所と観測点との組合せで決定する補正値

△Cの値(Abe(1	979))
-------	-------	-------

			ΔC		
Source Region	Honolulu	Hilo	California	Japan	Aleutian
A: Peru, Chile B: Alaska, Aleutian C: Kamchatka, Kurile, Japan Whole Berion	+0.2 +0.1 0.0 +0.1	-0.6 0.0 -0.4 -0.3	+0.2 +0.2 +0.1 +0.2	0.0 +0.3 -0.2*	+0.2

 $M_t = \log H + C + \Delta C$ (H is in meters, C = 9.1).

*Except for Japan region.

- 2. 痕跡高を用いた定義式(阿部(1999))
 - $M_{\rm t} = 2\log H_m + 6.6$
 - $M_{\rm t} = 2\log H_{\rm max} + 6.0$
 - H_m:区間平均高の最大値(最大区画平均高)(m) H_{max}:全域の最大津波高(m)
- 3. MtとMwの関係※

※:津波地震は除く。

M_t = M_w (太平洋側, Abe(1985))

 $M_{\rm t} = M_{\rm w} + 0.2$

(日本海側,検潮儀記録を用いてMtを求めた場合,Abe(1985))

 $M_{t} = M_{w} + 0.4$ (日本海側, 痕跡高を用いてMtを求めた場合, 阿部(1999))

11

I. 地震に起因する津波の評価 1. 津波地震 1.3 地震規模に関する知見の整理

1.3.2 国内外で発生した津波地震の地震規模

• 1896年明治三陸地震津波(Mw8.3, 土木学会(2002))は, 国内外で発生した最大規模の津波地震である。

Date	Geographical Region	Mw	mb	Ms	Mt	Deaths
1896/06/15	Japan			7.2	8.0	26360
1946/04/01	Aleutian Islands	8.2		7.3	9.3	165
1960/11/20	Peru	7.6	7.0	7.0		66
1963/10/20	Kurile Islands	7.8	7.1	7.2		
1975/06/10	Kurile Islands	7.5	5.6	7.0		
1992/09/02	Nicaragua	7.7	5.4	7.2		179
1994/06/02	Java	7.8	5.7	7.1		250
1996/02/21	Peru	7.5	5.8	6.6		12
2006/07/17	Java	7.7	6.2	7.2		668

POLET and KANAMORI(2009)

Tsunami Earthquakes, Figure 1

Map of tsunami earthquakes (listed in Table 1). Location for 1896 earthquake from [2] and for 2006 earthquake from the Global CMT catalog. All other earthquake locations from the Centennial Earthquake Catalog [18]

12

I. 地震に起因する津波の評価 1. 津波地震 1.3 地震規模に関する知見の整理 1.3.3 2011年東北地方太平洋沖地震発生後の応力状態①

 地震学的・地球物理学的見地から、2011年東北地方太平洋沖地震の発生により、それを引き起こした歪みはほぼ解放されたと考えられる (Hasegawa et al.(2012), JAMSTEC(2013)他)。

■地球物理学的見地

第210回審査会合(H27.3.20) 資料2-1 p8 一部修正

13

I. 地震に起因する津波の評価 1. 津波地震 1. 3 地震規模に関する知見の整理 1. 3. 3 2011年東北地方太平洋沖地震発生後の応力状態②

・ JAMSTEC(2012)によれば、2011年東北地方太平洋沖地震発生前後の地下構造データの比較から、2011年東北地方太平洋沖地震は、「プレート 境界付近をすべり面とした断層が海溝軸まで到達した。」としている。

2011年東北地方太平洋沖地震後の地下構造の解釈図(JAMSTEC(2012))

以上の地震学的・地球物理学的見地から、2011年東北地方太平洋沖地震の発生に伴う応力解放範囲は、津波地震発生領域を含むと考えられる。

第210回審査会合(H27.3.20) 資料2-1 p9 再掲

14

I. 地震に起因する津波の評価 1. 津波地震 1.3 地震規模に関する知見の整理

1.3.3 2011年東北地方太平洋沖地震発生後の応力状態③

- ・ 地震調査研究推進本部(2012)は、「三陸沖北部から房総沖の海溝寄りのプレート間地震(津波地震)」の発生確率を下表のとおり算定している。
- なお,発生確率の算定にあたっては、特定の海域では、断層長(200km程度)と領域全体の長さ(800km程度)の比を考慮して412年に1回の割合でこのような 地震が発生すると推定されるとしているが、東北地方太平洋沖地震の震源域に含まれる三陸沖中部から三陸沖南部海溝寄りの海溝寄りに至る部分につい ては、この地震によりこれまでの歪みを解放した状態と考えられる。このため、この部分の将来の発生確率は上述の値より小さいと評価している。

P8再掲

次の三陸沖北部から房総沖の海溝寄りのプレート間地震(津波地震)の発生確率等 (地震調査研究推進本部(2012))

項目	将来の地震発 生確率等 ^{注2}	備考	評価の 信頼度 ^{注4}
 今後10年以内の発生確率 # 今後20年以内の発生確率 # 今後30年以内の発生確率 # 今後40年以内の発生確率 # 今後50年以内の発生確率 # 今後100年以内の発生確率 # 今後300年以内の発生確率 # 	9%程度 (2%程度) 20%程度 (5%程度) 30%程度 (7%程度) 30%程度 (9%程度) 40%程度 (10%程度) 60%程度 (20%程度) 90%程度以上 (50%程度)	約412年間に顕著な津波を伴った地震が三陸 沖北部から房総沖の海溝寄りに4回発生して いると判断し,平均発生間隔を103年(=412 年/4回)とし,ポアソン過程により三陸沖北 部から房総沖の海溝寄りのどこかで発生する 確率を算出した。また,1896年の地震の断層 長が三陸沖北部から房総沖の海溝寄り全体の 0.25倍程度を占めることから,特定の海域で は同様の地震が412年に1回発生するものとし て,ポアソン過程から発生確率を算出した。 # 三陸沖北部から房総沖の海溝寄り全体での 発生確率を示す。()は特定の海域の値。	С
次の地震の規模	Mt8.6-Mt9.0 ^{注3}	過去に発生した地震のMt等を参考にして判断 した。津波地震であるためMはMtより小さい。	А

\checkmark

2011年東北地方太平洋沖地震の発生に伴い、女川原子力発電所前面海域にこれまで蓄積された歪みはほぼ解放されたと考えられるものの、地震調査研究推進本部(2012)においてある程度の地震発生確率を算定していることを踏まえ、「津波地震」を検討波源とした基準断層モデルを設定する。

1.3.4 地震規模の設定

 ・ 地震調査研究推進本部(2012)において次の地震の規模を1896年明治三陸地震津波と評価していること、並びに同地震は国内外で最大規模の 津波地震であることを踏まえ、基準断層モデルの地震規模は、1896年明治三陸地震津波を再現するモデルを上回る規模を考慮する。

1.4 基準断層モデルの設定

1.4	4. 1	設定方針 •••••••	17
1.4	4. 2	既往津波の再現解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
1. 4	4. 3	地震規模(Mw)の分布幅に関する知見の整理 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
1.4	4. 4	地震規模(Mw)の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
1. 4	4. 5	基準断層モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23

1.4.1 設定方針

■審査会合におけるコメント

No.	コメント内容
S72	津波地震,海洋プレート内地震の評価について,地震規模の設定並びに波源特性の不確かさの考慮方法が女川地点の評価決定ケースとし て十分厳しくなっているか,地震調査研究推進本部の知見等も踏まえ,再度説明すること。

【S72に対するコメント(補足)】

No.	コメント内容
S72-2	東北電力は「基準断層モデルは, 地震調査研究推進本部(2012)の評価及び国内外で最大規模の1896年明治三陸地震津波を再現するモデ ル(Mw8.28)を基本として, これを上回るよう土木学会(2002)を参考にMw8.3にスケーリングして設定した。」としている。一方, 地震調査研究 推進本部(2012)における『次の地震の規模』の評価ではMt8.6~Mt9.0と幅で表現しているが, 東北電力の基準断層モデルで設定された Mw8.3とこれとの関係を説明すること。
S72-3	地震調査研究推進本部(2012)が幅のある評価結果(Mt8.6~Mt9.0)を提示していることを尊重した上で, 設定すべき基準断層モデルの規模 を検討すること。

■設定方針

- なお、申請時の基準断層モデル(Mw8.3)を用いた検討は、地震調査研究推進本部
 (2012)の評価(Mt8.6~9.0)を上回ることを確認した。詳細は、(原子力発電所)資料3
 -4「皿、1、申請時の基準断層モデルによる評価」に記載。 \$72-2

SO :審査会合コメント

朱書き部:今回追加 or 変更箇所

2. 基準断層モデルの設定

S72-2 S72-3

⑤既往津波の再現解析

⑥地震規模(Mw)の分布幅に関する知見の整理

⑦地震規模(Mw)の設定

⑧基準断層モデルの設定

- >中央防災会議(2005)の断層モデルを参考に設定
- > 1896年明治三陸地震津波の痕跡高と比較し、妥当性を 確認(安全側の設定になっていることを確認)
- > 地震調査研究推進本部(2014)の知見を踏まえ,発電所 に影響が大きい波源位置を基準位置に設定

第210回審査会合(H27.3.20) 資料2-1 p11, p12 一部修正

1.4.2 既往津波の再現解析

■再現モデルの設定

・ 土木学会(2002)を参考として、1896年明治三陸地震津波の再現モデルを設定した。

断層パラメータ		設定方法	設定値
モーメントマク゛ニチュート゛	Mw	(logM ₀ -9.1)/1.5	8.28
長さ	L(km)	土木学会(2002)	210
幅	W(km)	土木学会(2002)	50
剛性率	μ (N/m ²)	土木学会(2002)(詳細はp19に記載。)	3.5 × 10 ¹⁰
すべり量	D(m)	土木学会(2002)を基本として,再現性 が確認できるすべり量に補正。	9.0
地震モーメント	Mo(Nm)	μ LWD	3.31 × 10 ²¹
走向	θ(°)	土木学会(2002)を基本として, 再現性 が確認できる走向に補正。	190
断層上縁深さ	d(km)	土木学会(2002)	1
傾斜角	δ(°)	土木学会(2002)	20
すべり角	λ(°)	土木学会(2002)を基本として,再現性 が確認できるすべり角に補正。	75
ライズタイム	τ (s)	相田(1986)(詳細はp20に記載。)	60

■再現性の確認結果※

・ 土木学会(2002)の目安を満足しており、各断層パラメータの設定値が妥当であることを確認した。

-5m

既往津波	к	к	n	既往津波高
1896年明治三陸地震津波	1.00	1.44	246	伊木(1897), 松尾(1933)

※:再現性の確認に用いた計算条件等の詳細は, (原子力発電所)資料3-4「I.2.再現解析」に 記載。

1.4.2 既往津波の再現解析:剛性率の設定

・ 土木学会(2002)等を参考として、3.5×10¹⁰(N/m)とした。

 ※:陸域の速度構造はIwasaki et al.(2001), 背弧側は西坂ほか(2001), 三陸沖は Takahashi et al.(2004)によって公表された速度構造を統合したもの。

Vp/Vs比に関する既往研究例(伊藤·大東(1996))

地域	上部地殻	下部地殻	上部マントル	文献·備考
近畿	1.67		1.78	Yoshiyama(1957)
西南日本	1.6	8	$1.75 \sim 1.79$	角田(1968)
紀伊半島	$1.716 \pm$	0.021		渡辺・黒磯(1967)
東北			1.77	宇津(1969)
中国	$1.70 \sim 1.71$	1.73		Hashizume(1970)
東北	1.66	1.75	$1.70 \sim 1.75$	堀内ら(1977)
			$1.75 \sim 1.80$	マントルの値は火山フロントの東西
近畿北部	1.70			黒磯·渡辺(1977)
函館群発	(1.66)			高波ら(1980) 表層の値
中部東海	1.68 ± 0.02	$1.75 \sim 1.81$	1.77	Ukawa and Fukao(1981)
				真のVp,Vsから求めた値
四国	(1.58 - 1.65)	1.75	1.73	岡野·木村(1983)
	1.73			()内は表層の値
飛騨周辺	1.67 ± 0.01			
長野県	1.69 ± 0.01			
北関東	1.71 ± 0.01			毎□,趙川(1005)
甲府周辺	1.69 ± 0.01			1前山 7週/11(1990)
富士箱根	$1.69 \sim 1.78$			
甲府周辺	$1.66 \sim 1.71$			
日光付近	1.682 ± 0.016	1.686*	1.90	大 甫 ·伊藤(1005)
長野県西部	1.700 ± 0.053	1.686*		八米 げ 暦(1950) *)け直の 1/2 1/2から支めた値
兵庫県南部	1.680 ± 0.023	1.76*	1.76*	*va具のvp, vsから水のに他

震源付近の媒質の剛性率の標準値(土木学会(2002))

海 域	根拠	剛性率
 ・西南日本陸側プレート内 ・日本海東縁部 ・プレート境界浅部(断層面全 体が深さ 20km 以浅に存在 する場合) 	Vp=6.0 km/s Vp/Vs=1.6~1.7 ρ =2.7~2.8 g/cm ³ とすれば、 μ =3.36×10 ¹⁰ ~3.94×10 ¹⁰ N/m ² となる。この中間的値とする。	$3.5 imes 10^{10} { m N/m^2} \ (3.5 imes 10^{11} { m dyne/cm^2})$
 ・海洋プレート内 ・プレート境界深部(断層面全 体が深さ 20km 以深に存在 する場合) 	Vp=8.0~8.1 km/s Vp/Vs=1.75~1.80 ρ =3.2~3.5 g/cm ³ とすれば、 μ =6.31×10 ¹⁰ ~7.50×10 ¹⁰ N/m ² となる。この中間的値とする。	7.0×10 ¹⁰ N/m² (7.0×10 ¹¹ dyne/cm²)
・プレート境界中央部(断層面 が深さ 20km 以浅と以深に またがって存在する場合)	浅部と深部の中間的値とする。	$5.0 imes 10^{10} \mathrm{N/m^2} \ (5.0 imes 10^{11} \mathrm{dyne/cm^2})$

第210回審査会合(H27.3.20) 資料2-1 p19 再掲 **20**

I. 地震に起因する津波の評価 1. 津波地震 1.4 基準断層モデルの設定

1.4.2 既往津波の再現解析:ライズタイムの設定

 実際の地震の震源過程(=初期破壊から震源域全体に破壊が及ぶ過程)が終了するのに要する時間が数秒から1分程度であることに対して、 相田(1986)は津波解析上の変動時間(以下、「津波初期変位分布のライズタイム」という。)の設定方法を以下のとおり示している。

津波初期変位分布のライズタイム(s)=(L(km)/Vr(km/s))+ τ (s)

ここで、

L :断層長さ(km)

Vr:破壊伝播速度(km/s)

- τ : ある1点で断層ずれを形成する時間(=立上り時間)(s)
- 日本海溝沿いで発生しているM8クラスの地震の断層長さL:150(km)~200(km)程度(土木学会(2002)),破壊伝播速度Vr:2.4(km/s)~3.0 (km/s)(地震調査研究推進本部(2009)),ある1点で断層ずれを形成する時間(=立上り時間) r:5(s)程度(相田(1986))とすると、津波初期 変位分布のライズタイムは、55(s)~88(s)程度となる。

以上を踏まえ、津波初期変位分布のライズタイムを60(s)に設定した※。

※:津波初期変位分布の解析上の考慮方法

→ Mansinha and Smylie(1971)の方法により計算される津波初期変位分布(=断層面全体の鉛直 変位分布)を破壊終了時変位,その変動終了時間:60(s)(=ライズタイム)として,津波解析と 同様の時間格子間隔Δt:0.1(s)を用いて一様に変位を与える。

1.4.3 地震規模(Mw)の分布幅に関する知見の整理

- 土木学会(2009)では、日本付近でほぼ同じ領域が破壊したと考えられる過去の固有地震の規模範囲を整理し、「マグニチュードの決定精度に問題はあると 思われるが、マグニチュード幅は0.3~0.6程度の範囲に分布している。」としている。
- Murotani et al.(2013)によるM7~9クラスまでに適用可能なスケーリング則(M₀=16/(7・π^{3/2})・⊿σ・S^{3/2})から,破壊領域(S)とM₀の関係式の平均応力降 下量を算定すると1.57MPaであり,標準偏差SD(±σ)を考慮すると最小で0.82MPa,最大で3.0MPaとなる。
- 破壊領域(S)を固定した場合の各平均応力降下量のMwを算定すると、 △σ=1.57MPalこよるMwに対して△σ=0.82MPalは-0.2、 △σ=3.00MPalは+0.2となる。

海域	M _J の範囲	M _t の範囲
宮城県沖: 5地震	7.3~7.5	-
三陸沖北部:4地震	7.4~7.9	7.6 ~8.2
十勝沖: 2003, 1952, 1843	8.0~8.2	8.0~8.2
南海: 1946, 1854	8.0 ~8.4	8.1~8.3

破壊領域(S)とMoの関係(Murotani et al.(2013))

以上から、地震規模(Mw)の分布幅は、基準±0.2と整理される。

1.4.4 地震規模(Mw)の設定

・ 1896年明治三陸地震津波(Mw8.3, 土木学会(2002))は, 国内外で発生した最大規模の津波地震である。

Date	Geographical Region	M _w	mb	Ms	<i>M</i> _t	Deaths
1896/06/15	Japan			7.2	8.0	26360
1946/04/01	Aleutian Islands	8.2		7.3	9.3	165
1960/11/20	Peru	7.6	7.0	7.0		66
1963/10/20	Kurile Islands	7.8	7.1	7.2		
1975/06/10	Kurile Islands	7.5	5.6	7.0		
1992/09/02	Nicaragua	7.7	5.4	7.2		179
1994/06/02	Java	7.8	5.7	7.1		250
1996/02/21	Peru	7.5	5.8	6.6		12
2006/07/17	Java	7.7	6.2	7.2		668

POLET and KANAMORI(2009)

Map of tsunami earthquakes, rigure 1 Map of tsunami earthquakes (listed in Table 1). Location for 1896 earthquake from [2] and for 2006 earthquake from the Global CMT catalog. All other earthquake locations from the Centennial Earthquake Catalog [18]

上記知見, 並びに前述した地震規模(Mw)の分布幅に関する知見を踏まえ, 基準断層モデルの地震規模(Mw)は, 1896年明治三陸地震津波 再現モデルの地震規模(Mw8.28)+0.2とし, Mw8.5に設定する。

1.4.5 基準断層モデルの設定:設定方針

- 中央防災会議(2005)では、1896年明治三陸地震津波の痕跡高を用いたインバージョン手法により、すべりの不均質性を考慮した断層モデル(断層面積: 約23千km²、代表長さ:約330km、平均幅:約70km)を推定している。
- 同モデルは、申請時の基準断層モデル(Mw8.3)やTanioka and Satake(1996)の断層モデル(Mw8.0)よりも地震規模が大きいとともに(Mw8.6^{**})、痕跡高よりも 計算値が大きい(K=0.77, κ=1.4)。

※:すべり量,面積から剛性率を逆算するとμ=5.24×10¹⁰(N/m)であるが,土木学会(2002)を参考に設定した再現モデルのμ=3.5×10¹⁰(N/m)を用いるとMw8.48である。

・ 以上から、基準断層モデルは、同モデルのすべり分布を参考に設定する。

1896年明治三陸地震津波の痕跡高を用いたインバージョンモデル及び痕跡高と計算値の比較(中央防災会議(2005)に一部加筆)

I. 地震に起因する津波の評価 1. 津波地震 1. 4 基準断層モデルの設定 1. 4. 5 基準断層モデルの設定:長さ,幅,すべり量,剛性率,断層上縁深さ,傾斜角,ライズタイム

・ 既往津波(1896年明治三陸地震津波)の再現モデル,中央防災会議(2005)の断層モデルのすべり分布を参考に,土木学会(2002)に示されるMwに 関連する断層パラメータのスケーリング則を適用して,長さ,幅,すべり量,剛性率,地震モーメント,傾斜角,ライズタイムを以下のとおり設定した。

断層パラメータ		設定方法	設定値		
モーメントマク゛ニチュート゛	Mw	地震規模(Mw)の分布幅に関する知見, 国内外で発生した最大規模の1896年明 治三陸地震津波の地震規模を踏まえて 設定	8.5		
長さ	L(km)	中央防災会議(2005)のすべり分布を参	271		
幅	W(km)	考に, 既往津波再現モデルに, Mwに関連 する断層パラメータのスケーリング則(限	64		
すべり量	D(m)	界を設定しない)を適用して設定。	11.60		
剛性率	μ (N/m ²)	既往津波再現モデルに基づき設定。	3.5 × 10 ¹⁰		
地震モーメント	Mo(Nm)	μ LWD	7.08 × 10 ²¹		
断層上縁深さ	d(km)		1		
傾斜角	δ(°)	成仕/年波丹 現モナルに参りさ設定。	20		
ライズタイム	τ (s)	既往津波再現モデルに基づき設定。	60		

基準断層モデル (波源位置:1896年明治三陸地震津波発生位置)

1896年明治三陸地震津波の痕跡高と比較し、設定した断層モデルの妥当性を確認する。

1.4.5 基準断層モデルの設定:1896年明治三陸地震津波の痕跡高との比較

・ 設定した断層モデルは1896年明治三陸地震津波の痕跡高よりも十分に大きく(K=0.66),安全側の設定になっていることを確認した。

1896年明治三陸地震津波の痕跡高と計算津波高の比較

1896年明治三陸地震津波の痕跡高との比較(K, K)

断層モデル	К	к	n	既往津波高
基準断層モデル	0.66	1.54	246	伊木(1897), 松尾(1933)
(参考) 中央防災会議(2005)	0.77	1.4	1 <i>43</i> *	伊木

※:痕跡高と計算値の比較図(p23)から読み取り

1.4.5 基準断層モデルの設定:基準位置の設定

・ 地震調査研究推進本部(2014)による津波地震の断層面の設定方法を参考として、発電所に影響が大きい位置を基準位置とした。

100

200 km

・ 上記波源位置における走向, すべり角を含めた諸元を以下に示す。

三陸沖北部から房総沖の海溝寄りの プレート間地震(津波地震)の断層面 (地震調査研究推進本部(2014)に一部加筆)

150 20 40		60 180	120	149	144	160	219	- 44
1	$^{\prime}$	1					کنے	
10 1	W	S [5	المريخ (D)	
10 6 4	0	t,		Ş				
210		² S			4010			
" K		}						
		ត្ ភ				1		
1		, in the second s		2001	610	e sõ	 64 7	
"" /		e la companya de la compa		$\geq I$	\pm	1 4		
230 0	<i>5</i> 5 ^{~~}	- <u>1</u>		V.	[]	1		
210	ſ			1	4			
330	Ì			17	1	lig		
			2.1	V/	1	2		
110	الم -	/	$ \land $	7	/	$\left(\right)$	P	
170	1	2008)ts	\square	801	io <		
3 9 0	(Š Ş ,	07	6°			
110	2	4000	1 pe					
um C	(л Л					
	*	77].[6 (
"] <u>•</u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\sim	27	57	ç,"				
	53		} } .		0	200)	
	其	淮將	圖	Ŧ -	ѓл	,		
	<u>本</u>				, /v + :#=			
	(汲	と涙位	Ι直	: 塁	Ł凖)		

断層パラメータ 設定方法 設定値 地震規模(Mw)の分布幅に関す モーメント る知見、国内外で発生した最大 8.5 Mw マグニチュート 規模の1896年明治三陸地震津 波の地震規模を踏まえて設定 長さ L(km) 既往津波再現モデル、中央防災 271 会議(2005)のすべり分布を参考 幅 W(km)64 に、Mwに関連する断層パラメー タのスケーリング則(限界を設定) すべり量 D(m) 11.60 しない)を適用して設定。 既往津波再現モデルに基づき 3.5×10^{10} 剛性率 μ (N/m²) 設定。 地震モーメント 7.08×10^{21} μ LWD Mo(Nm) 地震調査研究推進本部(2014) 走向 θ (°) の津波地震の断層面を参考に 197 設定。 断層上縁深さ d(km)1 既往津波再現モデルに基づき 設定。 δ(°) 傾斜角 20 すべり角 λ(°) 走向とすべり方向に基づき設定。 83.6 既往津波再現モデルに基づき ライズタイム τ(s) 60 設定。

1.4.5 基準断層モデルの設定:基準断層モデルによる計算結果

• 基準断層モデルによる計算結果を以下に示す。

【水位上昇側】

		最大水位上昇量(m)							
	敷地前面	1号取水口 前面	2号取水口 前面	3号取水口 前面	1号放水口 前面	2•3号放水口 前面			
基準断層モデル	19.63(北側)	14.87	14.90	15.49	12.82	13.46			

【水位下降側】

	最大水位下降量(m)
	2号取水口前面
基準断層モデル	-8.54

1.5 波源特性の不確かさの考慮

1. 5. 1	検討方針 ••••••••	29
1. 5. 2	波源特性の不確かさの考慮方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
1. 5. 3	概略パラメータスタディ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
1. 5. 4	詳細パラメータスタディ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35

I. 地震に起因する津波の評価 1. 津波地震 1.5 波源特性の不確かさの考慮

1.5.1 検討方針

■審査会合におけるコメント

No.	コメント内容
S73	津波地震,海洋プレート内地震の評価決定ケースが最も厳しい位置となっているか確認すること。合わせて,発電所に厳しい位置がどこにな るか図で示すこと。

 \checkmark

■検討方針

- 土木学会(2002)を参考とした波源特性の不確かさを考慮する。
- ・ 概略パラメータスタディのうち位置の不確かさについては、発電所に最も厳しい位置と なっているかを確認するため、10km単位で移動させる。
- 詳細パラメータスタディは、概略パラメータスタディで抽出した位置が、港湾部の防波 堤が無い場合でも抽出位置として妥当であるかを確認した上で実施する。
- なお、防波堤の有無が抽出位置に影響する場合には、概略パラメータスタディで抽出した波源位置以外についても詳細パラメータスタディを実施する。

S●: 審査会合コメント
 朱書き部: 今回追加 or 変更箇所

I. 地震に起因する津波の評価 1. 津波地震 1.5 波源特性の不確かさの考慮

1.5.2 波源特性の不確かさの考慮方法

- 土木学会(2002)を参考として波源位置及び走向を変動させた概略パラメータスタディを実施し、各評価位置で水位上昇量及び水位下降量が最大となる ケースについて、傾斜角及びすべり角を変動させた詳細パラメータスタディを実施した。
- 位置の変動範囲については、発電所に最も影響が大きい波源位置を評価するため、発電所の津波高さに与える影響が大きい範囲を対象に、10km単位で 移動させる。
- ・ 走向, 傾斜角, すべり角の変動範囲については, 土木学会(2002)を参考に設定※した。
 - ※: 土木学会(2002)では、プレート間逆断層地震のハーバードCMTによる発震機構解(1976.1~2000.1に発生したMw6.0以上、深さ60km以下の地震)及び既往の断層モデルのばらつきから変動範囲を設定。

I. 地震に起因する津波の評価 1. 津波地震 1. 5 波源特性の不確かさの考慮 1. 5. 3 概略パラメータスタディ:水位上昇側①

• 各評価位置における最大水位上昇量を以下に示す。

パラメータの変動範囲			1号	_2号	3号	1号	2•3号	
位置	走向	敷地前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考
	基準-5°	18.54(北側)	14.20	14.52	15.12	12.24	13.09	追加検討
北へ50Km 私動	基準	19.84(北側)	14.86	15.01	15.68	12.81	13.60	追加検討
修到	基準+5°	20.54(北側)	15.12	15.54	15.93	13.08	13.93	追加検討
	基準-5°	18.36(北側)	14.17	14.48	15.06	12.19	13.06	追加検討
北へ40km 移動	基準	19.91(北側)	14.94	15.09	15.70	12.86	13.64	追加検討
	基準+5°	20.82(北側)	15.21	15.74	16.10	13.23	14.11	追加検討
北へ30km お動	基準-5°	18.20(北側)	14.14	14.41	14.99	12.14	12.96	追加検討
	基準	20.07(北側)	15.01	15.19	15.78	12.93	13.65	追加検討
19 30	基準+5°	21.09(北側)	15.43	15.96	16.34	13.39	14.34	追加検討
	基準-5°	17.90(北側)	14.04	14.30	14.84	12.05	12.79	追加検討
北へ20km 私動	基準	20.22(北側)	15.17	15.25	15.87	13.01	13.66	追加検討
19 30	基準+5°	21.45(北側)	15.65	16.17	16.55	13.58	14.60	追加検討
	基準-5°	17.31(北側)	13.72	14.00	14.47	11.86	12.39	追加検討
北へ10km	基準	20.02(北側)	15.13	15.21	15.79	13.01	13.67	追加検討
移動	基準+5°	21.67(北側)	15.72	16.30	16.73	13.78	14.81	詳細パラメータスタディ① 追加検討
	基準-5°	16.77(北側)	13.27	13.42	13.92	11.48	11.90	追加検討
基準	基準	19.63(北側)	14.87	14.90	15.49	12.82	13.46	追加検討
	基準+5°	21.63(北側)	15.57	16.24	16.68	13.89	14.90	詳細パラメータスタディ② 追加検討

(単位:m)

I. 地震に起因する津波の評価 1. 津波地震 1. 5 波源特性の不確かさの考慮 1. 5. 3 概略パラメータスタディ:水位上昇側②

• 各評価位置における最大水位上昇量を以下に示す。

パラメータの変動範囲			1号	2号	3号	1号	2•3号	
位置	走向	敷地前面	□ 取水口 □ 前面	取水口 前面	取水口 前面	放水口 前面	│ 放水口 │ 前面	備考
+	基準-5°	15.68(北側)	12.62	12.75	13.20	10.80	11.20	追加検討
円へ10km 段勈	基準	18.52(北側)	14.31	14.40	14.83	12.39	12.94	追加検討
19/30	基準+5°	21.36(北側)	15.34	16.01	16.39	13.75	14.70	追加検討
=	基準-5°	13.58(北側)	11.79	11.83	12.27	9.94	10.34	追加検討
南へ20km 移動	基準	17.03(北側)	13.54	13.60	14.00	11.67	12.12	追加検討
	基準+5°	20.65(北側)	14.79	15.43	15.84	13.35	14.15	追加検討
=	基準-5°	12.55(北側)	11.00	10.84	11.04	9.09	9.55	追加検討
用へ30km 私動	基準	15.85(北側)	12.71	12.70	13.15	10.93	11.20	追加検討
19-30	基準+5°	18.86(北側)	14.41	14.64	14.89	12.53	13.32	追加検討
=	基準-5°	11.60(北側)	10.06	9.78	9.87	8.14	8.27	追加検討
円へ40km 	基準	13.65(北側)	11.81	11.78	12.20	9.96	10.09	追加検討
19/30	基準+5°	17.18(北側)	13.61	13.66	13.90	11.82	12.29	追加検討
=	基準-5°	10.69(北側)	9.26	8.84	8.95	7.14	7.16	追加検討
判へ50km 移動	基準	12.61(北側)	11.02	10.83	11.01	9.10	9.23	追加検討
ゆ則	基準+5°	15.57(北側)	12.86	12.68	12.98	10.99	11.21	追加検討

(単位:m)

不確かさの考慮ケース

I. 地震に起因する津波の評価 1. 津波地震 1.5 波源特性の不確かさの考慮

1.5.3 概略パラメータスタディ:水位下降側

・ 2号取水口前面における最大水位下降量を以下に示す。

							(甲12.1
パラメータの	D変動範囲		/# *	パラメータの	D変動範囲		/# *
位置	走向	2号取水口削面	偏考	位置	走向	2号取水口前面	備考
	基準-5°	-8.07	追加検討	+ 10	基準-5°	-8.52	追加検討
ルヘ20km 移動	基準	-8.16	追加検討	用へIUkm 段動	基準	-8.52	追加検討
	基準+5°	-8.29	追加検討		基準+5°	-8.43	追加検討
	基準一5°	-8.42	追加検討	+	基準-5°	-8.21	追加検討
北へ40km 移動	基準	-8.54	追加検討	用へ20km 20hm	基準	-8.40	追加検討
19 30	基準+5°	-8.57	追加検討	小少玉小	基準+5°	-8.41	追加検討
	基準-5°	-8.63	追加検討	··· 南へ30km ·· 移動	基準-5°	-7.46	追加検討
北へ30km	基準	-8.61	追加検討		基準	-8.12	追加検討
移動	基準+5°	-8.78	詳細パラメータスタディ 追加検討		基準+5°	-8.34	追加検討
		-8.66	追加検討	」 あへ10km	基準-5°	-6.70	追加検討
北へ20km	基進	-8 74	追加検討	移動	基準	-7.48	追加検討
移動		-8 77			基準+5°	-7.98	追加検討
	<u> </u>	-8.66	追加檢討	± • • • • •	基準-5°	-6.19	追加検討
北へ10km	上半	-8.60	追加格討	開 れ る 助	基準	-7.00	追加検討
移動		-8.74	追加検討	10-240	基準+5°	-7.57	追加検討
	基準-5°	-8.62	追加検討				
基準	基準	-8.54	追加検討				
	基準+5°	-8.50	追加検討				

(単位:m)

不確かさの考慮ケース

- I. 地震に起因する津波の評価 1. 津波地震 1.5 波源特性の不確かさの考慮
 - 1.5.3 概略パラメータスタディ:まとめ
- ・ 概略パラメータスタディ及び港湾部の防波堤の有無に関する影響検討結果※を踏まえ、以下のケースを対象に詳細パラメータスタディを実施する。 ※:港湾部の防波堤の有無に関する影響検討の詳細は、(原子カ発電所)資料3-4「町.2.港湾部の防波堤の有無に関する影響検討」に記載。

【水位上昇側】

波源モデル	波源特性の不確かさ		最大水位上昇量(m)						
	位置	走向	敷地 前面	1号 取水口 前面	2号 取水口 前面	3号 取水口 前面	1号 放水口 前面	2•3号 放水口 前面	備考
决计业量	北へ10km	基準+5°	<u>21.67</u> (北側)	<u>15.72</u>	<u>16.30</u>	<u>16.73</u>	13.78	14.81	詳細パラメータスタディ①
津波地震	基準	基準+5°	21.63 (北側)	15.57	16.24	16.68	<u>13.89</u>	<u>14.90</u>	詳細パラメータスタディ②

【水位下降側】

	波源特性の	不確かさ	最大水位下降量(m)	
波源モデル	位置	走向	2号取水口 前面	備考
津波地震	北へ30km 基準+5°		-8.78	詳細パラメータスタディ①
	北へ10km	基準+5°	-8.74	詳細パラメータスタディ② (水位上昇側ケースと同様)
	基準	基準+5°	-8.50	詳細パラメータスタディ③ (水位上昇側ケースと同様)

1.5.4 詳細パラメータスタディ:水位上昇側

• 各評価位置における最大水位上昇量を以下に示す。

【詳細パラメータスタ	ィ①(波源位置:北へ10km,	,走向:基準+5°)	
------------	-----------------------------	------------	--

1	224	ㅗ	1	١	1
(里	11/	(m	ı)	

パラメータの変動範囲			1号	2号	3号	1号	2•3号	
傾斜角	すべり角	敷地前面	取水口 前面	取水口 前面	□ 取水口 │ 前面		放水口 前面	備考
基準-5°	基準-10°	18.99	13.64	14.64	14.77	12.50	13.22	追加検討
	基準	19.95	14.09	15.20	15.14	12.96	13.71	追加検討
	基準+10°	20.10	14.21	15.21	15.24	13.00	13.79	追加検討
基準	基準-10°	20.97	15.35	15.92	16.26	13.37	14.30	追加検討
	基準	21.67	15.72	16.30	16.73	13.78	14.81	追加検討
	基準+10°	21.68	15.86	16.47	16.79	13.81	14.84	追加検討
基準+5°	基準-10°	20.17	16.73	16.91	16.64	13.94	14.21	追加検討
	基準	20.84	17.08	17.47	17.09	14.35	14.75	追加検討
	基準+10°	20.84	17.21	17.61	17.20	14.392	14.72	各取水口前面最大ケース 追加検討

【詳細パラメータスタディ②(波源位置:基準,走向:基準+5°)】

(単位:(m))

パラメータの変動範囲			1号	2号	3号	1号	2•3号	
傾斜角	すべり角	敷地前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	│ 放水口 │ 前面	備考
基準−5°	基準-10°	19.11	13.67	14.74	14.71	12.70	13.33	追加検討
	基準	20.22	14.09	15.25	15.23	13.24	13.91	追加検討
	基準+10°	20.53	14.21	15.39	15.37	13.37	14.06	追加検討
基準	基準-10°	20.95	15.21	15.85	16.15	13.35	14.32	追加検討
	基準	21.63	15.57	16.24	16.68	13.89	14.90	追加検討
	基準+10°	21.82	15.80	16.39	16.80	13.98	15.01	敷地前面最大ケース 2・3号放水口前面最大ケース 追加検討
基準+5°	基準-10°	19.96	16.53	16.66	16.54	13.86	14.19	追加検討
	基準	20.76	17.05	17.31	17.04	14.32	14.75	追加検討
	基準+10°	20.73	17.13	17.45	17.18	14.393	14.80	1号放水口前面最大ケース 追加検討
I. 地震に起因する津波の評価 1. 津波地震 1.5 波源特性の不確かさの考慮

1.5.4 詳細パラメータスタディ:水位下降側

• 2号取水口前面における最大水位下降量を以下に示す。

【詳細パラメータスタディ①(波源位置:北へ30km,走向:基準+5°)】

【詳細パラメータスタディ③(波源位置:基準,走向:基準+5°)】

(単位:(m))

			(単位:(m))
パラメー	タの変動範囲	2号取水口	/# *
傾斜角	すべり角	前面	[備考
	基準-10°	-7.91	追加検討
基準-5°	基準	-8.04	追加検討
	基準+10°	-8.06	追加検討
	基準-10°	-8.66	追加検討
基準	基準	-8.78	追加検討
	基準+10°	-8.78	追加検討
基準+5°	基準-10°	-9.00	追加検討
	基準	-9.00	追加検討
	基準+10°	-8.95	追加検討

パラメー	タの変動範囲	2号取水口	/# +
傾斜角	すべり角	前面	備考
	基準-10°	-7.58	追加検討
基準-5°	基準	-7.78	追加検討
	基準+10°	-7.86	追加検討
	基準-10°	-8.37	追加検討
基準	基準	-8.50	追加検討
	基準+10°	-8.53	追加検討
	基準-10°	-8.92	追加検討
基準+5°	基準	-9.01	追加検討
	基準+10°	-9.03	追加検討

【詳細パラメータスタディ②(波源位置:北へ10km, 走向:基準+5°)】

			(半位.(11))
パラメータの変動範囲		2号取水口	(# *
傾斜角	すべり角	前面	佩考
	基準-10°	-7.84	追加検討
基準−5°	基準	-8.02	追加検討
	基準+10°	-8.06	追加検討
	基準-10°	-8.57	追加検討
基準	基準	-8.74	追加検討
	基準+10°	-8.80	追加検討
	基準-10°	-9.01	追加検討
基準+5°	基準	-9.15	追加検討
	基準+10°	-9.17	2号取水口前面最大ケース 追加検討

1.6「津波地震」に起因する津波の評価

1.	6. 1	津波水位		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	38
1.	6. 2	水位分布及	び水位時刻歴波形	;			•••••	39
1.	6. 3	敷地前面に	おける最大水位上	昇量の比較				43

1.6.1 津波水位

• 各評価位置における水位上昇側,水位下降側の最大ケースを以下に示す。

【水位上昇側】

		波源特性の不確かさ			最大水位上昇量(m)					
波源モデル	位置	走向	傾斜角	すべり角	敷地 前面	1号 取水口 前面	2号 取水口 前面	3号 取水口 前面	1号 放水口 前面	2 • 3号 放水口 前面
	基準	基準+5°	基準	基準+10°	<u>21.82</u> (北側)	15.80	16.39	16.80	13.98	<u>15.01</u>
津波地震	北へ10km	基準+5°	基準+5°	基準+10°	20.84 (北側)	<u>17.21</u>	<u>17.61</u>	<u>17.20</u>	14.392	14.72
	基準	基準+5°	基準+5°	基準+10°	20.73 (北側)	17.13	17.45	17.18	<u>14.393</u>	14.80
《参考》 申請時の評価					19.50 (北側)	16.14	16.81	16.77	14.44	15.44

【水位下降側】

		波源特性0	の不確かさ	2号取水口前面		
波源モデル	位置	走向	傾斜角	すべり角	最大水位下降量 (m)	取水口敷高を下回る 継続時間(分)
津波地震	北へ10km	基準+5°	基準+5°	基準+10°	<u>-9.17</u>	1.9
2号機非常用海水7	ポンプの運転可能			約26		
《参考》 申請時の評価					-8.48	1.3

評価位置	位置	走向	傾斜角	すべり角
敷地前面 2∙3号放水口前面	基準	基準+5°	基準	基準+10°

※:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

I. 地震に起因する津波の評価 1. 津波地震 1. 6「津波地震」に起因する津波の評価 1. 6. 2 水位分布及び水位時刻歴波形:水位上昇側②

評価位置	位置	走向	傾斜角	すべり角
各取水口前面	北へ10km	基準+5°	基準+5°	基準+10°

水位時刻歴波形※2

※1:1号:T.P.-5.74m(O.P.-5.0m),2号:T.P.-7.04m(O.P.-6.3m),3号:T.P.-6.44m(O.P.-5.7m) ※2:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は、(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

I. 地震に起因する津波の評価 1. 津波地震 1. 6「津波地震」に起因する津波の評価 1. 6. 2 水位分布及び水位時刻歴波形:水位上昇側③

評価位置	位置	走向	傾斜角	すべり角
1号放水口前面	基準	基準+5°	基準+5°	基準+10°

※:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

41

評価位置	位置	走向	傾斜角	すべり角
2号取水口前面	北へ10km	基準+5°	基準+5°	基準+10°

※1:T.P.-7.04m(O.P.-6.3m) ※2:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

I. 地震に起因する津波の評価 1. 津波地震 1.6 「津波地震」に起因する津波の評価

1.6.3 敷地前面における最大水位上昇量の比較

- 波源位置を変化させた代表ケース,並びに敷地前面最大ケース(水位上昇側)の敷地前面における最大水位上昇量を比較した結果を下図に示す。
- 津波地震は、敷地前面の北側に最大水位上昇地点が見られる特性を有する。

(敷地前面最大ケース)

I. 地震に起因する津波の評価

2. 海洋プレート内地震

2. 1	本説明(コメント回答)の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
2. 2	評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
2. 3	地震規模に関する知見の整理	50
2.4	基準断層モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
2. 5	波源特性の不確かさの考慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
2.6	「海洋プレート内地震」に起因する津波の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	84

2.1 本説明(コメント回答)の基本方針①

No.	コメント時期	コメント内容
S78	平成27年3月20日 第210回審査会合	海洋プレート内地震の断層上縁深さの設定根拠を説明すること。

■第210回審査会合での説明とコメント内容の関係

【基準断層モデルの設定】

・1933年昭和三陸地震津波の痕跡高を再現する断層モデルのパラメータに基づき,基準断層モデルの断層上縁深さを1kmに設定。

■本説明(コメント回答)の基本方針

・土木学会(2002)の設定方法を整理して、設定値(1km)
 の妥当性を確認する[※]。

※:確認結果の詳細は、(原子力発電所)資料3-4「Ⅳ.1.断 層上縁深さの設定根拠」に記載。

5	断層パラメ		設定方法	設定値
Π	モーメント マク゛ニチュート゛	Mw	土木学会(2002)	8.6
†	長さ	L(km)	既往津波再現モデル	283
	幅	W(km)	に、Mwに肉連する断層 パラメータのスケーリン	50
P	すべり量	D(m)	グ則(幅に限界あり)を 適用して設定。	10.1
0	剛性率	μ (N/m²)	既往津波再現モデルに 基づき設定。	7.0 × 10 ¹⁰
0	地震モーメント	Mo(Nm)	μ LWD	1.00 × 10 ²²
IL	走向	θ(°)	日本海溝の形状に 合わせて設定。	190
	断層上縁深さ	d(km)		1
	傾斜角	δ(°)	既往津波再現モデルに	45
	すべり角	λ(°)	基づき設定。	270
	ライズタイム	τ (s)		60

2.1 本説明(コメント回答)の基本方針②

No.	コメント時期	コメント内容
S73	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価決定ケースが最も厳しい位置となっているか確認すること。合わせて, 発電所に厳しい 位置がどこになるか図で示すこと。

■第210回審査会合での説明とコメント内容の関係

【波源特性の不確かさの考慮】

・土木学会(2002)を参考として、位置及び走向を変動させた概略パラメータスタディを実施し、各評価位置で水位上昇量及び水位下降量が最大となるケースについて、傾斜角及び断層上縁深さを変動させた詳細パラメータスタディを実施。

■概略パラメータスタディ

項目	変動範囲
位置	基準, 北へ20km, 40km, 南へ20km, 40km, 60km, 80km, 100km, 120km, 140km, 160km, 180km, 200km, 220km, 240km, 260km, 280km, 300km移動
走向	基準, 基準±10°

■詳細パラメータスタディ

項目	変動範囲
傾斜角	基準,基準±5°
断層上縁深さ	0, 1, 2km

■本説明(コメント回答)の基本方針

 ・概略パラメータスタディの位置の不確かさについて、発電所に最も 影響が大きい波源位置を評価するため、変動範囲のうち発電所の 津波高さに与える影響が大きい範囲を対象に、10km単位で移動さ せる。

【概略パラメータスタディ(朱書き:追加検討)】

項目	変動範囲
位置	基準, 北へ20km, 40km, 南へ20km, 40km, 60km, 80km, 100km, <mark>110km</mark> , 120km, <mark>130km</mark> , 140km, <mark>150km</mark> , 160km, <mark>170km,</mark> 180km, <mark>190km</mark> , 200km, 220km, 240km, 260km, 280km, 300km移動
走向	基準, 基準±10°

2.1 本説明(コメント回答)の基本方針③

No.	コメント時期	コメント内容
S72	平成27年3月20日 第210回審査会合	津波地震, 海洋プレート内地震の評価について, 地震規模の設定並びに波源特性の不確かさの考慮方法が女川地点の評価 決定ケースとして十分厳しくなっているか, 地震調査研究推進本部の知見等も踏まえ, 再度説明すること。
S75	平成27年3月20日 第210回審査会合	海洋プレート内地震の波源位置の不確かさについて,現状,アウターライズ領域での南北方向の検討を実施しているが,東西 方向(海溝軸直交方向)となる検討を実施すること。合わせて,起震応力が共通で共役な断層となることも踏まえた検討も実施 すること(西落ち傾斜,東落ち傾斜)。また,プレート上面の傾斜も考慮して検討してほしい。

■第210回審査会合での説明とコメント内容の関係

■本説明(コメント回答)の基本方針①

- i. 地震規模の設定
- ・地震調査研究推進本部(2014)の評価から,東西方向の位置・走向の 不確かさを考慮する際の地震規模(Mw)は,基準断層モデルの地震規模 (Mw8.6)よりも小さいと考えられる。
- ・ただし、海溝付近で発生する地震に伴う津波は、発電所に与える影響が 大きいことを考慮して、保守性を確保する観点から、基準断層モデルの 地震規模(Mw8.6)を考慮する。
- ii. 不確かさの考慮方法
- ・地震調査研究推進本部(2014)における海洋プレート内地震(正断層型) の設定方法に関する知見を踏まえ、東西100kmの範囲を10km単位で移動 させる。
- なお、沈み込んだ海洋プレート内に設定する断層モデルの傾斜角は、 プレート境界面の傾斜を考慮して設定する。

2.1 本説明(コメント回答)の基本方針③

■本説明(コメント回答)の基本方針②

- iii. 検討位置
- ・南北方向における概略パラメータスタディのうち発電所に最も影響が大きい位置を対象に、東西方向の不確かさを考慮する。
- ・なお,敷地前面,各取放水口前面の評価地点において,「海洋プレート内地震」が「東北地方太平洋沖型の地震」の津波水位を上回るのは,敷地前面(水位上昇 側)の局所的範囲のみであることを踏まえ,本検討は,敷地前面最大ケース(水位上昇側)を対象に実施する。

2.2 評価フロー

_			
	No.	コメント内容	
	S79	津波地震, 海洋プレート内地震の評価フローの記載方法について, 検討内容に合わせて修正すること。	
•	以下のフ	S : 審査会合コメントNo.	
	【評価フロー	S79	朱書き部:今回追加 or 変更箇所

49

2.3 地震規模に関する知見の整理

2.	З.	1	地震調査研究推進本部(2012)の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
2.	3.	2	国内外における海溝外縁隆起帯で発生した海洋プレート内地震の地震規模 ・・・	52
2.	3.	3	2011年東北地方太平洋沖地震発生後の応力状態 ・・・・・・・・・・・・・・・・・	53
2.	З.	4	地震規模の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54

51

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.3 地震規模に関する知見の整理

2.3.1 地震調査研究推進本部(2012)の評価

・ 地震調査研究推進本部(2012)では、次の地震の規模を1933年昭和三陸地震津波の規模※とし、その信頼度を「B」と評価している。
 ※:地震調査研究推進本部(2012)では、1933年昭和三陸地震津波の地震規模について以下のとおり評価している。

→プレート内の正断層型の地震については、過去400年間に1933年の昭和三陸地震の1例しかないことを踏まえ,次の地震の規模は、過去に発生した地震 を参考にして、M8.2前後、Mt8.3前後と推定した。

項目	将来の地震 発生確率等 ^{注2}	備考	評価の 信頼度 ^{注4}
 今後10年以内の発生確率 # 今後20年以内の発生確率 # 今後30年以内の発生確率 # 今後40年以内の発生確率 # 今後50年以内の発生確率 # 今後100年以内の発生確率 # 今後300年以内の発生確率 # 	$ \begin{array}{c} 1\% \sim 2\% \\ (0. 3\% \sim 0. 6\%) \\ 3\% \sim 5\% \\ (0. 7\% \sim 1\%) \\ 4\% \sim 7\% \\ (1\% \sim 2\%) \\ 5\% \sim 10\% \\ (1\% \sim 2\%) \\ 6\% \sim 10\% \\ (2\% \sim 3\%) \\ 10\% \sim 20\% \\ (3\% \sim 6\%) \\ 30\% \sim 50\% \\ (10\% \sim 20\%) \end{array} $	M8程度のプレート内正断層型地震については,三 陸沖北部〜房総沖の海溝寄り全体では過去400年間 に1933年の三陸地震の1例しかないことと,三陸沖 海溝外縁の断層地形及び正断層地震の総モーメン トの推定から,同様の地震が400~750年に1回発生 するものとして,ポアソン過程により三陸沖北部 から房総沖の海溝寄りのどこかで発生する確率を 算出した。また,1933年の地震の断層長が三陸沖 北部から房総沖の海溝寄り全体の0.25倍程度を占 めることから,特定の海域では同様の地震が1600 ~3000年に1回発生するものとして,ポアソン過程 から発生確率を算出した。	С
次の地震の規模	M8.2前後 ^{注3} Mt8.3前後	過去に発生した地震のM及びMtを参考にして判断した。	В

次の三陸沖北部から房総沖の海溝寄りのプレート内地震(正断層型)の発生確率等 (地震調査研究推進本部(2012))

注3 Mの推定値のばらつきについて、「程度」及び「前後」を使用。「程度」は「前後」よりばらつきが大きい場合に使用した。

注4 評価の信頼度

■規模の評価の信頼度:B

想定地震と同様な過去の地震の規模から想定規模を推定した。過去の地震データが多くはなく、規模の信頼性は中程度である。

■発生確率の評価の信頼度:C

想定地震と同様な過去の地震データが少なく、必要に応じ地震学的知見を用いて発生確率を求めたため、発生確率の値の信頼性はやや低い。 今後の新しい知見により値が大きく変わり得る。

52

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.3 地震規模に関する知見の整理

2.3.2 国内外における海溝外縁隆起帯で発生した海洋プレート内地震の地震規模

• 1933年昭和三陸地震津波は、国内外における海溝外縁隆起帯(outer rise)で発生した最大規模の海洋プレート内地震である。

Id.	Date	Place	M_W	Length	Width	Bottom	Dip	Slip	Rigidity	Reference
	dd/mm/yyyy			km	km	km	o	m	Nm^{-2}	
a	03/02/1933	Sanriku	8.4	185	100	70	45	3.3	_	Kanamori (1971)
b	03/02/1933	Sanriku	8.4	220	35	25	45	8	7.0×10^{10}	Kirby et al. (2008)
с	30/03/1965	Rat Island	7.2	50	80	60	50	1.2	7.0×10^{10}	Abe (1972)
d	30/03/1965	Rat Island	7.2	50	40	30	50	6	5.0×10^{10}	Beck and Christensen (1991)
e	19/08/1977	Sunda	8.2	200	70	40	45	3	6.4×10^{10}	Gusman et al. (2009)
f	19/08/1977	Sunda	8.2	200	25	29	45	9	4.0×10^{10}	Spence (1986), Lynnes and Lay (1988)
g	04/05/1990	Mariana	7.3	40	25	29	48	3.4	4.0×10^{10}	Satake et al. (1992)
h	04/05/1990	Mariana	7.3	70	40	40	48	1.5	4.0×10^{10}	Satake et al. (1992)
i	04/05/1990	Mariana	7.3	70	40	-	48	-	-	Yoshida et al. (1992)
j	04/09/2001	Juan Fernandez Ridge	6.7	70	26	30	51	1	4.0×10^{10}	Fromm et al. (2006)
k	13/01/2007	Kuril	7.9	120	40	35	45	1.9	5.0×10^{10}	Fujii and Satake (2008)
1	13/01/2007	Kuril	8.0	130	30	-	37	6.4	4.0×10^{10}	Tanioka et al. (2008)

海溝外縁隆起帯で発生した主な海洋プレート内地震の断層パラメータ(Alvarez-Gomez et al.(2012))

第210回審査会合(H27.3.20) 資料2-1 p38 再掲

53

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.3 地震規模に関する知見の整理

2.3.3 2011年東北地方太平洋沖地震後の応力状態

- 日本海溝沿い及び千島海溝沿いでは、プレート間地震の発生後(歪み解放後)に、海溝外縁隆起帯(outer rise)で正断層型の海洋プレート内地震が発生している。
- これは、海溝外縁隆起帯(outer rise)で発生する正断層型の海洋プレート内地震は、隣接するプレート境界面の歪みの解放と密接に関係があることを示唆している。
- 2011年東北地方太平洋沖地震の発生に伴い宮城県沖の固着域にこれまで蓄積された歪みがほぼ解放したことを踏まえると、今後、正断層型の海洋プレート内地震の発生可能性が懸念される(Lay et al.(2011))。

2011年東北地方太平洋沖地震の発生に伴い、これまで蓄積された大きな歪みが解放されたことを踏まえると、基準断層モデルの地震規模(Mw)の設定にあたっては、保守性を考慮する必要があると考えられる。

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.3 地震規模に関する知見の整理

2.3.4 地震規模の設定

- ・ 地震調査研究推進本部(2012)においては、次の地震の規模を1933年昭和三陸地震津波と評価し、また、同地震は国内外における海溝外縁隆起帯(outer rise)で発生した最大規模の海洋プレート内地震である。
- ただし、地震調査研究推進本部(2012)では次の地震の規模の信頼度を「B」と評価していること、並びに2011年東北地方太平洋沖地震後の応力 状態から、今後正断層型の海洋プレート内地震の発生可能性が懸念されることを踏まえ、基準断層モデルの地震規模(Mw)の設定にあたっては、 保守性を考慮する必要があると考えられる。
- 1611年の津波について, 地震調査研究推進本部(2012)では津波地震と評価しているものの, 土木学会(2002)では海洋プレート内地震であった 場合, その地震規模をMw8.6と評価している。
- 以上から、基準断層モデルの地震規模は、1933年昭和三陸地震津波の痕跡高を再現するモデル(Mw8.35)(詳細は次頁以降に記載)を上回る Mw8.6を考慮する。

2.4 基準断層モデルの設定

2.4.1 既往津波の再現解析	••••••	56
2.4.2 基準断層モデルの設定		59

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.4 基準断層モデルの設定

2.4.1 既往津波の再現解析

■再現モデルの設定

・ 土木学会(2002)を参考として、1933年昭和三陸地震津波の再現モデルを設定した。

断層パラメ	ータ	設定方法	設定値
モーメントマク゛ニチュート゛	Mw	(logM ₀ -9.1)/1.5	8.35
長さ	L(km)	土木学会(2002)	185
幅	W(km)	土木学会(2002)	50
剛性率	μ (N/m ²)	土木学会(2002)(詳細はp57に記載。)	7.0 × 10 ¹⁰
すべり量	D _{max} (m)	土木学会(2002)	6.6
地震モーメント	Mo(Nm)	μ LWD	4.27 × 10 ²¹
走向	θ(°)	土木学会(2002)	180
断層上縁深さ	d(km)	土木学会(2002)	1
傾斜角	δ(°)	土木学会(2002)	45
すべり角	λ(°)	土木学会(2002)	270
ライズタイム	τ (s)	相田(1986)(詳細はp58に記載。)	60

■再現性の確認結果[※]

・ 土木学会(2002)の目安を満足しており、各断層パラメータの設定値が妥当であることを確認した。

既往津波	К	к	n	既往津波高
1933年昭和三陸地震津波	1.00	1.43	553	松尾(1933), 地震研究所(1934)

※:再現性の確認に用いた計算条件等の詳細は、(原子力発電所)資料3-4「I.2.再現解析」に 記載。

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.4 基準断層モデルの設定

2.4.1 既往津波の再現解析:剛性率の設定

第210回審査会合(H27.3.20)資料2-1 p43, 第378回審査会合(H28.7.8)資料1-2 p21 一部修正

・ 土木学会(2002)等を参考として、7.0×10¹⁰(N/m)とした。

P波速度構造に関する既往研究例 (土木学会(2002)を一部修正)

※:陸域の速度構造はIwasaki et al.(2001), 背弧側は西坂ほか(2001), 三陸沖は Takahashi et al.(2004)によって公表された速度構造を統合したもの。

Vp/Vs比に関する既往研究例(伊藤·大東(1996))

地域	上部地殼	下部地殻	上部マントル	文献·備考
近畿	1.67		1.78	Yoshiyama(1957)
西南日本	1.6	8	$1.75 \sim 1.79$	角田(1968)
紀伊半島	$1.716 \pm$	0.021		渡辺・黒磯(1967)
東北			1.77	宇津(1969)
中国	$1.70 \sim 1.71$	1.73		Hashizume(1970)
東北	1.66	1.75	$1.70 \sim 1.75$	堀内ら(1977)
			$1.75 \sim 1.80$	マントルの値は火山フロントの東西
近畿北部	1.70			黒磯·渡辺(1977)
函館群発	(1.66)			高波ら(1980) 表層の値
中部東海	1.68 ± 0.02 $1.75 \sim 1.81$		1.77	Ukawa and Fukao(1981)
				真のVp,Vsから求めた値
四国	(1.58 - 1.65)	1.75	1.73	岡野·木村(1983)
	1.73			()内は表層の値
飛騨周辺	1.67 ± 0.01			
長野県	1.69 ± 0.01			
北関東	1.71 ± 0.01			極田•赩Ⅲ(1995)
甲府周辺	1.69 ± 0.01			11月1日 米頃/11(1555)
富士箱根	$1.69 \sim 1.78$			
甲府周辺	$1.66 \sim 1.71$			
日光付近	1.682 ± 0.016	1.686*	1.90	大重・伊藤(1995)
長野県西部	1.700 ± 0.053	1.686*		×け直のVn Vcから求めた値
兵庫県南部	1.680 ± 0.023	1.76*	1.76*	では長のアレク、アションの不のた他

震源付近の媒質の剛性率の標準値(土木学会(2002))

海域	根拠	剛性率
 ・西南日本陸側プレート内 ・日本海東縁部 ・プレート境界浅部(断層面全 体が深さ 20km 以浅に存在 する場合) 	Vp=6.0 km/s Vp/Vs=1.6~1.7 ρ =2.7~2.8 g/cm ³ とすれば、 μ =3.36×10 ¹⁰ ~3.94×10 ¹⁰ N/m ² となる。この中間的値とする。	$3.5 \times 10^{10} \text{ N/m}^2$ $(3.5 \times 10^{11} \text{ dyne/cm}^2)$
 ・海洋プレート内 ・プレート境界深部(断層面全 体が深さ 20km 以深に存在 する場合) 	Vp=8.0~8.1 km/s Vp/Vs=1.75~1.80 ρ =3.2~3.5 g/cm ³ とすれば, μ =6.31×10 ¹⁰ ~7.50×10 ¹⁰ N/m ² となる。この中間的値とする。	7.0×10 ¹⁰ N/m ² (7.0×10 ¹¹ dyne/cm ²)
・プレート境界中央部(断層面 が深さ 20km 以浅と以深に またがって存在する場合)	浅部と深部の中間的値とする。	$5.0 imes 10^{10}$ N/m ² ($5.0 imes 10^{11}$ dyne/cm ²)

57

第210回審査会合(H27.3.20) 資料2-1 p19 再掲

58

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.4 基準断層モデルの設定

2.4.1 既往津波の再現解析:ライズタイムの設定

 実際の地震の震源過程(=初期破壊から震源域全体に破壊が及ぶ過程)が終了するのに要する時間が数秒から1分程度であることに対して、 相田(1986)は津波解析上の変動時間(以下、「津波初期変位分布のライズタイム」という。)の設定方法を以下のとおり示している。

津波初期変位分布のライズタイム(s)=(L(km)/Vr(km/s))+ τ (s)

ここで、

L :断層長さ(km)

Vr:破壊伝播速度(km/s)

- τ : ある1点で断層ずれを形成する時間(=立上り時間)(s)
- 日本海溝沿いで発生しているM8クラスの地震の断層長さL:150(km)~200(km)程度(土木学会(2002)),破壊伝播速度Vr:2.4(km/s)~3.0 (km/s)(地震調査研究推進本部(2009)),ある1点で断層ずれを形成する時間(=立上り時間) r:5(s)程度(相田(1986))とすると、津波初期 変位分布のライズタイムは、55(s)~88(s)程度となる。

以上を踏まえ、津波初期変位分布のライズタイムを60(s)に設定した※。

※:津波初期変位分布の解析上の考慮方法

→ Mansinha and Smylie(1971)の方法により計算される津波初期変位分布(=断層面全体の鉛直 変位分布)を破壊終了時変位,その変動終了時間:60(s)(=ライズタイム)として,津波解析と 同様の時間格子間隔Δt:0.1(s)を用いて一様に変位を与える。

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.4 基準断層モデルの設定

2.4.2 基準断層モデルの設定

- ・ 基準断層モデルの地震規模(Mw)は, 地震調査研究推進本部(2012), 土木学会(2002)の評価及び2011年東北地方太平洋沖地震発生後の応力 状態を考慮して, 国内外における海溝外縁隆起帯で発生した地震のうち最大規模の1933年昭和三陸地震津波を再現するモデル(Mw8.35)を基本 として, これを上回るよう土木学会(2002)を参考にMw8.6にスケーリングして設定した。
- ・ 波源位置は、基準断層モデルの南端が北緯約38°付近となるように設定した。

断層パラメ-	ータ	設定方法	設定値				
モーメントマク゛ニチュート゛	Mw	土木学会(2002)	8.6				
長さ	L(km)						
幅	W(km)	断層パラメータのスケーリング則(幅に限	50				
すべり量	D(m)	界あり)を適用して設定。 	10.1				
剛性率	μ (N/m ²)	既往津波再現モデルに基づき設定。	7.0 × 10 ¹⁰				
地震モーメント	Mo(Nm)	μ LWD	1.00 × 10 ²²				
走向	θ(°)	日本海溝の形状に合わせて設定。	190				
断層上縁深さ	d(km)		1				
傾斜角	δ(°)	成任准派冉現モナルに基づき設定。	45				
すべり角	λ (°)	走向とすべり方向に基づき設定。	270				
ライズタイム	τ (s)	既往津波再現モデルに基づき設定。	60				

諸元

60

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.4 基準断層モデルの設定 2.4.2 基準断層モデルの設定:基準断層モデルによる計算結果

• 基準断層モデルによる計算結果を以下に示す。

【水位上昇側】

	最大水位上昇量(m)							
	敷地前面	1号取水口 前面	2号取水口 前面	3号取水口 前面	1号放水口 前面	2•3号放水口 前面		
基準断層モデル	10.75(南側)	6.17	6.08	5.55	6.09	6.49		

【水位下降側】

	最大水位下降量(m)
	2号取水口前面
基準断層モデル	-8.00

2.5 波源特性の不確かさの考慮

2.5.1 検討方針 🚥	•••••		 62
2.5.2 概略パラメータ	スタディ(南北方向)	•••••	 63
2.5.3 概略パラメータ	スタディ(東西方向)	•••••	 68
2.5.4 詳細パラメータ	スタディ・・・・・・・・		 79

2.5.1 検討方針

No.	コメント内容
S72	津波地震, 海洋プレート内地震の評価について, 地震規模の設定並びに波源特性の不確かさの考慮方法が女川地点の評価決定ケースとして 十分厳しくなっているか, 地震調査研究推進本部の知見等も踏まえ, 再度説明すること。
S73	津波地震, 海洋プレート内地震の評価決定ケースが最も厳しい位置となっているか確認すること。合わせて, 発電所に厳しい位置がどこになる か図で示すこと。
S75	海洋プレート内地震の波源位置の不確かさについて, 現状, アウターライズ領域での南北方向の検討を実施しているが, 東西方向(海溝軸直交 方向)となる検討を実施すること。合わせて, 起震応力が共通で共役な断層となることも踏まえた検討も実施すること(西落ち傾斜, 東落ち傾斜)。 また, プレート上面の傾斜も考慮して検討してほしい。

以下のフローに基づき、波源特性の不確かさを考慮した津波予測計算を実施する。

62

63

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.2 概略パラメータスタディ(南北方向) 2.5.2(1)位置の不確かさを考慮する領域

土木学会(2002)では、地震地体構造の知見、既往地震の発生履歴に基づき正断層型の海洋プレート内地震の発生領域を北緯約38°以北(領域4)に設定しているが、2011年東北地方太平洋沖地震では連動型地震であったものの、福島県沖でもすべりが生じたことや地震調査研究推進本部(2012)による正断層型の海洋プレート内地震の発生領域に関する評価を踏まえ、位置の不確かさを考慮する領域は、地震調査研究推進本部(2012)で示される三陸沖北部から房総沖の海溝寄りのどこでも発生するものとして設定した。

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.2 概略パラメータスタディ(南北方向) 2.5.2(2)不確かさの考慮方法

- 位置の変動範囲については、発電所に最も影響が大きい波源位置を評価するため、発電所の津波高さに与える影響が大きい範囲を対象に10km 単位で移動させた(追加検討)。
- 走向の変動範囲については、土木学会(2002)を参考に設定した。なお、日本海溝が北緯約38°を境に地下構造が変化する(Tsuru et al.(2002))
 ことを踏まえ、北緯約38°を跨ぐ津波波源については、科学的想像力を発揮して、発電所に与える影響が大きくなるように南北2枚の断層として
 考慮した。

項目	変動範囲
位置	基準, 北へ20km, 40km, 南へ20km, 40km, 60km, 80km, 100km, <mark>110km</mark> , 120km, <mark>130km</mark> , 140km, <mark>150km,</mark> 160km, 170km, 180km, 1 <mark>90km</mark> , 200km, 220km, 240km, 260km, 280km, 300km移動
走向	基準, 基準±10°

走向の不確かさの考慮方法(概念)

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.2 概略パラメータスタディ(南北方向)
 2.5.2(3)津波予測計算結果:水位上昇側

・ 各評価位置における最大水位上昇量を以下に示す※。

※:全ケースの計算結果については、(原子力発電所)資料3-4「Ⅳ.2. 概略パラメータスタディ(南北方向)」に記載。

パラメータの変動範囲		*/ 11	1号	2号	3号	1号	2•3号	14 - x
位置	走向	敫地刖面	取水口 前面	□ 取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考
	基準-10°	12.04(南側)	6.78	6.93	7.08	7.12	7.36	
基準	基準	10.75(南側)	6.17	6.08	5.55	6.09	6.49	
	基準+10°	8.72(南側)	5.48	5.52	5.42	5.80	5.11	
= . 110	基準-10°	19.31(南側)	10.37	12.69	11.68	11.08	10.60	追加検討
円へI IUkm 私動	基準	18.21(南側)	8.57	10.65	9.86	10.75	8.67	追加検討
19 30	基準+10°	15.88(南側)	7.85	10.13	8.56	9.18	9.53	追加検討
= . 100	基準-10°	20.76(南側)	11.18	13.89	13.24	12.45	11.22	
円へ120km 私動	基準	19.06(南側)	10.07	13.69	11.11	11.56	10.05	
19 30	基準+10°	16.59(南側)	8.46	11.35	9.42	9.62	9.96	
去。1001	基準-10°	<u>21.36(南側)</u>	<u>11.74</u>	14.33	<u>13.97</u>	<u>13.47</u>	<u>11.83</u>	追加検討
肖へI30km 移動	基準	19.33(南側)	10.56	14.30	11.66	12.71	11.26	追加検討
10-20	基準+10°	17.32(南側)	9.37	13.25	10.73	10.38	10.53	追加検討
去。1401	基準-10°	21.28(南側)	11.42	14.06	13.82	12.80	11.43	
肖へ140km 移動	基準	19.65(南側)	10.93	14.65	12.35	13.36	11.77	
	基準+10°	18.73(南側)	10.39	14.22	11.66	11.40	11.10	
去 4 1501	基準-10°	19.88(南側)	10.82	13.23	12.33	11.56	10.78	追加検討
南へ150km 移動	基準	19.85(南側)	11.10	14.93	12.59	13.44	11.58	追加検討
	基準+10°	19.33(南側)	10.87	14.19	12.30	12.32	11.51	追加検討
古。160	基準-10°	17.70(南側)	9.77	11.96	10.40	10.52	10.03	
判へIOUKM 移動	基準	19.51(南側)	11.15	<u>14.74</u>	12.31	12.74	11.19	
1931	基準+10°	19.66(南側)	11.01	14.37	12.63	12.52	11.61	

(単位:m)

不確かさの考慮ケース (走向:基準)

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.2 概略パラメータスタディ(南北方向)
 2.5.2(3)津波予測計算結果:水位下降側

・ 各評価位置における最大水位下降量を以下に示す※。

※:全ケースの計算結果については、(原子力発電所)資料3-4「Ⅳ.2. 概略パラメータスタディ(南北方向)」に記載。

			(
パラメータの変動範囲			1# #	
位置	走向	2号取水口則面	1佣 右	
	基準-10°	-8.46		
基準	基準	-8.00		
	基準+10°	-7.25		
+ 440	基準-10°	-9.15	追加検討	
用へ110km 投動	基準	-9.15	追加検討	
	基準+10°	-9.04	追加検討	
+ 400	基準-10°	<u>-9.16</u>		
	基準	-9.13		
	基準+10°	-9.06		
=	基準-10°	-9.15	追加検討	
南へ130km 段動	基準	-9.08	追加検討	
19/30	基準+10°	-9.08	追加検討	
+ 40	基準-10°	-9.15		
用へ140km 段動	基準	-9.06		
	基準+10°	-9.08		
=	基準-10°	-9.15	追加検討	
南へ150km 移動	基準	-9.07	追加検討	
	基準+10°	-9.06	追加検討	
= 100	基準-10°	-9.10		
南へ160km 移動	基準	-9.09		
	基準+10°	-9.06		

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.2 概略パラメータスタディ(南北方向) 2.5.2(4) まとめ

 ・概略パラメータスタディ(南北方向)及び港湾部の防波堤の有無に関する影響検討結果※を踏まえ、以下のケースを対象に、東西方向における波源
 特性の不確かさを考慮する。

※:港湾部の防波堤の有無に関する影響検討の詳細は、(原子力発電所)資料3-4「Ⅳ.3.港湾部の防波堤の有無に関する影響検討」に記載。

【水位上昇側】

	波源特性の不確かさ							
波源モデル	位置	敷地前面	1号 取水口 前面	2号 取水口 前面	3号 取水口 前面	1号 放水口 前面	2•3号 放水口 前面	備考
海洋プレート 内地震	南へ130km 移動	21.36 (南側)	11.74	14.33	13.97	13.47	11.83	水位は, 走向:基準−10° ケースを記載

【水位下降側】

	波源特性の不確かさ	最大水位下降量(m)			
波源モデル	位置	2号取水口 前面	備考		
海洋プレート 内地震	南へ130km 移動	-9.15	水位は, 走向:基準−10° ケースを記載		

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向)
 2.5.3(1) 地震規模及び位置の変動範囲の設定①

■地震調査研究推進本部(2014)の評価

・ 地震調査研究推進本部(2014)の確率論的評価では, 地震調査研究推進本部(2012)の長期評価に基づき, 1933年昭和三陸地震と同規模の地震 (M8.2, 断層幅100km)を, 海溝の東側と西側に想定している。

【地震調査研究推進本部(2014)の確率論的評価の概要】(地震調査研究推進本部(2014)に一部加筆)

図 5.1.3.2-6 三陸沖北部から房総沖のプレート内地震(正断層型)の断層面 (2013 年における検討の従来モデル、検討モデルで使用)

衣 5.1.2.2-2 二陸仲北部から房総仲の御傳奇りのノレート的地長(正例層空)

	長期評価	設定モデル
30年発生確率	4%~7%	5.1%
50 年発生確率	6%~10%	8.3%
マグニチュード	M8.2前後,M _t 8.3前後	Mw8.2
震源域	図 5.1.2.2-1 のオの領域 内、具体的な地域は特定で きない 長さ 200km 程度 幅 100km 程度	 領域内に長さ 200km、 幅 100km、傾斜角 45°、 上端深さ 0km の矩形の 断層面を南北 7 列 ×東西 1 列並べて、 そのいずれかで等確率で地震
		が発生すると仮定(断層数7)

(注) 設定モデルの確率計算では、平均発生間隔=575年(400~750年の中央値) のポアソン過程を仮定した。また Mm=Mjと仮定した。

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向)
 2.5.3(1) 地震規模及び位置の変動範囲の設定②

■地震規模の設定

- 地震調査研究推進本部(2014)の評価から,西方向の位置・走向の不確かさを考慮する際の地震規模は,基準断層モデルの地震規模(Mw8.6)よりも 小さいと考えられる。
- ただし、海溝付近で発生する地震に伴う津波は発電所に与える影響が大きいことを踏まえ、保守性を確保する観点から、基準断層モデルの地震規模 (Mw8.6)を考慮する。
- ■位置の不確かさ考慮方法
- ・ 地震調査研究推進本部(2014)の評価を踏まえ,基準位置から東西100km範囲を10km単位で移動させる。
- ・ なお, 沈み込んだ海洋プレート内地震の断層モデルの傾斜角は, プレート境界面の傾斜を考慮する。

項目	変動範囲
位置	基準, 東へ100kmまで10km単位で移動, 西へ100kmまで10km単位で移動
走向	基準, 基準±10°
断層の傾斜	西傾斜(基準), 東傾斜

・位置(南北方向):南へ130km移動

•走向:基準

断層の傾斜(西傾斜)

・位置(南北方向):南へ130km移動 ・走向:基準 ・断層の傾斜(西傾斜)

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位上昇側①

■位置:東方向, 断層の傾斜:西傾斜(南北方向の位置:南へ130km移動)

パラメータ	の変動範囲	載 北	1号	2号	3号	1号	2•3号			,
位置	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考		
基準	基準-10°	21.36(南側)	11.74	14.33	13.97	13.47	11.83	詳細パラスタ① 追加検討		
	基準	19.33(南側)	10.56	14.30	11.66	12.71	11.26	追加検討		
	基準+10°	17.32(南側)	9.37	13.25	10.73	10.38	10.53	追加検討		_
東へ	基準-10°	20.61(南側)	11.56	14.29	13.27	12.43	11.43	追加検討		
10km	基準	19.61(南側)	10.35	14.22	11.63	12.61	10.96	追加検討		
移動	基準+10°	17.10(南側)	9.06	12.66	10.43	10.09	10.37	追加検討		_
東へ 20km 移動	基準-10°	19.28(南側)	11.39	15.23	12.98	12.12	11.43	追加検討		
	基準	19.97(南側)	10.38	13.42	11.82	12.12	10.41	追加検討		
	基準+10°	17.01(南側)	8.81	12.03	10.08	9.93	10.16	追加検討		L
東へ	基準-10°	18.80(南側)	11.22	15.62	12.88	11.92	11.73	追加検討		
30km	基準	19.48(南側)	9.93	12.55	11.63	11.80	10.26	追加検討		
移動	基準+10°	17.01(南側)	8.57	11.56	9.83	9.80	9.96	追加検討		_
東へ	基準-10°	18.73(南側)	10.76	14.72	12.66	11.89	12.32	詳細パラスタ⑥ 追加検討		
40km ∓∕2 ≣±	基準	19.30(南側)	9.79	12.57	11.28	11.33	10.22	追加検討		
移到	基準+10°	16.98(南側)	8.40	11.06	9.55	9.76	9.83	追加検討		
東へ	基準-10°	18.83(南側)	10.53	13.87	12.02	12.04	11.89	追加検討		
50km	基準	19.09(南側)	9.60	12.25	10.92	10.93	10.20	追加検討		
移動	基準+10°	16.91(南側)	8.27	10.88	9.52	9.77	9.71	追加検討		

パラメータ 位置	の変動範囲 走向	· 敷地 前面	1号 取水口 前面	2号 取水口 前面	3 号 取水口 前面	1号 放水口 前面	2•3号 放水口 前面	備考		
 東へ	基準-10°	18.84(南側)	10.56	13.41	11.29	12.17	11.29	追加検討		
60km	基準	18.48(南側)	9.27	12.04	10.62	10.57	10.13	追加検討		
移動	基準+10°	16.58(南側)	8.10	10.56	9.18	9.61	9.53	追加検討		
東へ 70km 移動	基準-10°	18.95(南側)	10.62	13.54	11.36	12.41	11.30	追加検討		
	基準	18.16(南側)	9.26	12.28	10.56	10.49	10.15	追加検討		
	基準+10°	16.03(南側)	7.94	10.37	8.73	9.40	9.35	追加検討		
宙へ	基準-10°	19.07(南側)	10.55	13.91	11.73	12.76	11.41	追加検討		
80km	基準	18.44(南側)	9.67	12.95	10.95	10.77	10.28	追加検討		
移動	基準+10°	15.89(南側)	8.05	10.60	8.86	9.42	9.31	追加検討		
東へ	基準-10°	19.20(南側)	10.60	14.25	12.06	13.03	11.55	追加検討		
90km	基準	18.45(南側)	10.07	13.71	11.47	11.04	10.41	追加検討		
移動	基準+10°	16.21(南側)	8.37	11.13	9.22	9.63	9.42	追加検討		
東へ	基準-10°	19.23(南側)	10.52	14.20	12.21	13.17	11.56	追加検討		
100km	基準	18.22(南側)	10.31	14.17	11.68	11.03	10.52	追加検討		
移動	基準+10°	16.53(南側)	8.64	11.66	9.77	9.81	9.57	追加検討		

(単位:(m))

(単位:(m))

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位上昇側②

■位置:東方向, 断層の傾斜:東傾斜(南北方向の位置:南へ130km移動)

								()	_									
パラメータの変動範囲		載 1 h	1号	2号	3号	1号	2•3号		パラメー		の変動範囲	動抽	1号	2号	3号	1号	2•3号	
位置	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考		位置	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考
基準	基準-10°	20.11(南側)	10.45	14.02	12.97	12.46	11.86	追加検討		東へ	基準-10°	20.03(南側)	10.39	13.40	11.77	11.43	10.57	追加検討
	基準	19.38(南側)	10.88	14.61	12.38	11.87	11.21	追加検討		60km 移動	基準	19.07(南側)	9.97	13.59	11.62	11.07	10.73	追加検討
	基準+10°	19.33(南側)	9.86	13.85	11.70	11.08	10.44	追加検討			基準+10°	17.22(南側)	8.75	12.01	10.22	9.86	9.60	追加検討
東へ 10km 移動	基準-10°	20.41(南側)	10.40	13.90	12.66	12.36	11.56	追加検討		東へ	基準-10°	19.70(南側)	10.31	13.56	11.58	11.35	10.71	追加検討
	基準	19.28(南側)	10.76	14.65	12.21	11.58	11.20	追加検討		70km	基準	19.06(南側)	9.79	13.34	11.70	10.86	10.57	追加検討
	基準+10°	19.15(南側)	9.81	13.21	11.37	10.86	10.39	追加検討		移動	基準+10°	16.68(南側)	8.40	11.48	9.76	9.64	9.34	追加検討
車へ	基準-10°	20.50(南側)	10.35	13.83	12.50	12.23	11.21	追加検討		東へ	基準-10°	19.53(南側)	10.47	13.81	11.80	11.49	10.84	追加検討
20km	基準	19.25(南側)	10.60	14.46	11.99	11.48	11.21	追加検討		80km	基準	19.17(南側)	9.91	13.46	11.91	11.03	10.61	追加検討
移動	基準+10°	18.96(南側)	9.74	12.88	11.27	10.81	10.27	追加検討		移動	基準+10°	16.51(南側)	8.32	11.11	9.73	9.64	9.31	追加検討
東へ	基準-10°	20.31(南側)	10.32	13.75	12.41	12.01	11.00	追加検討		東へ	基準-10°	19.29(南側)	10.59	14.40	11.79	11.53	10.89	追加検討
30km	基準	19.17(南側)	10.51	14.37	11.88	11.37	11.15	追加検討		90km	基準	19.31(南側)	9.99	13.42	11.85	11.08	10.67	追加検討
移動	基準+10°	18.59(南側)	9.64	12.68	11.09	10.55	10.16	追加検討		移動	基準+10°	17.01(南側)	8.53	11.46	10.01	9.82	9.41	追加検討
東へ	基準-10°	20.52(南側)	10.39	13.84	12.46	11.98	10.83	追加検討		東へ	基準-10°	18.96(南側)	10.52	14.77	11.69	11.38	10.76	追加検討
40km	基準	19.17(南側)	10.45	14.23	11.83	11.34	11.08	追加検討	1	100km	基準	19.22(南側)	9.86	13.20	11.63	10.96	10.57	追加検討
移動	基準+10°	18.37(南側)	9.40	12.57	10.77	10.36	9.97	追加検討		移動	基準+10°	17.31(南側)	8.62	11.51	10.27	10.00	9.48	追加検討
車へ	基準-10°	20.44(南側)	10.46	13.60	12.07	11.71	10.64	追加検討										
50km	基準	19.10(南側)	10.30	14.01	11.64	11.27	10.95	追加検討										
移動	基準+10°	17.70(南側)	9.09	12.45	10.52	10.08	9.81	追加検討										

(単位:(m))

(単位:(m))

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位上昇側③

■位置:西方向,断層の傾斜:西傾斜(南北方向の位置:南へ130km移動)

パラメータの変動範囲		載 + 地	1号	2号	3号	1号	2•3号	
位置	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考
±± ,44	基準-10°	21.36(南側)	11.74	14.33	13.97	13.47	11.83	詳細パラスタ① 追加検討
基準	基準	19.33(南側)	10.56	14.30	11.66	12.71	11.26	追加検討
	基準+10°	17.32(南側)	9.37	13.25	10.73	10.38	10.53	追加検討
西へ	基準-10°	21.35(南側)	11.85	14.90	14.29	14.23	11.91	詳細パラスタ⑤ 追加検討
10km 	基準	19.17(南側)	11.01	14.81	12.12	12.77	11.43	追加検討
移動	基準+10°	18.11(南側)	9.95	14.01	11.25	10.86	10.70	追加検討
西へ	基準-10°	21.15(南側)	12.13	15.26	14.31	14.10	11.97	詳細パラスタ④ 追加検討
20km	基準	19.08(南側)	11.74	15.36	13.08	12.61	11.76	追加検討
移虭	基準+10°	18.61(南側)	10.48	14.62	11.82	11.23	10.75	追加検討
西へ	基準-10°	20.17(南側)	12.20	14.57	13.77	13.29	11.87	追加検討
	基準	18.61(南側)	11.83	16.02	12.91	12.35	11.54	追加検討
移動	基準+10°	18.73(南側)	10.85	14.65	12.37	11.50	11.05	追加検討
西へ	基準-10°	19.37(南側)	10.72	12.62	12.43	12.30	10.71	追加検討
40km	基準	17.19(南側)	11.38	16.00	12.45	11.67	11.18	追加検討
移動	基準+10°	17.81(南側)	10.86	14.36	12.19	11.30	10.91	追加検討
西へ	基準-10°	19.53(南側)	10.94	12.77	12.37	11.62	10.78	追加検討
	基準	17.92(南側)	11.05	14.88	11.71	11.67	11.00	追加検討
移動	基準+10°	17.06(南側)	11.00	14.26	12.02	11.36	10.47	追加検討

						(+12:(11))		
パラメータ	の変動範囲	敷地	1号	2号	3号	1号	2·3号	
位置	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考
西へ	基準-10°	19.74(南側)	11.61	14.01	13.13	11.99	11.14	追加検討
60km	基準	18.66(南側)	11.62	15.42	12.53	11.97	11.36	追加検討
移動	基準+10°	17.94(南側)	11.57	14.07	11.89	11.99	10.43	追加検討
西へ	基準-10°	19.47(南側)	12.07	14.87	13.69	12.12	11.68	追加検討
70km	基準	18.63(南側)	11.85	15.47	12.95	11.80	11.47	追加検討
移動	基準+10°	16.67(南側)	11.52	13.97	11.62	11.93	9.76	追加検討
西へ	基準-10°	19.20(南側)	12.22	15.30	13.93	12.05	12.02	詳細パラスタ② 追加検討
80km 	基準	18.61(南側)	11.74	15.03	13.29	11.82	11.37	追加検討
	基準+10°	14.17(北側)	10.71	13.14	11.52	11.47	10.59	追加検討
西へ	基準-10°	19.03(南側)	12.05	15.26	13.85	11.85	11.99	追加検討
90km	基準	17.99(南側)	11.27	14.83	12.64	11.18	10.91	追加検討
移動	基準+10°	13.07(北側)	9.87	10.18	10.52	9.56	8.42	追加検討
西へ	基準-10°	18.59(南側)	11.46	15.06	13.12	11.34	11.58	追加検討
100km	基準	17.16(南側)	10.54	13.93	11.57	10.63	10.21	追加検討
移動	基準+10°	9.69(北側)	7.98	7.62	7.44	6.72	6.50	追加検討

(単位:(m))

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位上昇側④

■位置:西方向,断層の傾斜:東傾斜(南北方向の位置:南へ130km移動)

パラメータの変動範囲		載 +h	1号	2号	3号	1号	2•3号	
位置	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面	備考
	基準-10°	20.11(南側)	10.45	14.02	12.97	12.46	11.86	追加検討
基準	基準	19.38(南側)	10.88	14.61	12.38	11.87	11.21	追加検討
	基準+10°	19.33(南側)	9.86	13.85	11.70	11.08	10.44	追加検討
西へ	基準-10°	19.87(南側)	10.60	14.77	13.12	12.75	11.89	追加検討
10km	基準	19.84(南側)	10.93	14.75	12.67	12.24	11.35	追加検討
移動	基準+10°	19.53(南側)	10.30	14.13	12.07	11.49	10.70	追加検討
西へ	基準-10°	20.10(南側)	11.12	15.37	13.51	13.14	11.93	追加検討
 20km 移動	基準	20.26(南側)	11.20	15.42	13.07	12.66	11.22	追加検討
	基準+10°	19.21(南側)	10.60	14.54	12.39	11.55	10.70	追加検討
西へ	基準-10°	20.17(南側)	11.46	15.61	13.59	13.06	11.81	追加検討
30km	基準	20.23(南側)	11.38	15.38	12.89	12.42	11.04	追加検討
移動	基準+10°	18.75(南側)	10.84	14.87	12.70	11.45	10.40	追加検討
西へ	基準-10°	20.17(南側)	11.50	15.20	13.41	12.45	11.68	追加検討
40km	基準	20.08(南側)	11.21	14.37	12.80	11.78	10.72	追加検討
移動	基準+10°	18.22(南側)	10.79	15.71	12.63	11.23	10.31	追加検討
用へ	基準-10°	19.94(南側)	11.65	15.01	13.48	12.10	11.64	追加検討
50km	基準	19.57(南側)	11.19	14.36	12.91	11.41	10.60	追加検討
移動	基準+10°	17.56(南側)	11.33	16.37	12.62	11.16	10.36	詳細パラスタ③ 追加検討

パラメータ 位置	の変動範囲 走向	敷地 前面	1号 取水口 前面	2号 取水口 前面	3号 取水口 前面	1号 放水口 前面	2·3号 放水口 前面	備考
西へ	基準-10°	19.78(南側)	12.03	14.94	13.63	11.96	11.62	追加検討
	基準	18.89(南側)	11.13	14.27	12.63	11.09	10.50	追加検討
移動	基準+10°	16.06(南側)	11.18	15.44	11.80	10.57	10.09	追加検討
西へ	基準-10°	19.50(南側)	12.06	15.22	13.65	11.71	11.30	追加検討
70km 移動	基準	18.05(南側)	10.86	14.16	12.39	10.75	10.07	追加検討
	基準+10°	14.97(南側)	11.04	13.42	10.93	9.88	9.42	追加検討
西へ	基準-10°	18.63(南側)	11.48	14.67	12.90	11.01	10.70	追加検討
	基準	15.60(南側)	9.82	12.58	10.69	9.81	9.24	追加検討
移動	基準+10°	13.70(北側)	10.33	10.67	9.60	8.87	8.51	追加検討
西へ	基準-10°	15.87(南側)	10.32	13.02	11.17	10.12	9.75	追加検討
90km	基準	14.12(南側)	9.20	10.32	8.12	8.48	8.11	追加検討
移動	基準+10°	10.28(北側)	8.12	7.58	7.58	6.89	6.61	追加検討
西へ	基準-10°	14.81(南側)	9.30	11.41	9.04	8.85	8.47	追加検討
100km	基準	11.19(南側)	7.92	7.40	7.15	7.09	6.88	追加検討
移動	基準+10°	7.87(北側)	6.67	6.31	6.28	5.70	5.59	追加検討

(単位:(m))

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位下降側①

■位置:東方向,断層の傾斜:西傾斜(南北方向の位置:南へ130km移動)

パラメータの変動範囲		2号取水口		
位置	走向	前面	備考	
	基準-10°	-9.15	追加検討	
基準	基準	-9.08	追加検討	
	基準+10°	-9.08	追加検討	
	基準-10°	-9.12	追加検討	
東へ10km 私動	基準	-9.07	追加検討	
	基準+10°	-9.07	追加検討	
_	基準-10°	-9.07	追加検討	
東へ20km _{我動}	基準	-9.11	追加検討	
	基準+10°	-9.06	追加検討	
+	基準-10°	-9.05	追加検討	
東へ30km 移動	基準	-9.11	追加検討	
102	基準+10°	-9.06	追加検討	
+	基準-10°	-9.01	追加検討	
果へ40km 移動	基準	-9.09	追加検討	
	基準+10°	-9.05	追加検討	
+	基準-10°	-8.96	追加検討	
泉へ50km 移動	基準	-9.06	追加検討	
移剄	基準+10°	-9.05	追加検討	

			(単 位 :(m))	
パラメー・	タの変動範囲	。日期北口		
位置	走向	25000000000000000000000000000000000000	備考	
	基準-10°	-8.99	追加検討	
東へ60km _{我動}	基準	-9.06	追加検討	
19/3/	基準+10°	-9.05	追加検討	
	基準-10°	-8.95	追加検討	
東へ70km 移動	基準	-9.05	追加検討	
	基準+10°	-9.02	追加検討	
	基準-10°	-8.92	追加検討	
東へ80km 私動	基準	-9.03	追加検討	
	基準+10°	-8.99	追加検討	
	基準-10°	-8.89	追加検討	
東へ90km _{我動}	基準	-9.00	追加検討	
19到	基準+10°	-8.97	追加検討	
_	基準-10°	-8.79	追加検討	
東へ100km 移動	基準	-8.97	追加検討	
	基準+10°	-8.93	追加検討	

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位下降側②

■位置:東方向,断層の傾斜:東傾斜(南北方向の位置:南へ130km移動)

パラメータの変動範囲		2号取水口		
位置	走向	前面	備考	
	基準-10°	-9.15	追加検討	
基準	基準	-8.99	追加検討	
	基準+10°	-9.24	追加検討	
_	基準-10°	-9.11	追加検討	
泉へ10km 私動	基準	-9.01	追加検討	
	基準+10°	-9.13	追加検討	
_	基準-10°	-9.08	追加検討	
東へ20km _{我動}	基準	-8.96	追加検討	
	基準+10°	-9.06	追加検討	
_	基準-10°	-9.06	追加検討	
泉へ30km 私動	基準	-8.86	追加検討	
	基準+10°	-8.99	追加検討	
+	基準-10°	-9.06	追加検討	
泉へ40km 移動	基準	-8.84	追加検討	
10	基準+10°	-9.05	追加検討	
+ ===	基準-10°	-9.05	追加検討	
泉へ50km 	基準	-8.86	追加検討	
1211	基準+10°	-8.98	追加検討	

			(単 位 :(m))	
パラメー・	タの変動範囲	。日期北口		
位置	走向	2 万 取水口 前面	備考	
	基準-10°	-9.04	追加検討	
東へ60km 私動	基準	-8.95	追加検討	
	基準+10°	-9.00	追加検討	
	基準-10°	-9.07	追加検討	
東へ70km 移動	基準	-8.97	追加検討	
	基準+10°	-9.03	追加検討	
+	基準-10°	-9.07	追加検討	
東へ80km 私動	基準	-8.97	追加検討	
	基準+10°	-9.08	追加検討	
	基準-10°	-9.06	追加検討	
東へ90km _{我動}	基準	-9.02	追加検討	
19到	基準+10°	-9.09	追加検討	
+	基準-10°	-9.01	追加検討	
東へ100km 移動	基準	-8.96	追加検討	
	基準+10°	-9.09	追加検討	

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位下降側③

■位置:西方向,断層の傾斜:西傾斜(南北方向の位置:南へ130km移動)

パラメータの変動範囲		2号取水口		
位置	走向	前面	備考	
	基準-10°	-9.15	追加検討	
基準	基準	-9.08	追加検討	
	基準+10°	-9.08	追加検討	
-	基準-10°	-9.13	追加検討	
西へ10km 	基準	-9.09	追加検討	
ע ב ערי	基準+10°	-9.07	追加検討	
-	基準-10°	-9.14	追加検討	
西へ20km _{我動}	基準	-9.11	追加検討	
ע ב ערי	基準+10°	-9.05	追加検討	
-	基準-10°	-9.17	追加検討	
西へ30km 移動	基準	-9.13	追加検討	
נעב עין	基準+10°	-8.97	追加検討	
T 101	基準-10°	-9.06	追加検討	
四へ40km 移動	基準	-9.08	追加検討	
נעב עןי	基準+10°	-8.87	追加検討	
	基準-10°	-9.00	追加検討	
<u></u> 也へ50km 移動	基準	-9.04	追加検討	
127到	基準+10°	-8.79	追加検討	

			(単 位 :(m))
パラメー	タの変動範囲	ᅆᆸᇏᆠᆸ	
位置	走向	2 万 取水口 前面	備考
_	基準-10°	-9.00	追加検討
<u>西へ</u> 60km _ <u></u> 我動	基準	-8.98	追加検討
	基準+10°	-8.81	追加検討
	基準-10°	-9.03	追加検討
西へ70km 移動	基準	-9.00	追加検討
	基準+10°	-8.86	追加検討
-	基準-10°	-9.09	追加検討
西へ80km 私動	基準	-9.03	追加検討
1940	基準+10°	-8.79	追加検討
_	基準-10°	-9.15	追加検討
西へ90km 私動	基準	-9.10	追加検討
19/30	基準+10°	-8.59	追加検討
	基準-10°	-9.20	追加検討
西へ100km 移動	基準	-9.10	追加検討
	基準+10°	-8.34	追加検討

1. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:水位下降側④

■位置:西方向,断層の傾斜:東傾斜(南北方向の位置:南へ130km移動)

パラメータの変動範囲		2号取水口		
位置	走向	前面	備考	
	基準-10°	-9.15	追加検討	
基準	基準	-8.99	追加検討	
	基準+10°	-9.24	追加検討	
	基準-10°	-9.26	追加検討	
西へ10km 我動	基準	-9.14	追加検討	
19-30	基準+10°	-9.43	追加検討	
西へ20km 移動	基準-10°	-9.46	追加検討	
	基準	-9.40	追加検討	
	基準+10°	-9.64	追加検討	
	基準-10°	-9.65	追加検討	
西へ30km 移動	基準	-9.62	追加検討	
	基準+10°	-9.75	追加検討	
	基準-10°	-9.77	追加検討	
四へ40km 移動	基準	-9.80	追加検討	
102	基準+10°	-9.54	追加検討	
— = = = =	基準-10°	-9.85	追加検討	
西へ50km 移動	基準	-9.94	追加検討	
1233	基準+10°	-9.20	追加検討	

			(単位:(m))	
パラメー	タの変動範囲	이 문 ᄧ · 사 디		
位置	走向	1 2号取示口 前面	備考	
	基準-10°	-9.92	追加検討	
西へ60km 移動	基準	-10.05	詳細パラスタ 追加検討	
	基準+10°	-8.80	追加検討	
	基準-10°	-9.95	追加検討	
西へ70km 投動	基準	-10.05	追加検討	
19 3/	基準+10°	-8.40	追加検討	
	基準-10°	-9.87	追加検討	
西へ80km	基準	-9.82	追加検討	
19 3/	基準+10°	-7.95	追加検討	
	基準-10°	-9.75	追加検討	
西へ90km 移動	基準	-9.45	追加検討	
10/3/	基準+10°	-7.51	追加検討	
	基準-10°	-9.51	追加検討	
西へ100km 移動	基準	-9.07	追加検討	
イタ当月	基準+10°	-7.30	追加検討	

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.5 波源特性の不確かさの考慮 2.5.3 概略パラメータスタディ(東西方向) 2.5.3(2)津波予測計算結果:まとめ

- 各評価位置における水位上昇側・水位下降側の最大ケースを以下に示す。
- 各ケースを対象に、詳細パラメータスタディを実施する。

【水位上昇側】

	波源特性の不確かさ				最大水位上昇量(m)						
位置		新岡の		載書	1号	2号	3号	1号	2•3号		
南北方向	東西方向	傾斜	走向	前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	放水口 前面		
南へ 130km	基準	西傾斜	基準-10°	<u>21.36</u> (南側)	11.74	14.33	13.97	13.47	11.83		
南へ 130km	西へ 80km	西傾斜	基準-10°	19.20 (北側)	<u>12.22</u>	15.30	13.93	12.05	12.02		
南へ 130km	西へ 50km	東傾斜	基準+10°	17.56 (南側)	11.33	<u>16.37</u>	12.62	11.16	10.36		
南へ 130km	西へ 20km	西傾斜	基準-10°	21.15 (南側)	12.13	15.26	<u>14.31</u>	14.10	11.97		
南へ 130km	西へ 10km	西傾斜	基準-10°	21.35 (南側)	11.85	14.90	14.29	<u>14.23</u>	11.91		
南へ 130km	東へ 40km	西傾斜	基準-10°	18.73 (南側)	10.76	14.72	12.66	11.89	<u>12.32</u>		

【水位下降側】

	波源特性	の不確かさ	最大水位下降量(m)			
位	置	断層の	土白	2号取水口前面		
南北方向	東西方向	傾斜	正问			
南へ 130km	西へ 60km	東傾斜	基準	<u>-10.06</u>		

2.5.4 詳細パラメータスタディ:不確かさの考慮方法

- 土木学会(2002)を参考として、概略パラメータスタディの各評価位置における最大水位上昇ケース、最大水位下降ケースを対象に、傾斜角及び断層 上縁深さを変動させた詳細パラメータスタディを実施した。
- ・ 各パラメータの変動範囲については、土木学会(2002)等を参考に設定※1,2した。
- ※1:土木学会(2002)では,プレート間逆断層地震のハーバードCMTによる発震機構解(1976.1~2000.1に発生したMw6.0以上,深さ60km以下の地震)及び既往の断層モデルのばらつきから変動範囲を設定。
- ※2:日本海溝沿いでは、2005年11月15日(Mw7.1)、2011年3月11日(Mw7.7)に海洋プレート内地震が発生しており、傾斜角はそれぞれ約45°(岩淵(2013))、42°(Lay et al.(2011)) である。

【詳細パラメータスタディ】

	項目	変動範囲		
傾斜角		基準, 基準±5°		
	アウターライズ領域 (海溝から東側)	0km, 1km(基準), 2km		
断層上縁深さ	沈み込んだ領域 (海溝から西側)	各波源位置のプレート境界 面からの深さ: 0km, 1km(基準), 2km		

(参考)断層パラメータ

2.5.4 詳細パラメータスタディ:津波予測計算結果(水位上昇側)①

【詳細パラメータスタディ①】

(波源位置:南へ130km,東西方向:基準,断層の傾斜:西傾斜,走向:基準-10°)

(単位:(m))

パラメータの変動範囲			_1号	_2号	_3号	1号	2•3号	
傾斜角	断層上縁深さ	敷地前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	│ 放水口 │ 前面	備考
<u></u> + :# ┍⁰	0km	20.91(南側)	11.40	14.35	13.07	13.43	11.37	追加検討
	1km(基準)	20.91(南側)	11.42	14.23	13.13	13.36	11.50	追加検討
(40)	2km	20.82(南側)	11.56	14.44	13.06	13.31	11.54	追加検討
# :#	0km	21.38(南側)	11.65	14.27	13.89	13.53	11.77	追加検討
│ 基準 │ (15°)	1km(基準)	21.36(南側)	11.74	14.33	13.97	13.47	11.83	追加検討
(40)	2km	21.31(南側)	11.77	14.58	13.94	13.48	11.91	追加検討
基準+5° (50°)	0km	21.81(南側)	11.83	14.63	14.53	13.45	12.01	追加検討
	1km(基準)	21.81(南側)	11.95	14.65	14.64	13.40	12.03	追加検討
	2km	21.79(南側)	12.04	14.73	14.62	13.47	12.12	追加検討

【詳細パラメータスタディ②】

(波源位置:南へ130km,西へ80km,断層の傾斜:西傾斜,走向:基準-10°)

	パラメータの変動範囲		<u> </u>	1号	2号	3号	1号	2•3号	
	偱斜鱼	断層上縁深さ	敷地前面	取水口	取水口	取水口 	放水口	放水口	備考
	12(3)12(3)			刖囬	刖囬	削囲	削囲	刖囬	
	₩ <i>₩</i> -°	7km	18.97(南側)	11.75	14.91	13.44	11.70	11.58	追加検討
	基準⁻5 [°] (10°)	8km(基準)	18.96(南側)	11.81	15.02	13.46	11.73	11.67	追加検討
	(40)	9km	18.98(南側)	11.85	15.12	13.52	11.74	11.72	追加検討
	++ >#	7km	19.19(南側)	12.18	15.23	13.82	12.01	11.92	追加検討
	基準 (52 [°])	8km(基準)	19.20(南側)	12.22	15.30	13.93	12.05	12.02	追加検討
	(33)	9km	19.24(南側)	12.31	15.34	14.02	12.08	12.07	追加検討
		7km	20.11(北側)	12.83	15.83	14.40	12.61	12.34	追加検討
	基準+5° (58°)	8km(基準)	20.19(北側)	12.85	15.86	14.61	12.71	12.46	追加検討
		9km	20.39(北側)	12.92	16.10	14.73	12.80	12.51	1号取水口前面最大ケース 追加検討

2.5.4 詳細パラメータスタディ:津波予測計算結果(水位上昇側)②

【詳細パラメータスタディ③】

(波源位置:南へ130km,西へ50km,断層の傾斜:東傾斜,走向:基準+10°)

1号 2号 3号 1号 2•3号 パラメータの変動範囲 取水口 取水口 取水口 放水口 放水口 備考 敷地前面 傾斜角 断層上縁深さ 前面 前面 前面 前面 前面 9km 18.09(南側) 11.73 16.44 13.44 11.68 11.01 追加検討 基準-5° 2号取水口前面最大ケース 10km(基準) 18.12(南側) 11.79 13.48 11.69 11.00 16.45 (35°) 追加検討 18.15(南側) 追加検討 11km 11.80 16.37 13.47 11.72 11.01 17.64(南側) 9km 追加検討 11.36 16.31 12.67 11.15 10.37 基準 10km(基準) 17.56(南側) 追加検討 11.33 16.37 12.62 11.16 10.36 (40°) 11km 17.56(南側) 11.27 16.25 12.62 11.14 10.35 追加検討 9km 16.63(南側) 10.47 10.70 15.35 11.96 9.54 追加検討 基準+5° 10km(基準) 16.51(南側) 追加検討 10.67 15.29 11.84 10.45 9.51 (45°) 11km 16.37(南側) 10.58 15.15 11.72 10.42 9.51 追加検討

【詳細パラメータスタディ④】

(波源位置:南へ130km,西へ20km,断層の傾斜:西傾斜,走向:基準−10°)

(単位:(m))

パラメータの変動範囲		***	1号	2号	3号	1号	2•3号	
傾斜角	断層上縁深さ	<u></u> 敷地前面	取水口 前面	□ 取水口 前面	取水口 前面	放水口 前面	│	備考
++ *# =0	0km	20.34(南側)	12.09	15.27	13.50	13.78	11.59	追加検討
基準 5 (12 [°])	1km(基準)	20.45(南側)	12.07	15.31	13.54	13.80	11.62	追加検討
(42)	2km	20.41(南側)	12.13	15.38	13.41	13.80	11.65	追加検討
# :#	0km	21.01(南側)	12.16	15.10	14.21	14.07	11.95	追加検討
基準 (17°)	1km(基準)	21.15(南側)	12.13	15.26	14.31	14.10	11.97	追加検討
(47)	2km	21.10(南側)	12.22	15.42	14.28	14.17	12.07	追加検討
	0km	21.85(南側)	12.30	15.22	14.67	13.97	12.28	追加検討
基準+5° (52°)	1km(基準)	21.97(南側)	12.31	15.17	14.92	14.04	12.25	追加検討
	2km	21.94(南側)	12.42	15.26	15.12	14.16	12.26	3号取水口前面最大ケース 追加検討

2.5.4 詳細パラメータスタディ:津波予測計算結果(水位上昇側)③

【詳細パラメータスタディ⑤】

(波源位置:南へ130km,西へ10km,断層の傾斜:西傾斜,走向:基準-10°)

2号 1号 3号 1号 2•3号 パラメータの変動範囲 敷地前面 取水口 取水口 取水口 放水口 放水口 備考 傾斜角 断層上縁深さ 前面 前面 前面 前面 前面 0km 20.64(南側) 11.57 14.89 13.33 13.99 11.60 追加検討 基準-5° 1km(基準) 20.69(南側) 11.67 14.99 13.38 13.97 11.64 追加検討 (41°) 2km 20.69(南側) 11.82 15.09 13.33 13.94 11.72 追加検討 1号放水口前面最大ケース 0km 21.30(南側) 11.86 14.85 14.11 14.26 11.84 追加検討 基準 1km(基準) 21.35(南側) 14.90 14.23 追加検討 11.85 14.29 11.91 (46°) 2km 21.37(南側) 追加検討 11.82 15.01 14.34 14.24 12.01 0km 21.98(南側) 12.08 15.21 14.86 14.17 12.03 追加検討 基準十5° 敷地前面最大ケース 1km(基準) 22.05(南側) 12.14 15.19 15.01 14.12 12.05 (51°) 追加検討 22.04(南側) 追加検討 2km 12.11 15.17 15.08 14.16 12.19

【詳細パラメータスタディ⑥】

(波源位置:南へ130km,東へ40km,断層の傾斜:西傾斜,走向:基準-10°)

(単位:(m))

(単位:(m))

パラメータの変動範囲		*/	1号	_2号	3号	1号	2•3号	
傾斜角	断層上縁深さ	<u></u> 敷地前面	取水口 前面	取水口 前面	取水口 前面	放水口 前面	│ 放水口 │ 前面	備考
基準-5° (40°)	0km	18.41(南側)	10.20	14.73	12.10	11.32	11.50	追加検討
	1km(基準)	18.43(南側)	10.26	14.84	12.26	11.40	11.56	追加検討
	2km	18.45(南側)	10.38	14.99	12.29	11.42	11.56	追加検討
±	0km	18.62(南側)	10.71	14.52	12.54	11.82	12.24	追加検討
│ 基準 (15°)	1km(基準)	18.73(南側)	10.76	14.72	12.66	11.89	12.32	追加検討
	2km	18.77(南側)	10.81	14.98	12.80	11.92	12.30	追加検討
	0km	19.09(南側)	11.17	14.48	12.84	12.47	12.66	追加検討
基準+5° (50°)	1km(基準)	19.12(南側)	11.17	14.70	12.99	12.56	12.73	追加検討
	2km	19.17(南側)	11.26	14.92	13.12	12.60	12.74	2・3号放水口前面最大ケース 追加検討

82

2.5.4 詳細パラメータスタディ:津波予測計算結果(水位下降側)

【詳細パラメータスタディ】

(波源位置:南へ130km,西へ60km,断層の傾斜:東傾斜,走向:基準)

(波源位置:南へ1	30km, 西へ60km,	断層の傾斜:東傾斜, 走向:基準)	(単位:(m))		
パラメータの	の変動範囲				
傾斜角	断層上縁深さ	2号取水口前面	備考		
	11km	-9.92	追加検討		
基準-5°(34°)	12km(基準)	-9.92	追加検討		
	13km	-9.90	追加検討		
<u></u>	11km	-10.06	追加検討		
基準 (30 [°])	12km(基準)	-10.05	追加検討		
基準 · (39°) ·	13km	-10.02	追加検討		
╪ ╪ ╪	11km	-10.13	2号取水口前面最大ケース 追加検討		
基华十5 (44 [°])	12km(基準)	-10.10	追加検討		
	13km	-10.06	追加検討		

2.6「海洋プレート内地震」に起因する津波の評価

2.	6. 1	津波水位 ••••••••••••••••••••••••••••••••••••	85
2.	6. 2	水位分布及び水位時刻歴波形 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
2.	6. 3	敷地前面における最大水位上昇量の比較	93

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.6 「海洋プレート内地震」に起因する津波の評価

2.6.1 津波水位

• 各評価位置における水位上昇側・水位下降側の最大ケースを以下に示す。

<u>【水位上昇側】</u>

		波源特性	の不確かさ			最大水位上昇量(m)					
位置		断層の	+ -	店台县	断層上縁	敷地	1号	2号	3号	1号	2·3号
南北方向	東西方向	傾斜	正问	順科円	深さ	前面	前面	前面	前面	前面	成水口 前面
南へ 130km	西へ 10km	西傾斜	基準-10°	基準+5° (51°)	1km	<u>22.05</u> (南側)	12.14	15.19	15.01	14.12	12.05
南へ 130km	西へ 80km	西傾斜	基準-10°	基準+5° (58°)	9km	20.39 (北側)	<u>12.92</u>	16.10	14.73	12.80	12.51
南へ 130km	西へ 50km	東傾斜	基準+10°	基準-5° (35°)	10km	18.12 (南側)	11.79	<u>16.45</u>	13.48	11.69	11.00
南へ 130km	西へ 20km	西傾斜	基準-10°	基準+5° (52°)	2km	21.94 (南側)	12.42	15.26	<u>15.12</u>	14.16	12.26
南へ 130km	西へ 10km	西傾斜	基準−10°	基準 (46°)	0km	21.30 (南側)	11.86	14.85	14.11	<u>14.26</u>	11.84
南へ 130km	東へ 40km	西傾斜	基準-10°	基準+5° (50°)	2km	19.17 (南側)	11.26	14.92	13.12	12.60	<u>12.74</u>
《参考》 申請時の	評価				21.38 (南側)	11.85	15.15	14.19	13.86	12.07	

【水位下降側】

		波源特性		2号取水口前面				
位置		断層の	土白	店公告	断層上縁	最大水位	取水口敷高を下回る	
南北方向	東西方向	傾斜	正问	正问 1 傾斜角		下降量(m)	継続時間(分)	
南へ 130km	西へ 60km	東傾斜	基準	基準+5° (44°)	11km	<u>-10.13</u>	2.6	
2号機非常	用海水ポンプ		約26					
《参考》 申請時の	評価		-9.30	1.5				

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2. 6 「海洋プレート内地震」に起因する津波の評価 2. 6. 2 水位分布及び水位時刻歴波形:水位上昇側①

評価位置	位	置 	紫南の頃刻	土白	佰斜角	新属上緑涩さ	
	南北方向	東西方向	断層の頃科	た円	间 · 利 · 利 · 利 · 利 · 利 · 利 · 利 · 利 · 利 ·	即宿工稼沫で	
敷地前面	南へ130km	西へ10km	西傾斜	基準-10°	基準+5° (51°)	1km	

最大水位上昇量分布

評価位置	位置		紫南の頃空	土白	佰 创在	- 第朝 - 銘浴さ
	南北方向	東西方向	町眉の頃科	定问	间 种 内	町眉工修床で
1号取水口前面	南へ130km	西へ80km	西傾斜	基準-10°	基準+5° (58°)	9km

※1 : T.P.−5.74m(O.P.−5.0m)

※2:水位時刻歴波形は、各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は、(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

预压达罢	位	·置	断層の傾斜	走向	傾斜角	町内 ト 紀辺ナ
〒〒1Ⅲ1⊻直	南北方向	東西方向				町眉工核床で
2号取水口前面	南へ130km	西へ50km	東傾斜	基準+10°	基準-5° (35°)	10km

※1 : T.P.−7.04m(O.P.−6.3m)

※2:水位時刻歴波形は、各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は、(原子力発電所)資料3-4「Ⅰ.5.津波水位の抽出位置」に記載。)。

※2:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「Ⅰ.5.津波水位の抽出位置」に記載。)。

款在住業	位	置	医用う原金	土白	版创办	断屋 し 4 流 さ	
高平1皿1⊻1直	南北方向	東西方向	町眉の順料	正 问	1頃赤汁月	町眉工稼沫さ	
3号取水口前面	南へ130km	西へ20km	西傾斜	基準-10°	基準+5 [°] (52 [°])	2km	

I. 地震に起因する津波の評価 2. 海洋プレート内地震 2.6 「海洋プレート内地震」に起因する津波の評価 2.6.2 水位分布及び水位時刻歴波形:水位上昇側④

亚	位置		新岡の頃刻	牛白	佰 名	新國ト総営さ
部価位直	南北方向	東西方向	町層の順科	定问	间(赤针)户 ————————————————————————————————————	即眉工稼沫で
1号放水口前面	南へ130km	西へ10km	西傾斜	基準-10°	基準 (46°)	0km

※:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

評価位置	位	置	新屋の傾斜	走向	傾斜角	断層上縁深さ
	南北方向	東西方向	断層の頃称			
2•3号放水口前面	南へ130km	東へ40km	西傾斜	基準-10°	基準+5° (50°)	2km

※:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

※1 : T.P.−7.04m(O.P.−6.3m)

※2:水位時刻歴波形は,各取放水口前面の中央位置に該当するメッシュで抽出(抽出位置は,(原子力発電所)資料3-4「I.5.津波水位の抽出位置」に記載。)。

- 波源位置を変化させた代表ケース,並びに敷地前面最大ケース(水位上昇側)の敷地前面における最大水位上昇量を比較した結果を下図に示す。
- 海洋プレート内地震は、敷地前面の南側に最大水位上昇地点が見られる特性を有する。

I. 地震に起因する津波の評価

3. 海域の活断層による地殻内地震※

3. 1	検討方針	•••••••••••••••••••••••••••••••••••••••	95
3. 2	検討結果		96

※:追加地質調査による海域の活断層評価を踏まえた再評価

I. 地震に起因する津波の評価 3. 海域の活断層による地殻内地震

3.1 検討方針

- 敷地周辺の地質・地質構造において、後期更新世以降の活動性を考慮している断層を検討の対象とした。
- ・ 津波高さは、上記断層のうち発電所と断層の位置関係、断層長さ及び敷地からの距離を考慮し、F-2断層・F-4断層、F-5断層、F-6断層 ~ F-9断層、Ⅲ断 層、Ⅳ断層を対象に、阿部(1989)の簡易予測式を用いて算定した。

I. 地震に起因する津波の評価 3. 海域の活断層による地殻内地震

3.2 検討結果

・ 推定津波高は最大1.2mであり、プレート間地震及び海洋プレート内地震に起因する津波と比較して小さいことを確認した。

【検討結果】

1)	断層幅の上限W _t は,地震発	生層の厚さH。を15kmとし	,傾斜角 δ を90°	(45~90°	のうちM _w が最大となる値)とした際には,
	$W_t=H_e/sin\delta=15kmとなる。ま$:た, 断層幅の上限に対応	なする断層長さし(tL _t =1.5×V	V _t =22.5kmとなる。

2) 断層幅の上限に対応するすべり量D,は、モーメントマグニチュードをM_w=(logL₁+3.77)/0.75=6.83, 地震モーメントを M_{ol}=10^{(1.5M}w⁺9.1)=2.21×10¹⁸N·m, 剛性率をµ=3.50×10¹⁰N/m²とした際には、D,=M_{ol}/(µLW₁)=1.87mとなる。

断層名	Mw	断層 長さ L(km)	断層 幅 W(km)	すべ り量 D(m)	地震 モーメント Mo(N・m)	津波の 伝播距 離 ∆ (km)	推定 津波高 Ht(m)
F−2断層・ F−4断層	7.0	27.8	15.0	2.31	3.37 × 10 ¹⁹	27.0	1.1
F−5断層	6.2	11.2	7.5	0.93	2.73 × 10 ¹⁸	23.2	0.2
F−6断層~ F−9断層	6.9	23.7	15.0	1.97	2.45 × 10 ¹⁹	19.8	1.2
Ⅲ断層	7.2	41	15.0	3.41	7.34 × 10 ¹⁹	90.0	0.5
Ⅳ断層	7.2	43	15.0	3.57	8.07 × 10 ¹⁹	86.2	0.6

(参考)申請時の評価(F-6断層~F-9断層)

断層名	Mw	断層 長さ L(km)	断層 幅 W(km)	すべ り量 D(m)	地震 モーメント Mo(N・m)	津波の 伝播距 離 ∆ (km)	推定 津波高 Ht(m)
F−6断層 ~ F−9断層	6.8	22	14.7	1.83	2.07 × 10 ¹⁹	15	1.2

Ⅱ. 計算条件等

1. 潮位条件

1.	1	本説明(コメント回答)の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
1.	2	基準津波評価で考慮している朔望平均潮位 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
1.	3	基準津波評価で考慮している朔望平均潮位の妥当性 ・・・・・・・・・・・・・ 1	00
1.	4	まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	01

1.1 本説明(コメント回答)の基本方針

No.	コメント時期	コメント内容
S55	平成27年1月23日 第185回審査会合	評価に用いた潮位条件の詳細(観測位置, 観測期間)を説明すること。

■第185回審査会合での説明とコメント内容の関係

【基準津波の評価に用いる潮位条件】

・基準津波の評価にあたり、水位上昇側の水位変動に対しては、朔望平均 満潮位(O.P.+1.43m)を考慮する。また、水位下降側の水位変動に対して は、朔望平均干潮位(O.P.-0.14m)を考慮する。

朔望平均満潮位	O.P.+1.43m
朔望平均干潮位	O.P0.14m

■本説明(コメント回答)の基本方針

- 評価に用いた潮位条件の詳細(観測位置, 観測期間)を 説明する。
- また,近年(2006年~2010年)の観測記録による朔望平均 潮位と比較し,評価に用いた朔望平均潮位と有意な差が 見られるかを確認する。

1.2 基準津波評価で考慮している朔望平均潮位

・ 基準津波評価で考慮している朔望平均潮位は,敷地南方約11kmに位置する気象庁鮎川検潮所における1986年~1990年の観測記録を用いて算定している。

発電所と鮎川検潮所の位置図

基準津波評価で考慮している朔望平均潮位

朔望平均満潮位	O.P.+1.43m
朔望平均干潮位	O.P0.14m

1.3 基準津波評価で考慮している朔望平均潮位の妥当性

・ 近年(2006年~2010年)の観測記録^{※1,2}を用いて朔望平均潮位を算定した結果,朔望平均満潮位はO.P.+1.46m,朔望平均干潮位はO.P.-0.09mであり, 基準津波評価で考慮している朔望平均潮位と有意な差がないことを確認した。

-0.4

-0.5

-0.6

2006年4月 -2006年7月 -

2006年1月

2007年7月

2007年10月 2008年1月

2007年4月

2006年10月 2007年1月

朔望平均潮位の比較						
	①基準津波評価 (1986年~1990年)	②近年 (2006年~2010年)	差 (①一②)			
朔望平均 満潮位	O.P.+1.43m	O.P.+1.46m	−0.03m			
朔望平均 干潮位	O.P0.14m	O.P0.09m	−0.05m			

※1:鮎川検潮所は、3.11地震により被災したことを踏まえ、地震発生前の5ヵ年 (2006年~2010年)の潮位記録を用いた。

※2:潮位記録は、「日本海洋データセンター」の資料を使用した。また、朔望平均潮位 は、毎正時の朔望の前2日、後4日の期間における最高潮位または最低潮位を平均 して算定した。

2010年4月

2009年4月-

2009年7月 2009年10月 2010年1月

2009年1月

2008年7月

2008年10月

2008年4月

各月の朔望潮位の経時変化

- : 朔

2010年7月-

望

2010年10月

100

1.4 まとめ

No.	コメント時期	コメント内容
S55	平成27年1月23日 第185回審査会合	評価に用いた潮位条件の詳細(観測位置, 観測期間)を説明すること。

- ・ 基準津波評価で考慮している朔望平均潮位は,敷地南方約11kmに位置する気象庁鮎川検潮所における1986年~1990年の観測記録を用い て算定したものである。
- ・ 近年(2006年~2010年)の観測記録による朔望平均潮位と比較した結果,両者に有意な差は無いことを確認した。

Ⅱ.計算条件等

2. 発電所周辺地形及び津波の周期特性

2. 1	本説明	(コメント回谷	ら)の基本	方針	•••••		• • • • • • •		•••••	103
2. 2	2 発電所	周辺地形の	周期特性	•••		•••••			• • • • • • • • • • • • •	104
2. 3	3 津波の	周期特性	•••••	• • • • • •	• • • • • • •				•••••	110
2. 4	発電所	周辺地形の	周期特性	と津波	の周期	特性の比	と較・	• • • • • • •	•••••	116
2.5	5 空間格	子間隔の妥	当性・	• • • • • •					•••••	118
2.6	; まとめ									119

102

2.1 本説明(コメント回答)の基本方針

No.	コメント時期	コメント内容
S53	平成27年1月23日 第185回審査会合	発電所はリアス式海岸の南部に位置することから,基準津波水位の評価に複雑な地形の影響が考慮されているかを確認する ため,女川湾等の周期特性について説明すること。

■本説明(コメント回答)の基本方針

- 女川原子力発電所は、湾や入り江形状を呈する地形が多数存在するリアス式海岸の南部に位置しており、周辺地形と襲来する津波が共振することにより、津波水位が増幅する可能性があることを考慮して、発電所を含む周辺地形の空間格子間隔(Δs)は31m、発電所付近の空間格子間隔(Δs)については5mに設定している。
- 津波水位評価に、複雑な地形の影響が適切に考慮されているかどうかを確認するため、発電所の津波水位に与える影響が大きい「東北地方太平洋沖型の地震」、
 「津波地震」、「海洋プレート内地震」の敷地前面最大ケースを対象に以下の検討を実施する。

2.2 発電所周辺地形の周期特性:計算条件

• 周期を変化させた正弦波による津波解析を実施して、発電所周辺地形の周期特性を把握する。下記に主な計算条件を示す。

	E領域	F領域	G領域	H領域			
空間格子間隔∆s	93 m(2500/27)	31 m(2500/81)	10m(2500/243)	5m(2500/486)			
時間格子間隔∆t	0.1秒						
基礎方程式	非線形長波式(浅水理論)						
入射波	正弦波:10波以上,振幅:0.1m,周期:1分~20分(1分ピッチ),20分~60分(5分ピッチ)						
沖側境界条件	 ・沖側境界:正弦波による水位変動を流量として入射し、岸からの反射波については自由透過させる。 ・側面水域境界:自由透過 						
陸側境界条件	小谷ほか(1998)の遡上境界条件						
海底摩擦	マニングの粗度係数n = 0.03m ^{-1/3} /s(土木学会(2002)より)						
計算時間	3時間を基本とし、入射波周期が18分より長いケースは10波相当の時間とする。						

主な計算条件

2.2 発電所周辺地形の周期特性:計算結果①

・ 発電所周辺の湾や入り江形状を呈する各地形の固有周期(最大水位上昇量分布)を以下に示す。

105

I.計算条件等 2.発電所周辺地形及び津波の周期特性
 2.2 発電所周辺地形の周期特性:計算結果②

・ 発電所地点の固有周期(最大水位上昇量分布)を以下に示す。

106

2.2 発電所周辺地形の周期特性:計算結果と既往研究結果との比較①

■既往研究結果:Aida (1974)

Aida(1974)は、女川湾の湾内外の長周期波の挙動を把握するため、
 正弦波を用いた数値シミュレーションを実施している。

Fig. 1. Grid scheme in Onagawa Bay and the arrangement of stations.

計算領域 (空間格子間隔(Δs):900m)

Fig. 2. Amplitude distribution of bay oscillations computed by means of a two-dimensional numerical model. N and T indicate the numbers of nodal lines (chain line) and the natural period, respectively. Relative amplitude with respect to the maximum is shown. Negative values (dotted line) represent the out of phase state.

女川湾の湾奥と湾外の周期特性
2.2 発電所周辺地形の周期特性:計算結果と既往研究結果との比較②

女川湾湾奥,発電所前面の入り江地形の周期特性を示す入射波周期6分,9分の計算結果は,Aida(1974)による7分と10分の解析結果と整合的であることを確認した。

2.2 発電所周辺地形の周期特性:まとめ

・ 以上の検討から得られた発電所周辺地形の各固有周期を以下に示す。

各地形		固有周期	備考
発電所地点	藤丸湾	4分	詳細は, p105に記載。
	小屋取漁港~発電所港湾	6分	解析結果を下図に示す(p105再掲)。
	発電所前面の入り江地形	9分, 15分	解析結果を下図に示す(p105再掲)。
発電所周辺	鮫ノ浦湾	9分, 15分	詳細は, p105に記載。
	女川湾湾奥(女川漁港付近)	9分, 15分	詳細は, p105に記載。
	女川湾湾奥(五部浦湾)	15分	詳細は, p105に記載。
	女川湾全体	35分~40分	詳細は, p105に記載。

入射波周期:6分

入射波周期:9分

入射波周期:15分

2.3 津波の周期特性:各津波波源の周期特性①

■検討対象地点の選定

- 津波波源そのものが持つ周期特性を把握するため、周辺地形や伝播特性(浅水変形、回折等)の影響を受けにくい基準津波策定位置※の水位時 刻歴波形を用いてスペクトル解析を実施する。
- ※:周期を変化させた正弦波による津波解析の結果から、基準津波策定位置における最大水位上昇量と正弦波入射位置の最大水位上昇量は同程度であり、特異な水位増幅は 見られない(右図)。

줃 東北電力

2.3 津波の周期特性:各津波波源の周期特性②

■スペクトル解析に用いる水位時刻歴波形

・ 基準津波策定位置における水位時刻歴波形(9時間)を用いて,スペクトル解析を実施する。

111

2.3 津波の周期特性:各津波波源の周期特性③

■各津波波源の周期特性(スペクトル解析結果)

- 各津波波源のスペクトル解析結果を以下に示す。
- ・「東北地方太平洋沖型の地震」は60分程度の長周期成分が卓越し、「津波地震」及び「海洋プレート内地震」は5~10分程度の短周期成分が卓越 する。

2.3 津波の周期特性:周辺地形の影響を受けた発電所地点の周期特性①

■検討対象地点の選定

周辺地形等の影響を受けた津波波源毎の周期特性を把握するため、2号取水口前面※の水位時刻歴波形を用いてスペクトル解析を実施する。
※:周期を変化させた正弦波による津波解析の結果から、2号取水口前面位置は、ある周期帯で津波水位が大きく増幅する(右図)。

2.3 津波の周期特性:周辺地形の影響を受けた発電所地点の周期特性②

■スペクトル解析に用いる水位時刻歴波形

• 2号取水口前面位置における水位時刻歴波形(9時間)を用いて、スペクトル解析を実施する。

🔗 東北電力

114

2.3 津波の周期特性:周辺地形等の影響を受けた発電所地点における各津波の周期特性③

■各津波の周期特性(スペクトル解析結果)

- 各津波波源のスペクトル解析結果を以下に示す。
- ・「東北地方太平洋沖型の地震」は40分~60分の長周期成分が卓越し、「津波地震」及び「海洋プレート内地震」は9分、15分程度の短周期成分が 卓越する。

2.4 発電所周辺地形の周期特性と津波の周期特性の比較:東北地方太平洋沖型の地震

「発電所周辺地形の周期特性」と、「津波波源の周期特性」並びに「周辺地形の影響を受けた発電所地点の周期特性」の比較から、発電所地点の解析波形は、発電所地点における小屋取漁港〜発電所港湾の固有周期(6分)、発電所前面の入り江地形の固有周期(9分、15分)及び女川湾全体(35分〜40分)に対応する卓越周期が見られることを確認した。

2.4 発電所周辺地形の周期特性と津波の周期特性の比較:津波地震,海洋プレート内地震

「発電所周辺地形の周期特性」と、「津波波源の周期特性」並びに「周辺地形の影響を受けた発電所地点の周期特性」の比較から、発電所地点の解析波形は、発電所地点における小屋取漁港~発電所港湾の固有周期(6分)、発電所前面の入り江地形の固有周期(9分、15分)及び女川湾全体(35分~40分)に対応する卓越周期が見られることを確認した。

117

2.5 空間格子間隔の妥当性

- ・ 土木学会(2002)で示されているV字状の湾における格子間隔設定方法に基づき,津波解析で用いている空間格子間隔の妥当性を確認した。
- 発電所を含む湾形状を呈する地形の奥行き(距離)を下図のとおり設定した。検討の結果,湾奥の格子間隔の目安は30m以下,湾ロ~湾中央部の格子間隔の目安は109m以下と算定される。
- 津波解析で用いている発電所周辺における空間格子間隔は5mであることから、土木学会(2002)の方法により算定される格子間隔に対して小さいことを確認した。

・湾内平均波長: $L_V = T \cdot \left(\frac{g \cdot \mathbf{h}}{2}\right)^{1/2}$

・湾中央部より奥の平均波長: $Lo = T \cdot \left(\frac{g \cdot h}{4}\right)^{1/2}$

ここで,

- T :固有周期(s)
- 1:湾口~湾奥の距離(m)
- *h* :湾口水深(m), g :重力加速度

区分	港ロ~湾奥距離lと 湾内平均波長Lv との関係	格子間隔∆xの目安
湾ロ~ 湾中央部	-	Lv の 1/40程度
湾奥	Lv/l<6	Loの1/100以下
	6≦Lv/l<10	Lvの1/50程度
	10≦Lv/l	Lvの1/40程度

■湾奥,湾ロ~湾中央部の格子間隔(Δx)の目安の算定

	項目	値	備考
)	T(s)	360	正弦波による 入射波周期
	h(m)	30	水深コンターより
	l(m)	1140	①400(m), ②700(m)
)	Lv(m)	4365	土木学会(2002)
	Lo(m)	3086	土木学会(2002)
	湾奥の ∆x(m)	30	土木学会(2002)
	湾口~ 湾中央部の ∆x(m)	109	土木学会(2002)

2.6 まとめ

No.	コメント時期	コメント内容
S53	1月23日 第185回審査会合	発電所はリアス式海岸の南部に位置することから,基準津波水位の評価に複雑な地形の影響が考慮されている かを確認するため,女川湾等の周期特性について説明すること。

- 津波水位評価に、複雑な地形の影響が適切に考慮されているかどうかを確認するため、「発電所周辺地形の周期特性」を把握した上で、「津波 波源の周期特性」並びに「周辺地形の影響を受けた発電所地点の周期特性」を算定し、比較を行った。
- 検討の結果,発電所地点の解析波形は,発電所地点における小屋取漁港~発電所港湾の固有周期(6分),発電所前面の入り江地形の固有周期(9分,15分)及び女川湾全体(35分~40分)に対応する卓越周期が見られ,津波水位評価に複雑な地形の影響が適切に考慮されていることを確認した。
- ・ さらに、土木学会(2002)で示されている格子間隔設定方法を参考に、津波解析で用いている最小空間格子間隔の妥当性を確認した。

120

参考文献

参考文献①

- 1. 地震調査研究推進本部地震調査委員会(2012):三陸沖から房総沖にかけての地震活動の長期評価(第二版)について
- 2. 社団法人土木学会原子力土木委員会津波評価部会(2002):原子力発電所の津波評価技術
- 3. 阿部勝征(2003):津波地震とは何か 総論 -, 月刊 地球, Vol.25, No.5, pp.337-342
- 4. 内閣府中央防災会議事務局(2005):資料1 中央防災会議 日本海溝・千島海溝周辺海溝型地震に関する専門調査会(第10回)強震動及び津波高さの推計 について
- 5. 地震調査研究推進本部地震調査委員会(2014):全国地震動予測地図 2014年版 〜全国の地震動ハザードを概観して〜 付録-1
- 6. 阿部勝征(1988):津波マグニチュードによる日本付近の地震津波の定量化,東京大学地震研究所彙報, Vol.63, pp.289-303
- 7. 阿部勝征(1999): 遡上高を用いた津波マグニチュードMtの決定 歴史津波への応用 , 地震第2輯, 第52巻, pp.369-377
- 8. Katsuyuki Abe(1979) : Size of Great Earthquakes of 1837-1974 Inferred From Tsunami Data, Journal of Geophysical Research, Vol. 84, No.B4
- 9. Katsuyuki Abe(1985) : Quantification of major earthquake tsunamis of the Japan Sea, Physics of the Earth and Planetary Interiors, 38,214-223
- 10.宇津徳治(1999):地震活動概説,東大出版会,876pp
- 11.Katsuyuki Abe(1981) : Physical size of tsunamigenic earthquakes of the northwestern Pacific, Physics of the Earth and Planetary Interiors, 27,194–205
- 12. Hiroo Kanamori(1972) : Mechanism of tsunami Earthquakes, Physics of the Earth and Planetary Interiors, 6, 346-359
- 13. JASCHA POLET, H. KANAMORI(2009): Tsunami Earthquake, Encyclopedia of Complexity and Systems Science 2009, pp 9577-9592
- 14. Akira Hasegawa, Keisuke Yoshida, Youichi Asano, Tomomi Okada, Takeshi Iinuma, Yoshihiro Ito (2012) : Change in stress field after the 2011 great Tohoku-Oki earthquake, Earth and Planetary Science Letters 355-356,pp231-243
- 15.JAMSTEC(2013):東北地方太平洋沖地震における巨大地震・津波発生メカニズムの解明~地球深部探査船「ちきゅう」の科学的成果が「SCIENCE」誌に 3編 同時掲載~, プレリリース
- 16. Lin W., M.Conin, J.C. Moore, F.M. Chester, Y. Nakamura, J.J. Mori, L. Anderson, E.E. Brodsky, N.Eguchi, B. Cook, T.Jeppson, M. Wolfson-Schwehr, Y.Sanada,S.Saito, Y.Kido, T.Hirose, J.H. Behrmann, M.Ikari, K.Ujiie, C.Rowe, J.Kirkpatrick, S.Bose, C.Regalla,F.Remitti, V. Toy, P. Fulton, T.Mishima, T. Yang, T. Sun, T. Ishikawa, J. Sample, K.Takai, J. Kameda, S.Toczko, L. Maeda, S.Kodaira,R.Hino, D.Saffer (2013) : Stress state in the largest displacement area of the 2011Tohoku-oki Earthquake, Science 339,687-690
- 17.JAMSTEC(2012):海溝軸まで及んだ東北地方太平洋沖地震の地震断層を確認, プレスリリース
- 18.相田勇(1986):津波波源の推定,水工学シリーズ86-B-2,土木学会水理委員会
- 19.伊木常誠(1897):三陸地方津浪実況取調報告,震災予防調査会報告,第11号,pp.5-34
- 20.松尾春雄(1933):三陸津浪調査報告, 内務省土木試験所報告, 第24号, pp.83-112
- 21.武藤潤・大園真子(2012):東日本太平洋沖地震後の余効変動解析へ向けた東北日本弧レオロジー断面,地質学雑誌,第118巻,pp.323-333

参考文献②

- 22. Takaya Iawasaki, Wataru Kato, Takeo Moriya, Akiko Hasemi, Norihito Umino, Tomomi Okada, Kaoru Miyashita, Tomoko Mizogami, Tetsuya Takeda, Shutaro Sekine, Takeshi Matsushima, Katsuya Tashiro, Hiroki Miyamachi(2001): Extensional structure in northern Honshu Arc as inferred from seismic refraction/wide-angle reflection profiling, GEOPHYSICAL RESEARCH LETTERS, VOL.28, NO.12,pp.2329-2332
- 23. 西坂弘正・篠原雅尚・佐藤利典・日野亮太・望月公廣・笠原順三(2001):海底地震計と制御震源を用いた北部大和海盆,秋田沖日本海東縁部海陸境界域の 地震波速度構造,地震2,54,365-379
- Narumi Takahashi, Shuichi Kodaira, Tetsuro Tsuru, Jin-Oh Park, Yoshiyuki Kaneda, Kiyoshi Suyehiro, Hajimu Kinoshita, Shintaro Abe, Minoru Nishino and Ryota Hino (2004): Seismic structure and seismogenesis off Sanriku region, northeastern Japan, Geophys. J. Int. 159, 129–145, doi: 10.1111/j.1365– 246X.2004.02350.x
- 25. 地震調査研究推進本部(2009):付録3 震源断層を特定した地震の強震動予測手法(「レシピ」)
- 26. Mansinha, L. and D.E. Smylie (1971) : The displacement fields of inclined faults, Bull. Seism. Soc. Am., Vol.61, No.5, pp.1433-1440
- 27. 社団法人土木学会原子力土木委員会津波評価部会(2009):確率論的津波ハザード解析の方法(案)
- 28. Satoko Murotani, Kenji Satake , Yushiro Fujii (2013) : Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction zone earthquakes, Geophysical Research Letters, Vol.40, pp. 5070-5074
- 29. Yuichiro Tanioka, Kenji Satake (1996) : Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling, GEOPHYSICAL RESEARCH LETTERS, Vol.23, No.13, pp1549-1552
- 30. JoseA.Alvarez-Gomez,Omar Q.Gutierrez Gutierrez, Inigo Aniel-Quiroga, M.Gonzalez (2012) : Tsunamigenic potential of outer-rise normal faults at the Middle America trench inCentral America, Tectonophysics 574-575, 133-143
- 31. Thorne Lay, Charles J. Ammon, Hiroo Kanamori, Marina J. Kim, and Lian Xue(2011): Outer trench-slope faulting and the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 713-718
- 32. 地震研究所(1934):昭和8年3月3日三陸地方津浪に関する論文及報告,東京帝国大学地震研究所彙報,別冊第1号
- 33. Tetsuro Tsuru, Jin-Oh Park, Seiichi Miura, Shuichi Kodaira, Yukari Kido, Tsutomu Hayashi (2002) : Along-arc structural variation of the plate boundary at the JapanTrench margin: Implication of interplate coupling, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B12, 2357, doi:10.1029/2001JB001664
- 34. 岩淵洋(2013):日本海溝海側斜面における地殻伸張速度及びそこで発生する正断層地震について,海洋情報部研究報告第50号
- 35. 阿部勝征(1989): 地震と津波のマグニチュードに基づく津波高の予測, 東京大学地震研究所彙報, Vol.64, pp.51-69
- 36. 武村雅之(1998):日本列島における地殻内地震のスケーリング則-地震断層の影響および地震被害との関連-,地震第2輯,第51巻, pp.211-228
- 37. 日本海洋データセンター: http://www.jodc.go.jp/jodcweb/JDOSS/index_j.html
- 38. 小谷美佐・今村文彦・首籐伸夫(1998):GISを利用した津波遡上計算と被害推定法,海岸工学論文集,第45巻, pp.356-360
- 39. Isamu Aida (1974) : Long-period Waves in the Vicinity of Onagawa Bay(II)—Two-dimensional Pattern of Bay Oscillations—, Journal of the Oceanographical Society of Japan, Vol. 30, pp. 34-41

